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Abstract

There are no widely accepted design patterns for writing

distributed, concurrent, fault-tolerant code. Each pro-

grammer develops her own techniques for writing this

type of complex software. The use of a common pat-

tern for fault-tolerant programming has the potential to

produce correct code more quickly and increase shared

understanding between developers.

We describe rules, tasks, and pools, patterns extracted

from the development of RAMCloud, a fault-tolerant

datacenter storage system. We illustrate their application

and discuss their relationship to concurrent programming

models. Our goal is to generate discussion that will ulti-

mately lead to common techniques for fault-tolerant pro-

gramming.

1 Introduction

As datacenters and large-scale applications have be-

come prevalent, more programmers are developing code

modules that must be distributed, concurrent, and fault-

tolerant (DCFT). These systems must manage hundreds

or thousands of machines while retaining correctness,

consistency, and availability in the face of frequent and

unpredictable failures. This type of programming is no-

toriously difficult to get right [2]. Failures can occur at

the most inopportune times; they may even occur in the

middle of handling other failures.

In developing RAMCloud [7], we struggled to express

DCFT code in several subsystems, such as

• replicating a distributed log and restoring durability

when replicas are lost due to server failures;

• coordinating the recovery of the contents of the

DRAM of a failed server;

• disseminating cluster membership information in a

consistent way to failure-prone servers;

• collecting recovery data from distributed logs, de-

tecting inconsistencies, and replaying data;

• and reclaiming distributed storage and resources.

There are no widely accepted design patterns for im-

plementing DCFT systems. Each programmer develops

his own set of ad hoc implementation techniques.

Much of the prior discussion on structuring concurrent

servers has focused on threads [10, 11] and events [3,

5, 12, 13], but neither model on its own gives insight

on how to structure code for fault-tolerance. For ex-

ample, the traditional serial programming model using

threads [1] does not work for these types of systems. In

a large scale system, the state of the cluster is constantly

changing. Programs must react to failures quickly, and,

as a result, control flow in fault-tolerant modules must be

able to adapt radically to unpredictable events. A simple

serial programming style presumes a sequence of steps

in achieving a goal, but faults break that assumption.

Our hope is that our reflections on developing RAM-

Cloud will generate discussion and lead to common

techniques for developing distributed, concurrent, fault-

tolerant systems. A common, formulaic approach would

allow developers to produce software quickly and cor-

rectly and would benefit from a shared understanding be-

tween developers.

As independent developers have implemented RAM-

Cloud subsystems, a pattern has emerged. Fault-tolerant

code, by nature, must be composed of short blocks that

may have a desired order, but that can be quickly redi-

rected based on outside events. Consequently, these

modules are structured as a set of conditional rules itera-

tively applied to state. Conceptually, rules specify small

steps in achieving some goal or attaining some invariant.

At each iteration, rules are selected for execution based

solely on state and not on any static ordering. As a result,

rules-based code can react to outside events easily with

simple state changes which, in turn, determine future ac-

tions.
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Figure 1: Servers execute client write requests by appending

object data to an in-memory log. Log data is replicated and

scattered across the cluster in units of segments. When a server

fails (upper left), some replicas are lost. The log module over-

laps recreation of lost replicas with normal replication RPCs

(lower left).

Rules are a basic construct; the challenge is in deter-

mining the best way to structure programs comprised of

hundreds of rules on thousands of objects. We group in-

dependent sets of rules into tasks which provide modu-

larity. Tasks are organized into pools to ease synchro-

nization and to make the application of rules efficient.

In extracting a simple pattern for distributed, concur-

rent, fault-tolerant code from our experiences, the “pro-

ductive ignorance” of the monitor pattern has served

as our inspiration. Using a simple structure, moni-

tors [4, 6] eliminate programmer decisions about concur-

rency, which produces correct code faster. When writing

a monitor, a programmer need only decide which meth-

ods should be synchronized. Details about which fields

should be protected by a mutex, how fine-grained mu-

texes should be, and what locking patterns to use are

all prescribed. We believe a similarly prescriptive ap-

proach to DCFT programming will result in better code

and higher developer productivity.

We illustrate rules, tasks, and pools through an ex-

ample taken from RAMCloud’s data replication module,

discuss the trade-offs of our approach, and discuss its re-

lationship to existing concurrent programming models.

2 Log Replication in RAMCloud

RAMCloud is a fault-tolerant datacenter storage system

that runs on clusters of thousands of machines. During

normal operation, each RAMCloud server stores objects

by appending them to a log that is replicated across other

servers in the cluster (Figure 1). Each server’s log is di-

vided into fixed-size segments. Each segment is repli-

cated on a different set of servers. When a server fails,

some segment replicas are lost. The log manager on each

server reacts to server failure messages from the cluster

coordinator and creates new replicas for segments that

were affected by a server failure. The log manager typi-

fies many subsystems in RAMCloud.

• It is highly distributed. Each server’s log is com-

prised of tens of thousands of segment replicas scat-

tered across thousands of machines. Whenever any

server fails all servers’ logs are affected.

• It is highly concurrent for performance. Client

observed end-to-end latency for a triplicated

100 byte write operation in RAMCloud is 15 µs.

Replication RPCs must be overlapped to syn-

chronously replicate data with the lowest possible

latency. Additionally, on server failure, lost replicas

must be recreated elsewhere in the cluster in parallel

with normal operation and with each other. Recre-

ating replicas uses the full output bandwidth of our

machines: 25 Gbps.

• It must be fault-tolerant. Server failures can oc-

cur at any time and can make ongoing replication

operations impossible or unsafe to complete. The

log manager must quickly handle failures that af-

fect segments that are fully replicated, under active

replication, or already under repair due to prior fail-

ures.

Under these requirements, traditional serial program-

ming with threads is difficult because handling server

failure notifications requires unpredictable changes to

execution order. For example, when a server failure no-

tification is received by a server, several of its segments

are affected, and each affected segment replica can be in

a different state. Some replicas may have an RPC out-

standing to the failed server and must abort the RPC and

restart replication elsewhere instead of expecting a re-

sponse. Other affected replicas may not be consistent

with their counterparts; such replicas require contacting

the cluster coordinator before starting recreation in or-

der to prevent inconsistencies. If each replica of each

segment were managed by a separate thread they would

have to be interrupted to abort and redirect operations. In

general, faults require the flow of execution to change in

radical and unpredictable ways.

3 Rules, Tasks, and Pools

When we started the RAMCloud project we had no par-

ticular strategy for implementing DCFT code. We also

had no idea how many different subsystems would re-

quire this type of code. Over time, several different



Segment Replication Task

Rule Condition Action

R1 No backup server selected. Choose an available server on which to create replica.

R2 Header not committed, no RPC outstanding. Start RPC containing the header.

R3 Header not committed, RPC completed. Mark header committed; mark prior segment to allow footer replication.

R4 Uncommitted data, no RPC outstanding, prior footer is committed. Start write RPC containing up to 1 MB of uncommitted data.

R5 Uncommitted data, RPC completed. Mark sent data as committed.

R6 Segment finalized, following header committed,

footer not sent, no RPC outstanding.

Start RPC containing the footer.

R7 Segment finalized, RPC completed. Mark footer as committed; mark following segment to allow data replication.

Server Failure Task
Rule Condition Action

F1 True For all replicas using the failed server: deselect server; reset replica header, footer, and data to unsent and uncommitted.

Figure 2: Rules for managing one replica of a particular log segment. Server failures are handled with the same rules as normal

operation. Not all rules are isolated to using the state for a single segment; some rules test (R4 and R6) or modify (R3 and R7) state

from multiple segments.

developers implemented many such modules indepen-

dently. Although the implementations were different in

many respects, we eventually noticed a common theme;

each of these modules contained a set of rules that could

trigger in any order. We gradually developed a pattern

for DCFT code based on three layers: rules, tasks, and

pools. This particular pattern has worked for a variety

of problems in RAMCloud. We believe that this pattern,

or something like it, might provide a convenient way of

structuring DCFT modules in general.

A rule describes an action to be taken when a con-

dition is met. An action is a block of code. A condi-

tion is predicate on state variables. Rules-based code has

two interesting properties. First, actions are small and

non-blocking so that control flow within an action is pre-

dictable; faults need not and do not affect the course of

an executing action. Typical actions start operations such

as asynchronous RPCs, check for the completion of op-

erations, and update state. Second, the execution order

of rules is unpredictable; changes to the state determine

the order in which rules execute. As a result, execu-

tion adapts automatically in the face of concurrency and

faults. Major changes in control flow happen between

rules, not within an action.

Figure 2 shows the log manager’s rules for creating

segment replicas. As an example, rule R4 specifies the

following predicate on a segment replica:

• some data appended to the segment has not been

committed on the server storing the replica, and

• no replication RPC is outstanding to the server, and

• the preceding segment in the log has already com-

mitted its footer.

If this condition is met, then the log manager starts a

replication RPC with the newly appended data to the

server storing the replica. If the RPC completes suc-

cessfully without intervening server failures, then rule

R5 will eventually execute. If the target server fails, then

replication will be redirected by rule F1 (bottom of Fig-

ure 2). When F1 is executed, it iterates over the full list

of segments in the log. The rule resets the replication

state for any replica stored on or in the process of being

replicated to the failed server. Any RPCs outstanding to

the failed server are canceled. After the state is reset,

recreation of the replica happens automatically, just as it

does during normal operation restarting with rule R1.

Rules address the unpredictability of fault handling,

but a full system may consist of many rules and state

records; how rules are organized and applied affects

the complexity and efficiency of the resulting code. In

RAMCloud, we group rules using a structure we call a

task. A task has three elements: a state record, a set of

rules, and a goal. Tasks are represented as instances of a

class that uses its fields as the state record. For example,

for log replication each segment is represented as a task

whose fields describe which server each replica is stored

on and how much data has been sent and acknowledged

for each replica. Rules for a task are specified statically

as a set of nested “if/else” statements in a single method.

Its rules are applied to its state by invoking the method.

Lastly, each task has a goal that its rules are intended to

achieve. A segment replication task meets its goal when

it creates three complete replicas of the segment.

Finally, we use a third layer we call a pool to group

the tasks for a subsystem. Pools provide isolation be-

tween subsystems by partitioning tasks into independent

sets and allow tasks from different pools to execute con-

currently. For example, all of the segment replication

tasks reside in a single pool in the log manager. Tasks

for other subsystems like server recovery reside in sep-

arate pools and are run in parallel with log replication

tasks.

Pools reduce the overhead of rule application by divid-

ing tasks into two groups: active tasks, whose rules have

to be evaluated, and inactive tasks, which can be skipped

without evaluating their rules. A task remains active un-

til it achieves its goal, at which point it becomes inactive.



For typical subsystems, only a small subset of tasks are

active at any one time, so testing rules is efficient. For

example, segments are usually only active for a short pe-

riod when they are first added to the log, while they are

transmitting new data for replication. Most segments are

fully replicated and are ignored by the log manager pool.

Failures can return a task to a state where its goal is no

longer met, at which point it is reactivated.

In RAMCloud, each task pool has a single thread that

cycles through the active tasks, executing their rules. Be-

cause rule execution is serialized, no synchronization is

needed when testing rules or executing actions; rules

from one task can safely test and modify the state from

other tasks in the same pool. For example, rule R6 pre-

vents a segment from replicating its footer before the

header of the following segment in the log has been

replicated; the condition on R6 tests the replication state

of the following segment without any synchronization.

Similarly, the action from rule R7 modifies state in the

following segment task to allow it to start replication af-

ter a footer is committed.

High concurrency is achieved in RAMCloud by over-

lapping long-running operations using asynchronous

RPCs and IO. Tasks are well-suited to managing this type

of concurrency by using actions to start operations and

conditions to poll for their completion. Using multiple

threads for performance provides little benefit for these

types of modules since they do not perform long running

computations that could be run in parallel. RAMCloud

does use threads for performance in code where fault-

tolerance is ensured by underlying rules-based modules.

4 Discussion

As with monitors, one of the primary benefits of rules,

tasks, and pools is that they free the developer from mak-

ing complex decisions about how to organize code. In

developing a rules-based software module a programmer

iteratively applies a simple line of thinking.

1. Determine a circumstance under which a step must

be taken to meet a goal. Define a condition for it.

2. Create an action that makes progress toward that

goal. Subdivide actions that block. Try to im-

plement actions that require the fewest additional

rules. Wherever possible actions should leave the

state such that existing rules will apply to it.

3. If the new action does not leave the task in the goal

state, then add it to the set of active tasks in its pool.

Rules have two key benefits that simplify writing fault-

tolerant code.

• Outside events and exceptions can redirect execu-

tion to account for new information by modifying

state. Typically, exceptional cases are handled by

reverting state to meet the condition of a rule that is

logically an “earlier” step.

• Rules are selected only based on explicit state rather

than a prespecified order. The programmer only

needs to reason about states when creating rules and

is freed from worrying about the history of compu-

tation that led to the state.

Tasks provide a structure that

• modularizes rules and state into relatively indepen-

dent sets and eases reasoning about their interac-

tions;

• is well-suited to managing IO and RPC concur-

rency;

• is inexpensive and requires no per-task kernel state;

• and relieves programmers from making mundane

structuring decisions.

Finally, pools organize tasks

• to make rules efficient by allowing tasks to be ig-

nored that do not need immediate work;

• and to ease synchronization complexity by serializ-

ing the application of rules within a subsystem.

4.1 Issues

Programming with rules decomposes a problem and

eases implementation of individual steps, but managing

and debugging hundreds of rules across thousands of in-

stances of tasks can be challenging.

First, tracing execution history and causality can be

difficult when programming with rules. The static code

structure of a set of rules in the programmer’s editor typi-

cally provides little information about the order in which

rules get applied. Furthermore, there is no runtime stack

to produce a trace of calls when debugging anomalous

behavior. In practice, we have found aggressive logging

of the state of tasks and the actions performed makes de-

bugging tractable. Others have augmented log messages

to track causality to assist in this type of debugging [8].

This problem is fundamental to any solution for DCFT

code because execution order in is unpredictable.

A second complication with tasks are actions that

leave a task in a non-goal state but fail to add it to the

active task list for its pool. This leads to stalls in work



which can be difficult to detect. In our code, it has been

helpful to dump the state of a task along with a warning

message if a task is taking an unexpectedly long time to

reach its goal state.

Similarly, a developer must ensure that all possible

states that a task can get into are covered by the rules for

the task. To trivially ensure all states are covered by a set

of rules, for every clause in the condition we also include

the “else” case for that condition. Unexpected states are

marked with an error message. Statically enumerating

all possible cases by construction has been adequate for

us to avoid problems. We have only encountered unex-

pected states a few times, and they were always caught

quickly using our error messages.

Finally, outside threads that want to extract informa-

tion from tasks require synchronization. Though this is a

problem in general rather than a problem with rules and

tasks, our mechanism does not provide a built-in solu-

tion. In RAMCloud, different modules extract informa-

tion from a set of tasks in various ways depending on the

performance sensitivity of the outside code. One general

approach is to create a special task that, when invoked,

makes a copy of the requested state and notifies a condi-

tion variable to inform the outside code of its presence.

Despite these issues, this rules-based approach has al-

ready proven useful in our own development, and it ex-

emplifies the type of pattern programmers need to de-

velop fault-tolerant applications quickly and correctly.

5 Related Work

Rules are not new; others have arrived at rules-based

code in writing fault-tolerant systems. Breaking code

into small conditionally-applied non-blocking blocks is

fundamental to systems where control flow must adapt

to unpredictable events. For example, while not built on

an explicit notion of rules, TCP implementations main-

tain per-connection state that is modified in reaction to

timers and incoming and outgoing data. Actions are trig-

gered based on the resulting state. Our goal is to extract a

general pattern for implementing these types of systems.

Others have struggled with the difficulty of express-

ing fault-tolerant systems as well. For example, Chan-

dra et al. [2] express a Paxos-based replication algorithm

as a pair of state machines in a custom-made specifica-

tion language to increase understandability. A task can

be seen as a form of state machine with implicitly de-

fined states and with rules on data fields driving transi-

tions rather than events. We have found the entire set of

rules for our most complex tasks can be expressed in a

few hundred lines of C++; a task is compact enough for

a developer to thoroughly reason about its rules.

Prior discussion on structuring concurrent servers has

focused on performance rather than fault-tolerance. The

two most prevalent models are threads [10, 11] and

events [3, 5, 12, 13]; however, while fault handling has a

substantial impact on how code and concurrency are or-

ganized, neither approach on its own addresses the com-

plexity of fault handling in a distributed system.

5.1 Threads

Threads are the standard model for writing concurrent

software; they allow for CPU parallelism and preserve

the appearance of a simple serial programming model.

HDFS [9] is an example of a system that uses perva-

sive threading for DCFT code. It spawns threads that

watch data structures and take specific actions when they

change. For example, one thread periodically scans a

“heartbeat” table removing cluster members that have

failed to check in recently. Another thread polls repli-

cated block state to ensure blocks are fully replicated,

and it queues needed replication operations. Despite the

ad hoc nature of these threads, at its heart this approach

is rules-based; the threads perform actions in response

to changes in state, divide work into small non-blocking

actions, and schedule execution across many high-level

state records (thousands of replicated block records, for

example).

Compared to tasks, modularity suffers in HDFS

since threads are assigned to specific rules rather being

grouped with state records. Threads typically perform

just a few actions before queueing the state record for

other threads to perform additional steps. There is no sin-

gle location for code operating on a particular record; the

steps are scattered across the code text of many threads.

Additionally, because many threads perform steps on a

record, fine-grained locking is needed both on records

themselves and on the many shared data structures con-

sulted in processing them. As a result, the code con-

tains precarious ad hoc locking patterns that are care-

fully structured to avoid starvation and deadlock. Just

as monitors [4, 6] simplify concurrency by grouping syn-

chronization with state records and the code that operates

on them, tasks simplify code by grouping related state

records and their associated rules together.

One major benefit of threads is that they can preserve

code that follows a simple serial programming model;

however, HDFS demonstrates how the need for fault han-

dling interferes with this benefit. HDFS’s structure loses

the simplicity of stack-based code and deep, informative

debugging backtraces. Handling outside faults makes

this unavoidable; the code must allow frequent well-

defined interruption points for failure notification which

naturally fragments code into small, shallow blocks. The

high cost of kernel threads amplifies this problem since

they are too expensive to support the thousands of per-

block contexts that would be most natural.



5.2 Event-based Programming

Programming with rules, tasks, and pools shares similar-

ities with event-based programming [12, 3, 13, 5]. Both

manage concurrency with asynchronous operations, and

both serialize the execution of code to simplify synchro-

nization. RAMCloud’s RPC system uses an event-based

model internally to manage asynchrony; however, these

events are never exposed to higher-level code.

However, there is a key difference between events and

rules; rules select actions for execution based solely on

state, whereas events select handlers in response to oc-

currences, such as the completion of an RPC or a fault.

As a result, with rules-based code, an event is handled

only by modifying state, and rules that monitor the state

are triggered indirectly when it changes. Rules use a

“pull” model for reacting to events; event handlers re-

main decoupled from the actions which respond to the

event. This improves modularity since the rules remain

part of the tasks that react to the event. For example,

adding a new task that reacts to an event requires no

modification to the event handler. Event-based program-

ming encourages a “push” model for reacting to events.

An event handler must trigger all of the actions that are

needed to respond to the event, so the details of how in-

dependent subsystems react to the event leak together.

By incorporating a simple form of events, a task could

be inactivated while waiting on long-running operations

for efficiency. Upon operation completion, the task

would be reactivated; however, it could also be prema-

turely activated due to failures. This is similar to how

notifications on condition variable are regarded as hints

with monitors [6]. Since rules make no assumptions

about execution order, no change would be needed in

programming semantics. So far this optimization has

been unnecessary.

6 Conclusion

We have described rules, tasks, and pools as a pattern

for writing distributed, concurrent, fault-tolerant code.

Rules-based code easily adapts to handle cluster-wide

events like server faults. Tasks and pools organize rules

for modularity, efficiency, and easy synchronization. We

believe using some form of rules-based code is unavoid-

able in writing fault-tolerant systems, though investigat-

ing other patterns for organizing rules would be valuable.

These patterns have been a benefit to our own project

already, and we plan to hone them as we develop new

software systems. Hopefully, as we gain experience, we

will find other useful ways to organize this type of com-

plex code. We plan to explore and compare the patterns

of other fault-tolerant systems to our own, and we en-

courage others to publish and relay their experiences in

developing similar large-scale systems. Our hope is that

widely accepted design patterns for writing distributed,

concurrent, fault-tolerant code will emerge and simplify

the development of large-scale systems.
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