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Abstract

One of the most energy-draining and frustrating parts

of software development is playing detective with elu-

sive bugs. In this paper we argue that automated post-

mortem debugging of failures is feasible for real, in-

production systems with no runtime recording. We pro-

pose reverse execution synthesis (RES), a technique that

takes a coredump obtained after a failure and automat-

ically computes the suffix of an execution that leads to

that coredump. RES provides a way to then play back

this suffix in a debugger deterministically, over and over

again. We argue that the RES approach could be used to

(1) automatically classify bug reports based on their root

cause, (2) automatically identify coredumps for which

hardware errors (e.g., bad memory), not software bugs

are to blame, and (3) ultimately help developers repro-

duce the root cause of the failure in order to debug it.

1 Introduction and Motivation

Debugging software deployed in the real world is hard,

frustrating, and typically requires deep knowledge of the

code. Bug reports rarely provide sufficient information,

so developers must turn into detectives in search of an

explanation of how the program could have reached the

reported failure state. It would be great if developers had

a better way to triage, analyze, and debug these failures.

One way to do this is deterministic record-replay:

record all key events during the real execution and, when

a failure occurs, ship the log of these events along with

the failure to the developers, who can then reproduce the

execution that led to the failure [2, 14, 15, 17, 19].

Record-replay systems, however, are not ideal, mainly

because of performance and storage overheads. For ex-

ample, making a multi-threaded execution on a multi-

core CPU reproducible requires logging a large num-

ber of memory operations, and this causes existing de-

terministic record-replay systems to have high perfor-

mance overhead (e.g., 400% for SMP-ReVirt [14] and

60% for ODR [2], even for a 2-core CPU). Several sys-

tems choose to trade some of the reproducibility guar-

antees for lower runtime overhead [2, 5, 23], but this

trade-off hurts their utility for debugging [27]. When

building a record-replay system for datacenter applica-

tions [28], a big challenge is that they are data-intensive,

and the large volume of data they process increases pro-

portionally with the size of the system and the power

of individual nodes. Recording all this data and storing

it for debugging purposes is impractical; checkpointing

can help trim the logs, but it increases recording over-

head and still does not get rid of logs. Since recording

must be always-on, to catch the occurrence of infrequent

bugs (which are the hard ones to debug), we believe such

performance and storage overheads make record-replay

impractical for debugging failures in production systems.

Another option would be to use deterministic execu-

tion systems [3, 4, 11, 12], but they too are prohibitively

heavyweight, especially for multi-CPU systems.

We set out to address the question of how would one

debug failures post-mortem with no runtime recording
and no execution control in production—once the appli-

cation fails, our ideal tool would use the information that

can be collected “for free” after the failure (e.g., the core-

dump) to automatically infer how to make the program

fail in the same way again, thus enabling developers to

home in on the root cause and fix it. This tool would

essentially automate what developers do manually today.

A fundamental challenge is that the coredump does not

contain enough information to reproduce the exact exe-

cution that led to the failure in the general case. However,

this is not really necessary: for debugging, it is sufficient

to produce some execution that reproduces the observed

failure state and the root cause [27]. The execution syn-

thesis technique [29] we proposed in the past accom-

plishes this by mimicking a human developer: it does

a backward analysis starting from the coredump, iden-

tifies in the space of possible execution paths some key

“reference points” that must be part of all failure-bound

executions, and then uses forward symbolic execution [9]

on the program to find a path that passes through the ref-

erence points and produces the coredump.

The problem, though, is that this approach does not

work for arbitrarily long executions—in fact, the longer

the execution, the more ambiguity in the location of these

reference points, and the harder it becomes to synthesize

an execution all the way from the start of the execution

to the end failure state.
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We advocate a new approach that turns execution syn-

thesis on its head; we call it reverse execution synthesis

(RES). The observation we leverage is that developers

do not really need a full execution from start to finish,

but just a suffix of the failure-bound execution—as long

as developers can replay this suffix and it contains the

root cause of the failure, it is sufficient to debug it [27].

In essence, RES reverse-executes the program and

reproduces the last few milliseconds of the execution,

enough to capture the root cause; the length of the full

execution is irrelevant to this approach. Unlike backward

static analysis (e.g., PSE [20]), RES’s analysis provides

an accurate execution suffix that can be run deterministi-

cally in a debugger. Unlike execution synthesis, RES in-

terprets the entire coredump, not just a minidump, which

makes RES strictly more powerful.

We now describe the technique in more detail (§2) and

present three possible use cases (§3): automatic classi-

fication of bug reports, automatic identification of fail-

ures likely caused by hardware errors (such as memory

bit flips or CPU bugs), and helping developers debug the

failed program.

2 Design of Reverse Execution Synthesis

We need a tool that, for a given program P, can use a

coredump C to generate a suffix of a feasible execution E
that causes program P to produce coredump C. The key

requirements are that (1) there is no recording at runtime;

(2) the technique works for multi-threaded programs and

concurrency bugs; (3) the suffix is of a feasible execu-

tion; (4) the suffix contains the root cause of the failure;

(5) execution E deterministically leads to C; and (6) no

modifications are to be made to P. This would make the

tool indeed useful for debugging failures that occur in

real-world production systems. Since it is predicated on

the presence of a coredump, this tool would work for

failures whose state can be snapshotted in a coredump

(e.g., crashes, deadlocks). Our current design for RES

meets requirements (1), (2), (5), (6), and aims to satisfy

but cannot always guarantee (3) and (4).

In proposing a technique for building such a tool, we

rely on two enablers: First, E does not need to be the

execution that actually occurred in production and led

to coredump C—any execution that reproduces the same

root cause and failure is sufficient [27]. Second, we as-

sume that the root cause is located fairly close to the fail-

ure (e.g., 85% of the bugs analyzed in [30] were executed

just a few instructions before the failure), so we expect a

short execution suffix to suffice for debugging.

2.1 What Are the Inputs and Outputs?

Inputs: As suggested above, RES takes in the coredump

C that represents a snapshot of the failed program’s state;

this is typically a free by-product of a failed execution

and is already being collected by production systems [16,

25]. In addition to C, RES takes in the program source

code PS, which should be available to developers. Thus,

the input is <C,PS >.

Outputs: RES produces a set of execution traces Ti

that end with the program counter found in the core-

dump; corresponding to each instruction trace, a partial

memory image Mi (§2.3) is also provided, representing

the content of the program’s address space just before the

execution of the suffix—executing Ti starting with state

Mi leads to a state compatible with the coredump. The

execution suffix Ti consists of the inputs (e.g., system call

returns) and the thread schedule required to accomplish

this. To replay a suffix in a debugger like gdb, a special

environment is slipped underneath the debugger to in-

stantiate Mi and replay Ti; to the developer it looks as if

the program deterministically runs into the same failure.

RES continues building up suffixes by moving back-

ward through the execution until the user stops it. If al-

lowed to run to completion, RES would eventually either

reconstruct a full start-to-finish execution path, or con-

clude that no such path exists and therefore the coredump

is likely due to hardware failure.

2.2 The Challenge of Inferring the Past

RES requires moving backward in time through the un-

known execution that led to the failure. One thought

might be to reverse the outcome of every instruction,

but this is not feasible. For example, reversing a mem-

ory write in the general case requires knowledge of

what value was in that location prior to the execution of

the overwriting instruction. Further aspects that pertain

mostly to CISC instruction sets like x86 make the revers-

ing of other instructions hard as well. A method has been

proposed for reverse-executing programs running on the

RISC PowerPC [1], but even this method needed heavy-

weight recording to recover missing information.

The main challenge then is how to accurately recon-

struct past program state without having recorded it.

Prior work based on static analysis can compute back-

ward program slices [20, 26] or derive weakest precon-

ditions [7, 10] for given vulnerabilities. These techniques

are typically imprecise, as they do not use the rich source

of information present in the coredump. They also work

only on sequential programs, because reasoning stati-

cally about concurrent executions is very hard.

2.3 Symbolic Snapshots

RES combines precise dynamic symbolic analysis with

static information from the coredump and the control-

flow graph of the program to reconstruct missing infor-

mation. Unlike forward execution synthesis, where the
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Figure 1: Simplified example illustrating the basics of

RES on a program that crashed due to a buffer overflow.

RES creates symbolic snapshots S1 and S2 that corre-

spond to program state just prior to each possible pre-

decessor basic block. Since x = 1 in the coredump, and

only Pred1 ever sets x to 1, then Pred1 must be part of

the correct execution suffix; RES discards the execution

suffix that traverses Pred2. A symbolic snapshot con-

tains both concrete and symbolic memory (e.g., x has an

unconstrained symbolic value in S1 because Pred1 over-

writes x’s value, so x prior to Pred1 could be anything).

static analysis phase goes from the final state all the way

to the start state before engaging in dynamic analysis,

RES alternates between static and dynamic analysis for

each basic block, incrementally producing a precise ex-

ecution suffix. Because RES focuses both static and dy-

namic analysis on an execution suffix—which is substan-

tially shorter than the length of the entire execution—it

alleviates the path explosion problem of forward execu-

tion synthesis approaches.

RES starts from the coredump and navigates P’s

control-flow graph backward until it reaches a basic

block that has at least two predecessors (Pred1 and Pred2

in Figure 1). At this point, RES determines statically

which predecessors are possible, and infers P’s memory

state just prior to executing each predecessor block.

To do this, RES creates symbolic snapshots (S1 and

S2 in Figure 1), one for each predecessor basic block.

A symbolic snapshot is a “hypothesis” of how program

state may have looked prior to executing that predeces-

sor block. It is an image of P’s memory state in which

some locations do not have concrete values, but rather

have stand-ins for any possible value (these are called

symbolic values [9]). Such symbolic values can also be

subject to constraints, such as having to be positive, or

being in a certain range. A symbolic snapshot in RES is

a mix of known, concrete values and currently unknown,

symbolic values. The program counter of a symbolic

snapshot is set to the entry point of the corresponding

predecessor basic block.

2.4 Reconstructing Program State

A symbolic snapshot Spre can be thought of as an over-

approximation of all possible program states just prior to

executing the predecessor block B. At a high level, the

idea is that, if Spost is the program state after executing

B, then we can obtain Spre from Spost by simply replacing

every memory location overwritten by B with an uncon-

strained symbolic value.

If we now execute B with Spre as a starting state, B will

transform Spre into S′, a more constrained version of the

symbolic snapshot Spre. This is because, as B executes,

it overwrites values in Spre with values computed either

based on other values in Spre (which may be concrete or

symbolic) or based on program inputs. For example, a

variable z may be unconstrained prior to executing B, but

be constrained to z ∈ [0,10] after some arithmetic per-

formed by B. Program inputs (e.g., incoming network

packets, reads from disk) are handed to the program as

unconstrained symbolic values, since these inputs refer

to system state that is not contained in program memory.

After executing the last instruction in B, RES com-

pares Spost and S′, to check if the resulting S′ is an over-

approximation of Spost, meaning that the value of every

location in Spost is a subset of the possible values of that

location in S′ (we denote this by S′ ⊃ Spost). If it is, then

the just-executed B is part of a feasible execution suf-

fix, because it transformed program state in a way that

is compatible with the post-B state. If S′ 6⊃ Spost, then it

means that B cannot be part of the suffix.

This reverse synthesis process is applied recursively to

B’s predecessor block(s), incrementally forming an exe-

cution suffix, one block at a time. The first step of RES is

the base case of the recursion, in which Spost is initialized

with a copy of the coredump C, and the first instance of

block B is the last basic block of the execution suffix.

When deriving Spre from Spost, the main challenge are

memory read and write operations. When encounter-

ing a memory write instruction in B, there is no way of

knowing what value was overwritten by the instruction,

so RES sets the corresponding location in Spre to an un-

constrained symbolic value. When encountering a mem-
ory read instruction in B, RES faces two options: If that

memory location will not be subsequently overwritten by

an instruction in B, then RES knows exactly what value

the read should return: the value is taken directly from

Spost. If, however, that memory location will be over-

written somewhere in the remaining part of B, then RES

cannot know what value resided there, so it returns from

the read an unconstrained symbolic value.

Due to space constraints, we omit our preliminary

ideas on how to reconstruct thread schedules, how to exe-

cute reads and writes with symbolic addresses (pointers),

and how to handle function pointers.
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Execution breadcrumbs: RES can benefit from core-

dumps augmented with runtime information that is cheap

to collect after the crash. For instance, existing er-

ror logs can provide RES with useful, coarse-grained

“breadcrumbs” of the execution trace. Another example

is the Last Branch Record (LBR) in Intel CPUs, which

stores the source and destination addresses of the last

16 branches with virtually no overhead. LBR provides

a precise execution suffix that can substantially trim the

search space in RES. The length of the trace provided

by LBR can be extended by configuring the hardware to

filter information that can be easily inferred offline (e.g.,

LBR could filter taken conditional branches, and RES

would use the CFG of the program to reverse engineer

the taken conditional branches).

3 Use Cases

We now present several use cases where employing re-

verse execution synthesis can help.

3.1 Triaging Bug Reports

Debugging in the large is hard, because the number of

deployed systems is big, and the sheer volume of bug

reports can be overwhelming [16]. In this context, ac-

curately and automatically prioritizing reports from mil-

lions of users is particularly difficult yet crucial in cutting

down the development costs.

The main challenge in bug triaging is that a single bug

can lead to different failures, and different bugs can lead

to the same failure point. The state of the art in triag-

ing bug reports is Windows Error Reporting (WER) [16].

Despite proving its utility in over ten years of operation,

WER relies on ad-hoc heuristics and the law of large

numbers. For instance, WER uses heuristics such as de-

prioritizing reports that suggest bugs in core OS code,

which is deemed to be correct. Thus, WER can incor-

rectly bucket up to 37% of the bug reports [16].

RES can complement WER by reconstructing the ex-

ecution suffix and more precisely identifying the root

cause of the failure. RES can process incoming bug re-

ports and triage them based on the execution suffix and

the likely root cause. Determining the root cause in the

general case is hard; however, in several cases it is possi-

ble. For example, RES can detect reads from freed mem-

ory, which are likely to generate failures with different

call stacks. A naive triaging technique that only looks

at the call stack in the coredump would classify these

failures in different buckets, while RES could improve

accuracy by triaging based on the root cause. Similarly,

a naive triaging might mis-triage bugs for which the root

cause is not in the functions on the call stack. To cope

with root causes that are hard to infer automatically, RES

can use human feedback: once developers find the root

cause of a failure, they can write RES annotations for the

particular root cause, which would help RES triage other

bug reports into the same bucket.

RES can also be used to classify bugs as exploitable.

For instance, say RES traces a failure to a buffer over-

flow and then further determines that the data copied

to the buffer was tainted by external data that could be

supplied by an attacker (e.g., a system call that reads

a network packet). Such a verdict would automatically

classify the bug as remotely exploitable and increase

the priority level for the bug report. However, without

RES, such a remotely exploitable bug, which typically

generates many different failures (all with different call

stacks), would be bucketed incorrectly (each failure in its

own bucket). This could (1) cause the exploit to fly under

the radar, because each instance of it would seem to be a

different bug, and (2) burden the developers who have to

inspect many buckets, all due in fact to the same bug.

3.2 Failures Caused by Hardware Errors

Hardware errors are common, correlated, and recur-

rent [22]. Machines that crash once due to a hardware

error are two orders of magnitude more likely to crash

a second time [22]. Moreover, hardware errors generate

noise, and developers waste time debugging them instead

of filtering them out. RES could be used to reduce this

significant source of noise.

It is difficult to distinguish a hardware error from

a software error, because both can manifest in similar

ways. In some simple cases, as with machine check ex-

ception (MCE) CPU errors, it is easy to diagnose a hard-

ware error. However, in other cases, such as memory er-

rors, one cannot reliably differentiate between a software

error (e.g., memory corruption) and a multi-bit DRAM

failure or DMA writes from a faulty device.

Prior work [22] used manual post-hoc analysis to iden-

tify likely hardware failures in the CPU subsystem, one-

bit memory flips, and disk system failures. These are

cases in which manual analysis is easy. For instance,

CPU errors are the ones that trigger an MCE and checks

for one-bit memory flips are limited to the kernel image,

which is meant to be read-only and can be compared to

the vanilla kernel image.

The open question that could be solved with RES is

how to automate this manual process and extend it to

more challenging cases (e.g., for memory that is not read-

only). For instance, while analyzing a coredump, RES

can discover inconsistencies between the coredump and

the execution of the program prior to generating the core-

dump, indicating that the likely explanation is a hardware

error. One example are memory errors: if on all the pos-

sible paths to the coredump the program writes the value

1 to a certain memory address, but the coredump con-

tains the value 0, this would likely indicate a memory
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error. Another example are CPU errors: say the CPU

miscomputed an addition, and this led to a crash. If RES

retrieves the result and the operands from the coredump,

and on all possible suffixes it obtains a different result for

the addition, it concludes the likely explanation for this is

a hardware error. Of course, diagnosing a hardware error

with full accuracy requires exploring all possible execu-

tion suffixes; this may be possible for short suffixes.

3.3 Debugging

RES enables several debugging aids on top of traditional

debuggers like gdb: synthesizing the execution suffix,

reconstructing past state (the symbolic snapshots), and

the ability to do reverse debugging without the need to

record the execution. Moreover, since it computes the

read and write sets of the execution suffix, RES automat-

ically focuses developers’ attention on the recently read

or written state, which, for debugging, is more likely to

be important than the rest of the coredump.

RES could also be used to automate the testing of var-

ious hypotheses formulated during debugging, such as

“what was the program state when the program was ex-

ecuting at program counter X ,” or “was a thread T pre-

empted before updating shared memory location M?”

Since RES reproduces the coredump, it is not re-

stricted to a particular type of bugs—even semantic bugs

(e.g., captured by assert statements) can be reproduced.

4 Preliminary Prototype

We are in the early stages of implementing a prototype

of RES for LLVM [18] binaries (e.g., generated from

C/C++ source code). RES supports multi-threaded pro-

grams and is implemented on top of the Cloud9 [8] sym-

bolic execution engine. Currently, RES assumes sequen-

tial memory consistency when synthesizing execution

suffixes, but we plan to lift this limitation.

We evaluated RES on three synthetic concurrency

bugs. The root cause of these bugs were data races or

atomicity violations. In all the cases RES was able to

identify the correct root cause in less than 1 minute. RES

only produced execution suffixes that reproduced the cor-

rect root cause, therefore it had no false positives.

5 Related Work

!exploitable [21] is a debugging tool that assigns ex-

ploitability ratings to crashes. !exploitable uses heuris-

tics, and unfortunately this can lead to both false posi-

tives and false negatives. By providing an execution suf-

fix, RES can improve the accuracy of this classification.

In some sense, RES is like computing weakest pre-

conditions [13] for the coredump (i.e., the coredump can

be seen as an extraordinarily large postcondition). Inter-

procedural weakest precondition computation is hard for

imperative programs. The state-of-the art weakest pre-

condition computation tools [7, 10] do not work for con-

current programs, do not leverage the coredump, and as-

sume some level of recording [7]. The full use of the

coredump, the accurate memory handling, and the sup-

port for concurrent programs are RES’s key differentia-

tors from work on weakest precondition computation.

RES’s approach to executing symbolic snapshots

was inspired by UC-KLEE [24], which uses under-

constrained execution for equivalence checking.

6 Known Challenges

The main limiting factor for RES is the size of the exe-

cution suffix. If the root cause of the failure is far from

the failure, or the failure requires reproducing complex

thread schedule interleavings, RES will encounter the

unavoidable path explosion problem [6].

There are cases in which reversing executions requires

inverting a difficult code construct (e.g., a hash func-

tion or a cryptographic function). RES, as described,

might not be able to produce a suffix that goes beyond

the difficult code construct. However, such code con-

structs may be regenerated otherwise, e.g., the inputs to

the hash function may still be on the stack and RES could

re-execute the function instead of reverse-analyzing it.

RES may not always identify the exact root cause

that led to the observed failure, therefore it may not of-

fer debug determinism [27]. However, RES’s accuracy

promises to be good, mainly owing to the fact that any

execution suffix must match the full coredump exactly.

Typically, even small deviations from the real execution

suffix lead to a different coredump. Furthermore, one

could argue that every root cause of a failure should be

fixed; after fixing it, RES can be run again to identify the

other root cause, and so on until all root causes are fixed.

RES does not currently handle control flow through

invalid pointers and memory or stack corruption, because

these cases may cause the CFG of the program to also

be corrupted, and the current RES prototype requires an

accurate CFG and stack.

7 Conclusion

We argued that it is conceivable to automate the debug-

ging of failures that occur in production systems, with-

out having to resort to runtime recording. We proposed

an initial design for reverse execution synthesis, which

takes as input a program and a coredump, and outputs

the suffix of an execution that leads that program to

that coredump. With this approach we hope to improve

a wide range of debugging-related tasks, such as auto-

matic triaging of bug reports, identifying failures caused

by hardware faults, and automating debugging processes

that are human labor-intensive.
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