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Abstract

The processor industry has reached the point where se-
quential improvements have plateaued and we are be-
ing flooded with parallel hardware we don’t know how
to utilise. An efficient, general-purpose and easy-to-
use parallel model is urgently needed to replace the von
Neumann model. We introduce and discuss the self-
modifying dataflow graph, an unusual model of com-
putation which combines the naturally parallel dataflow
model with local graph transformations to eliminate the
need for a global memory. We justify why it is a promis-
ing candidate.

1 Introduction

The von Neumann bottleneck would have brought pro-
cessor performance to its knees many years ago if it
weren’t for the extensive cache hierarchies used on
modern processors to reduce accesses to main memory.
Backus [3] argued that it was holding back programming
languages. We think it is now holding back adoption of
parallel hardware. Even if cache coherence protocols can
be made to scale further, constantly moving data long
distances on the chip will consume considerable energy
and time. The difficulties of writing efficient and correct
software with nontrivial sharing [9] are further evidence
that the von Neumann model is inappropriate for many-
core hardware.

Since hardware improvements are increasingly going
to take the form of parallel resources rather than faster
sequential computation, we should be looking for a suit-
able replacement model—not a framework for parallel
programming like MPI, OpenCL or MapReduce, but a
path that lets code written in any programming style ben-
efit from increasingly parallel hardware.

Due to major changes in hardware technology, the von
Neumann design no longer plays the role of computer
architecture but rather is a simplified model of the ma-

chine, allowing programmers to write software without
an intimate knowledge of the particular hardware it will
run on, and allowing hardware designers to make their
implementation as efficient as possible without needing
to consider every program that might be written for the
machine. Valiant [18] calls such models bridging mod-
els, and argues that a suitable bridging model is neces-
sary to help us make a real transition to parallel hard-
ware. Other authors have used “thin middle” [11] and
“simple abstraction” [19] to refer to similar things.

Any bridging model must be efficiently imple-
mentable, general-purpose and reasonably easy to use.
We believe that a good bridging model must have some
notion of space, because as parallel machines are scaled
up, the difference between sending a message to a neigh-
bouring core and a distant one becomes significant. We
also think that a bridging model should be able to run
software written in any programming style.

In this paper we present the self-modifying dataflow
graph, which we believe meets these requirements. One
may feel a little threatened by the fact that the model has
no program counter, nor load or store instructions, but
perhaps this is the leap we must take to free ourselves of
the von Neumann bottleneck. In later sections we explain
how the model supports dynamic data structures without
requiring a global memory, and also discuss considera-
tions relevant to OS implementation.

2 The Self-Modifying Dataflow Graph

In the dataflow model of computation [8], a program is
represented as a graph of instructions, as shown in Fig-
ure 1, and the machine executes the graph directly. Data
words (tokens) flow along the edges like packets along
wires. Most instructions are typical mathematical oper-
ations like add, subtract and compare; these instruc-
tions fire when they have a complete set of inputs: this
consumes the input words, applies the specified oper-
ation, and produces output words (shown in Figure 2).
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Figure 1: A flow graph for x*y + abs(z).
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Figure 2: A flow graph instruction before and after firing.

The steer instruction transfers the input word to a cho-
sen output edge, allowing branching behaviour (shown
in Figure 1). Since an arbitrary number of instructions
may fire at the same time, the model is inherently paral-
lel. However, ready instructions may take an arbitrary
amount of time to fire, so any execution, from com-
pletely sequential to maximally parallel, is valid. To a
large extent this means a dataflow program can be writ-
ten without regard for the number of processors it will be
executed on (and the number of processors could even
change at runtime).

Dataflow is a naturally parallel model, with differ-
ent sorts of parallelism exhibited by particular graph
structures. Dataflow makes no real distinction between
instruction-level parallelism (ILP) and thread or task par-
allelism. Data parallelism exists where several copies of
a code graph can operate in parallel. Pipeline parallelism
exists where successive elements of a list or stream are
processed by different stages of the computation at the
same time.

Unfortunately dynamic data structures cannot be effi-
ciently represented in the basic dataflow model, and nei-
ther can dynamic behaviour, such as function calls, func-
tion pointers, code-as-data, and pass-by-reference. Pre-
vious attempts to overcome these limitations typically
involved assuming a shared global memory and either
adding load and store instructions ( [5, 15]) or in-
troducing other primitives which took advantage of the
global memory (such as I-structures [2]).

Any model which depends on a global memory is go-
ing to suffer from a von Neumann bottleneck. We pro-
pose an alternative: By introducing a class of instruc-
tions into the model whose effect is to perform local
graph transformations (both on data and on the program

itself), dynamic behaviour can be expressed. We call this
model the self-modifying dataflow graph (SMDG). The
new instructions would be able to create new nodes, and
rewire the edges in their immediate neighbourhood. In
this model, a data structure, for example a binary tree,
need not be a dead representation laid out in a computer’s
memory: it can be alive and spread across a fabric of pro-
cessing nodes, just as the active data structures concept
in the Connection Machine [6]. This is likely to open up
opportunities for parallelism on dynamic data structures.

Pure dataflow does not require a notion of global state,
and we believe we can maintain this powerful property
when enhancing it with graph transformation instruc-
tions. Furthermore, we think the model might provide
another extremely useful property: The edges between
nodes in a dataflow graph are essentially pointers. If the
instruction semantics guarantees that arbitrary pointers
cannot be constructed (i.e. no casts from int to pointer),
then pointers can be used as capabilities without any se-
curity overhead. This allows a large class of bugs to be
ruled out (such as buffer overflows) as well as creating
the possibility of a communication channel between pro-
grams without danger of the programs modifying each
other. Such a communication channel can consist of
many parallel data flows.

One more feature completes the picture: a decen-
tralised accounting system for node allocation, for exam-
ple, instruction support for unforgeable allocation per-
mits which can be converted into new nodes and re-
claimed on deallocation. This removes the need for run-
ning the OS in a special processor mode: all programs
in the machine can execute the same instruction set, but
may be given different rights through capabilities and al-
location permits. This allows an arbitrarily deep nesting
of sandbox environments, be they hypervisors or oper-
ating systems or sandboxes for untrusted plugins, with
barely any overhead: security is guaranteed not through
hardware checks but through the set of possible instruc-
tions.

Incorporating these properties while retaining a useful
instruction set is challenging, and there are going to be
interesting and difficult trade-offs. We have designed a
simulator to allow us to experiment with prototype in-
struction sets, and so far implemented data structures in-
cluding a tree, stack, queue, and deque. We have also
built a simple compiler which, itself a SMDG program,
can stitch together a simple SMDG program. We are cur-
rently working on compiling STG code (an intermedi-
ate program representation used in the Glasgow Haskell
Compiler) to an SMDG instruction set. Our positive re-
sults so far at least demonstrate that the SMDG supports
dynamic data structures and other dynamic behaviour.

We give an example from one of our prototype designs
to illustrate the graph transformation process. Assume
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struct instruction {

int opcode;

word_t inputTokens[2];

word_t outputTokens[2];

struct instruction *output[2];

};

Figure 3: Logical SMDG instruction format

the instruction format shown in Figure 3. The input and
output tokens can be data or pointers. The instruction
pointer outputs define data flow, i.e. output[0] specifies
which graph node outputToken[0] flows to.

Figure 4 illustrates a list insertion. Boxes indicate
graph (and machine) nodes, black arrows indicate data
flow (i.e. output references), tokens are indicated by
blue dots travelling along dataflow arrows, and a blue
arrow originating at a token indicate that the token is a
pointer and shows its destination. Labels in boxes in-
dicate the instruction the graph executes at a particular
node. Labels in italics are comments indicating the pur-
pose of a node which is used just for holding data (i.e. is
not executing, no tokens are sent to it).

There are two graph manipulation instructions:
duplicate creates a new pointer and writeEdge cre-
ates a new data flow link between the nodes indicated by
the instruction’s inputs.

In the figure, the top bottom nodes (“template” and
the nodes pointed to it) represent the list data structure,
while the top two nodes represent the code of the insert
operation. To insert an element at the head of the list,
a pointer token, pointing to the list head, is sent to the
code (top). The duplicate instruction duplicates the
node pointed to by its input, by copying the instruction
(including its references) to a different node, and outputs
the new pointer (middle). The writeEdge completes the
insertion by creating a new link between the nodes indi-
cated by its inputs (overwriting the existing link from the
template node, bottom).

3 Implementation considerations

Bridging models leave many implementation details
open. Initially we plan to implement a software run-
time layer that spreads SMDG programs over a multicore
or multiprocessor system, but future hardware architec-
tures could be designed to natively execute SMDG pro-
grams. Below we describe a reference implementation
which justifies that the SMDG can be implemented, and
gives us a reference point for discussion.

We view the hardware as an array of processing cores,
each with some local memory and communication links

Figure 4: List insertion in the SMDG.

to its immediate neighbours. Such hardware is easy to
scale up: adding more core adds more computational
power, memory, and communication channels in equal
measure. This architecture is a reasonable approxima-
tion for most modern parallel hardware, where typically
each core possesses local memory (or cache) and com-
munication with nearby cores is faster than with distant
cores.

Each core stores a list of constant-sized graph nodes
(i.e. instructions) in its local memory, and also space to
store tokens (data words) which are waiting (since we
use a single-token-per-arc model, the possible number of
waiting tokens is bounded). Each instruction contains
pointers to its dependents, as well as back-pointers for
each incoming pointer, which assist with management.
Each core contains a free list to allow new nodes to be
allocated. The core may perform analysis on its local
graph nodes to schedule them efficiently on its functional
units (similarly to traditional ILP) and perform other in-
ternal optimisations such as coalescing groups of nodes
to reduce bookkeeping. These optimisations are impor-
tant for SMDG implementations to achieve reasonable
performance on sequential code.

If pointers are opaque to software, as discussed in the
previous section, then relocating instructions at runtime
(to balance work more easily between cores or to re-
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duce distances between dependent instructions) can be
performed transparently and safely. We face the difficult
problem of arranging computations to minimise commu-
nication delay between dependent computations (tend-
ing to keep them close together) and execute as many
independent computations in parallel as possible (tend-
ing to spread them apart). An optimal assignment is
NP-hard [4] so we must instead look for good heuris-
tics. Since the graph transformation operations change
the graph structure at runtime, an offline algorithm is un-
satisfactory.

In our reference implementation, we propose a com-
bination of frequent local and occasional global optimi-
sations. The local optimisations might model the graph
edges like springs (tending to pull dependent instruc-
tions close to each other) and core utilisation like pres-
sure (tending to balance the load between cores). To
avoid getting stuck in local minima, simulated anneal-
ing could be occasionally performed, particularly after
major changes to the graph (such as loading a new pro-
gram). On-line simulated annealing was suggested and
some advantages discussed in [14]. Recording profile
information, such as how often an instruction fires, will
allow the allocation to be further improved.

The combination of opaque references with mobility
has the important consequence that global addresses are
unnecessary. The machine ensures that the graph nodes
a piece of code is capable of directly interacting with are
already nearby, and so only a small addressing radius
is really needed. Thus each core only needs to be able
to address instruction slots on a small neighbourhood of
cores. (For dense graphs, intermediate nodes called for-
warding pointers allow edges to span longer distances
than the hardware limit). Intuitively, the machine is tak-
ing advantage of the fact that memory accesses are very
rarely actually random: when traversing a linked list or
tree there is a predictable locality pattern that von Neu-
mann machines are blind to because their memory model
hides it. This principle is explained in detail in [12].

4 Discussion

The rather different computation world of the SMDG has
a number of implications which we will discuss here.

4.1 Advantages

The SMDG makes no distinction between intra-core par-
allelism and inter-core parallelism, as it has no notion of
threads. We think this allows programs to be written with
much less concern for the type and quantity of proces-
sors available and allows instruction-level parallelism to
be spread across multiple cores rather than being trapped

within a single oversize and energy-hungry core. The lat-
ter idea has been demonstrated for traditional program-
ming models in the Raw microprocessor project [10].

It was mentioned in Section 2 that the SMDG could
support safe, efficient inter-process communication. This
sounds ideal for microkernel-style component systems
whose benefits in terms of software engineering and re-
liability have long been argued.

We also believe that the SMDG will be particularly
useful for applications with irregular parallelism. Such
applications are becoming increasingly important and the
research community is starting to look for general ways
of tackling these kinds of problems [13]. The applica-
tions often involve sparse graphical data structures, and
we believe that SMDG’s ability to exploit locality, even
when dependencies are irregular and can change unpre-
dictably at runtime, could be a key strength here.

4.2 Contrasts

The SMDG has some attractive features, and we think
it may naturally lend itself to address needs which von
Neumann machines address with various ad-hoc mech-
anisms. The unification of instruction- and thread-level
parallelism was mentioned in Section 2. Instead of traps,
virtual memory, page tables and memory protection, the
SMDG can essentially employ a type-safe instruction set
(cf. Singularity [7]).

In the von Neumann model, storage and computation
are separate primitives, embodied by the distinction be-
tween the left and right hand side of assignment state-
ments [3]. This allows a misbehaving computation to
trash any data in its address space, for instance through
a buffer overflow. In the SMDG, there is no such di-
chotomy. Each instruction is an implicit (and indivisi-
ble) combination of code and memory, and any combi-
nation of instructions is also a combination of code and
memory. In pure dataflow programs, the operand slots
of each instruction form the memory. In the SMDG, the
graph structure also forms part of the memory of a block
of code. A misbehaving computation cannot affect any
state external to itself except through the capabilities it
possesses.

The two typical ways to use a core’s local memory are
either to make it explicitly programmer-managed, or use
it as a cache of global memory (which implies cache co-
herency protocols etc.). The SMDG enables a different
option: the local memory is a node in a self-balancing
distributed store. Instead of cache evictions, overfull
nodes push data to their neighbours. Further, it is natural
to create and manipulate data structures like lists, trees
and graphs which span multiple nodes’ local memories
without a global namespace.
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4.3 Practicalities

We believe that the SMDG could be a suitable target lan-
guage for compilers of all sorts of languages, including
functional, object-oriented, and data-parallel languages.
Most languages discourage or disallow pointer arith-
metic, and we think the SMDG can do practically every-
thing else expected of a high-level language. Program-
mers would not need to write SMDG assembly code,
but understanding that the machine is SMDG would in-
fluence their code, just as understanding the von Neu-
mann architecture influences the way we code for von
Neumann machines. One way to program the SMDG
would be to write most components in traditional lan-
guages, and use a stitching or orchestration language, for
instance StreamIt [17], to wire up these components in
parallel.

Experience shows that the von Neumann model, de-
spite its long-identified shortcomings [3], is difficult to
dislodge. VLIW machines attempted to change the in-
terface, as did the TRIPS dataflow project [5]. These ap-
proaches, however, only targeted instruction-level paral-
lelism (ILP), as they allowed threads to explicitly specify
parallel instructions, but were otherwise von Neumann
style load-store architectures. Maybe the SMDG has a
better chance because it is fundamentally different: it is
aimed not at improving single-core performance, but at
breaking the barriers between cores and removing the re-
liance on a global memory.

The SMDG requires certain things to be done in soft-
ware that are usually done in hardware, and thus could
turn into bottlenecks. For example, large arrays can be
constructed in software as tree structures, whereas on von
Neumann machines they are constructed with pointer
arithmetic and load/store instructions. If beneficial to
an application, such data structures can be wrapped in
software caches. On von Neumann machines, if the same
code is being used on several cores, a read-only copy of
the code is cached on all cores. In the SMDG, if mul-
tiple copies of code are to be executed in parallel, then
multiple copies of the code must be created and can then
be spread across the computing resources. Relatedly,
function calls must either be inlined or implemented in a
kind of client-server style (with the possibility of worker
threads being cloned and removed according to demand).
The similarities with distributed systems programming
are no co-incidence.

Another result of the lack of caching is that unlikely
code paths (such as error handlers) are bound to the
code, consuming memory and making relocation more
expensive, whereas on von Neumann machines these
code paths are not cached. Analogous problems affect
data structures. There are also many memory, bookkeep-
ing and load balancing overheads that conventional ma-

chines do not have. Clearly, these overheads will have a
performance impact. It is too early to say whether these
overheads are a reasonable cost to pay for making paral-
lelism more accessible.

5 Related Work

A problem affecting many parallel programming models
is that they neglect the effect of spatial layout on per-
formance. PRAM is a popular shared-memory model
of parallel computation, and it assumes that all mem-
ory accesses takes one cycle, which is far from reality.
XMT [19] (which is based on PRAM) and BSP [18]
both make a distinction between local memory and re-
mote memory, which is an improvement, but this dis-
tinction is too coarse for increasing core counts. The
von Neumann model simply has (local) registers and (re-
mote) shared memory. GPU programming models add
another tier to the middle of the hierarchy: a small block
of shared memory which can be shared by a work group
of threads. Each extra tier places increasing management
burdens on the programmer by exposing more of the ma-
chine’s physical structure. The SMDG does the reverse:
it exposes the program’s dependency structure to the ma-
chine. This makes the machine responsible for managing
physical space, yet still gives the programmer much con-
trol over spatial optimisation.

The MuNet [20], the L project [12], and chunk com-
puting [11] all describe similar models with the aim of
tying together computing resources. In these models, a
large data structure, composed of small chunks of mem-
ory which reference each other, stores all (sequential)
code and data. All of these projects discuss the impor-
tance of improving spatial layout by exploiting the inter-
chunk references. The SMDG is similar in motivations
and nature, however the chunks are the finest grain pos-
sible: individual instructions, and are based on dataflow
and graph transformations rather than sequential code.
This means compilers do not need to decide how to group
instructions into chunks, and it gives the machine more
freedom in scheduling and optimisation. A further con-
tribution we make is recognising that type-safe memory
and a new instruction set allows us to design with op-
erating systems considerations (such as isolation, virtu-
alisation, and secure communication between mutually
untrusted programs) in mind.

Dataflow architectures, particularly [2, 15], have also
influenced us. However, we believe that the SMDG has
much more in common with the chunk-based models,
since these dataflow machines give every word of code
and data a global address and allow data structures to be
manipulated with loads and stores.

[1] encourages the research community to explore
indefinitely scalable hardware architectures. Like ours,
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their proposal is also based on the “everything is local”
philosophy. They use biologically-inspired “bonds” and
“reactions”, which we think will be tough to program.
We believe that the basic operations of the SMDG, arith-
metic, branching and simple graph manipulations, are
a better fit to established programming models and the
needs of a compiler. The Raw microprocessor [16] is an
inherently scalable processor architecture and its motiva-
tions and design have influenced our thinking consider-
ably.

6 Conclusion

We have presented the self-modifying dataflow graph
(SMDG), not as a means of making better use of par-
allel computers, but as a way to allow a complete tran-
sition from the single-core to the many-core age. The
model relieves the programmer of many burdens asso-
ciated with parallel hardware, without being opaque to
reasoning and optimisation. It should permit the use of
traditional programming languages. Finally it allows dy-
namic data structures to be spread across many cores
without requiring a global memory, which arguably de-
feats the von Neumann bottleneck. We cannot yet claim
that the model works well in practice, but with ever more
parallel hardware looming, we certainly need to be in-
vestigating models like this one.
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