
The NIC is the Hypervisor: Bare-Metal Guests in IaaS Clouds

Jeffrey C. Mogul, Jayaram Mudigonda, Jose Renato Santos, Yoshio Turner – HP Labs, Palo Alto

Abstract

Cloud computing does not inherently require the use of
virtual machines, and some cloud customers prefer or
even require “bare metal” systems, where no hypervi-
sor separates the guest operating system from the CPU.
Even for bare-metal nodes, the cloud provider must find
a means to isolate the guest system from other cloud re-
sources, and to manage the instantiation and removal of
guests. We argue that an enhanced NIC, together with
standard features of modern servers, can provide all of
the functions for which a hypervisor would normally be
required.

1 Introduction

Many people assume that cloud computing (“Infrastruc-
ture as a Service,” or IaaS) requires the use of virtual
machines. In many cases, VMs do offer the best way
to manage resources and isolate tenants from each other.
The hypervisor layer gives the cloud provider a conve-
nient point to implement its control.

However, Cloud computing does not inherently re-
quire VMs. In fact, many customers want clouds to sup-
port “bare metal”: the guest operating system runs di-
rectly on the underlying, unshared server, without any
intervening hypervisor [3, 13]. Why do they want bare
metal? We know of several reasons (there might be
others): because hypervisors reduceperformance, espe-
cially for I/O-intensive applications; because hypervisors
also reduceperformance predictabilitywhen they multi-
plex the CPU, RAM, and network workloads of multiple
VMs onto one set of physical resources; because hyper-
visors create potentialsecurityholes by expanding the
trusted computing base (attack surface) [21]; becauseli-
censingpolicies for some widely-used enterprise appli-
cations increase costs when virtual machines are used;
and because some vendors do notsupporttheir applica-
tions on the hypervisors used by some IaaS providers.

Customers who want to run bare-metal guests in a
cloud do give up the cost benefits of multiplexing mul-
tiple VMs onto one server, but they see this as an ac-
ceptable tradeoff. They still gain several benefits from
running their bare-metal guests (BMGs) in a cloud: the
cloud provider still does most of the “undifferentiated
heavy lifting”1; the customer can obtain and release com-
puting resources on relatively short notice, as an “op-
erating expense” instead of as a “capital expense”; and
the applications that require a BMG can be co-located
in a cloud with other VM-based applications and large
datasets, rather than paying the high latency and mone-
tary costs of transferring data into and out of the cloud
provider’s infrastructure.

Bare-metal guests create a challenge for the cloud
provider: even if the provider does not need a hypervisor
to isolate the VMs on a single server (since there is only
one BMG per server), how does the provider protect the
rest of the cloud from these guests? And how does the
provider manage a BMG’s residency on a server?

We argue that we can replace the necessary hyper-
visor functions with NIC-based functions, using mod-
est enhancements to existing NIC designs, and exploit-
ing remote-management mechanisms that are standard
on modern servers. We refer to NICs that support bare-
metal guests as “BMGNICs.” While this is not the only
approach to supporting BMGs in a cloud, we will argue
that BMGNICs have some advantages over the alterna-
tives. In particular, many of the same NIC enhancements
are also useful for accelerating the networking functions
that are commonly implemented in software switches,
for hypervisors that support multiple VMs.

In addition, we see a trend towards integration of NICs
into server CPU chips, especially for power-efficient
“hyperscale” CPUs that are ideally suited for bare-metal
guests. Moving cloud-hypervisor functions into hard-
ware meshes nicely with this trend, because this integra-

1This term has been attributed to Jeff Bezos [7]



tion of networking functions is the most critical aspect of
eliminating the hypervisor.

1.1 Related work

Szeferet al. described NoHype [21], a system which
eliminates the hypervisor (after bootstrap) but still sup-
ports multiple VMs. NoHype does not seem to include
any mechanism that can protect other systems in the
cloud network from network misbehavior by a guest. It
also requires modifications to the guest OS, which we
would rather not depend on. We do not believe NoHype
fully solves the problems of supporting BMGs.

2 Refactoring functional responsibilities

In this section, we start by describing the functions that
traditional hypervisors and NICs perform, and then we
show how one can refactor these functions for a bare-
metal guest so that a no-hypervisor platform can perform
all of the necessary functions.

Note that we informally use the term “hypervisor” to
refer to the entire virtualization software base that runs
locally on a cloud compute server node, including the
control domain (e.g., Xen’s Domain 0) as well as the ac-
tual hypervisor layer.

2.1 What does a cloud hypervisor do?

In a cloud with multiple VMs on each server node, the
hypervisor has many functions. It:

1. Instantiates and removes VMs: When a VM ar-
rives, the hypervisor must create the associated re-
source bindings, and then boots the guest VM from a
system image. When a VM leaves, the hypervisor must
clean up.

2. Allocates CPU and memory resources to VMs:
When multiple VMs share a server’s CPU cores and
DRAM, the hypervisor must allocate and schedule
these resources to specific VMs, and perhaps measure
usage for billing purposes.

3. Isolates VMs from each other, and from itself: The
hypervisor must prevent a VM from directly reading or
writing the state of other VMs or of the hypervisor it-
self, to avoid obvious security and reliability problems.

4. Provides controlled access to devices: In non-cloud
settings, hypervisors control access to devices such as
displays, keyboards, mice, audio, and video. In a cloud,
however, the hypervisor only needs to control access to
the local disk: space allocation, isolation between the
blocks accessed by VMs, and perhaps disk-bandwidth
management and disk de-duplication.

5. Virtualizes the network interface: When multiple
VMs share a physical NIC, the hypervisor must mul-
tiplex their outgoing packets and demultiplex their in-
coming packets. This means rewriting the packets in
some way, so that incoming packets can be directed to
the right virtual interface (VIF). Popular approaches in-
clude VLANs or the VXLAN encapsulation [14].

6. Virtualizes network interface resources: The hy-
pervisor might also virtualize NIC resources, such as
queue slots and bandwidth, to manage sharing of these
resources between VMs.

7. Virtualizes the network edge switch: Network vir-
tualization also requires some form of virtual switch,
sometimes called a Virtual Ethernet Bridge (VEB), to
handle packet delivery. Packets between VMs that re-
side on the same physical server need not be sent over
the physical network; the software switch can deliver
them directly to the correct VM. This avoids wasting
NIC bandwidth on such packets, and can reduce inter-
VM latency. However, this is not always the preferred
solution; see§2.3 for details.

8. Protects other network resources: Software running
on a cloud guest has the potential to create problems
for other tenants and for the provider, and must thus be
isolated appropriately. In general, this requires both
functional isolation, using techniques such as access
control lists (ACLs) and network-address virtualiza-
tion, and performance isolation, using rate limits and
perhaps traffic prioritization.

9. Checkpoints and restores VMs: Cloud computing of-
fers tenants the ability to flex their resource usage up
and down as their workload changes. They may want
to suspend a VM during low-load periods, to avoid pay-
ing for wasted cycles, and then resume it when the load
increases. Checkpoints can also support rapid recovery
from failures. The hypervisor handles the process of
saving and resuming from checkpoints.

10.Migrates VMs: Cloud providers may need to migrate
VMs for various reasons, including load balance and
hardware maintenance. The hypervisor handles the
process of VM migration.

Fig. 1 sketches the networking stack for a typi-
cal hypervisor-based cloud. For each VM, the hy-
pervisor supports ACLs, rate limits, and encapsula-
tion/decapsulation (using VLANs, VXLAN, etc.) The
hypervisor includes a virtual switch, to demultiplex in-
coming packets and to switch packets between two VMs
on the same server. The figure does not show the mech-
anisms required to manage other aspects of the server,
such as VM instantiation; we assume the use of a frame-
work such as OpenStack.



Virtual Switch

H
yp

er
vi

so
r

NIC

Cloud Network

Application

Guest OS

VIF

ACLs

Rate Limit

Encap/Decap

Application

Guest OS

VIF

ACLs

Rate Limit

Encap/Decap

G
ue

st
 V

M
 2

G
ue

st
 V

M
 1

Figure 1: Typical VM-based cloud-network stack

2.2 Cloud-specific NIC functions

The NIC in a cloud computer server not only must send
and receive packets, but when the server hosts multiple
virtual machines, modern NICs support several functions
that improve the efficiency of network I/O.

A hypervisor can, of course, multiplex multiple VMs
onto a single NIC by implementing the VEB entirely in
software. This works with any NIC, but can add signifi-
cant CPU overhead.

A NIC that supports “Single Root I/O Virtualization”
(SR-IOV) appears to expose multiple virtual PCIe de-
vices for each physical device.

Because an SR-IOV NIC explicitly associates a VM
with a set of NIC-level resources, it can offload some
forms of QoS support from the hypervisor. Recent
proposals, such asQuantized Congestion Notification
(QCN) [11, 17] require a moderate number of rate lim-
iters in the NIC. (QCN-enabled NICs are already avail-
able from NEC, Broadcom, and perhaps others.) And
while VXLAN-enabled NICs are just now at the proto-
type stage [8], we expect cloud-server NICs to support
encapsulation/decapsulation soon.

2.3 Virtualization of the edge switch – or
not?

At first glance, it would appear that packets between two
VMs on the same server could be handled entirely within
that server and its hypervisor, by the VEB. However, a
surprising amount of work has gone into techniques2 to
switch these intra-server packetsoutsidethe server, using
an external switch. While this seems inefficient, it allows

2Including VN-Tag (802.1qbh) and VEPA (802.1qbg), and man-
aged virtual switches such as Cisco’s Nexus 1000V and IBM’s Dis-
tributed Virtual Switch 5000V.

network administrators to manage all network traffic, in-
cluding intra-server traffic, using a single set of tools.
(VEBs are usually invisible to network administrators,
and when SR-IOV is used to bypass the hypervisor to
gain efficiency, one loses the ability to apply hypervisor-
level access-control lists to packet traffic.)

2.4 What would a bare-metal platform
need?

Use of a bare-metal guest, with no software hypervisor,
makes many of the functions performed by hypervisors
and modern NICs superfluous. These functions which
exist only to support multiple VMs on one server, in-
clude: allocating CPU and memory resources, isolating
VMs on the same server from each other, and virtualizing
the network interface and its local resources.

However, in an IaaS cloud, if there is no hypervisor,
some other part(s) of the provider’s system would still
have to implement many of the functions commonly per-
formed by hypervisors (the numbering here corresponds
to that used in§2.1):

1. Instantiating and removing BMGs: The provider
needs some way to install a new guest on the server,
either by creating and booting a local copy of a disk
image, or via a network boot. The provider also needs
a way to stop the execution of a server, and to boot a
“cleanup system” after a guest is evicted.

4. Providing controlled access to devices: The provider
does not need to perform disk allocation, but it does
need a way to erase a disk between different BMGs.

8. Protecting other network resources: While a BMG
can have full access to local server resources, in an IaaS
cloud it cannot be allowed to interfere with other guests
(virtual or bare-metal), or with the provider’s own in-
frastructure. Since the network is the point of contact
between the BMG and these other entities, the provider
still needs a “control point” at which it can encapsulate
packets to provided isolated address spaces, enforce
ACLs and rate limits, and meter network activity for
usage-based billing.

9. Checkpointing and restoring BMGs: Just as with
VMs, customers have multiple reasons to checkpoint
and restore BMGs.

10.Migrating BMGs : As with VMs, cloud providers have
multiple reasons to migrate BMGs.
Could we moveall of these functions to an enhanced

NIC? Probably not; existing NICs, as PCIe Endpoint de-
vices, are not allowed to restart the CPU. However, by
combining aBMGNIC with standard remote-management
features (see§3), we can provide bare-metal support.

Function 8 is the most obviously network-related as-
pect of aBMGNIC, but functions 1, 9, and 10 all require
significant (and high-bandwidth) network I/O. The disk-



erase aspect of function 4 requires some means to trans-
mit commands to the disk controller. Functions 1, 4, 9,
and 10 require a means for the provider’s controller to
pause or start the server’s CPU at a chosen PC location.

In §3 we will describe a specific system design in
which aBMGNIC, in cooperation with standard remote-
management support, can support all of the required
functions.

2.5 Prior work: sNICh

Before we describe our proposedBMGNIC, we first
briefly summarize prior work onsNICh, a related sys-
tem that also pushes functions into the NIC, albeit for
support of multi-VM systems.

Ram, Mudigonda,et al. described sNICh [18], which
refactors how the hypervisor VEB and the NIC divide
up the tasks associated with packet-switching. Their
main goal was to move most packet-switching tasks from
the hypervisor to the NIC, to reduce the performance
overheads of a software switch. While a sNICh ap-
pears to local software as a NIC, internally it resem-
bles a simple edge switch, incorporating hardware sup-
port for OpenFlow-like flow-switching. This allows ex-
tension of switch-based network management into the
virtual-switch domain, resolving the control vs. effi-
ciency dilemma (§2.3).

sNICh also supports a specialized DMA engine, which
allows the NIC to peek at the headers of packets sent by
a local VM to determine whether the packet should be
copied directly to the buffer of another local VM, or sent
out on the NIC’s Ethernet port.

Application

Guest OS

VIF

G
ue

st
 V

M
 2

Cloud Network

H
yp

er
vi

so
r

Encap/Decap

Application

Guest OS

VIF

G
ue

st
 V

M
 1

Backend

sNICh

sN
IC

h−
lik

e 
N

IC

Flow Table Engine

Rate Limiters

Switch

DMA/Copy Engine

Figure 2: Stack using sNICh-like NIC

Fig. 2 sketches a design that extends the original
sNICh approach to include rate-limiting and encapsula-
tion/decapsulation support. Although the original sNICh

design was “inspired by OpenFlow [but] not intended to
be OpenFlow compatible” [18], we assume a minimally-
compatible OpenFlow flow-processing pipeline.

In Fig. 2, the DMA engine allows the flow-table en-
gine to see the headers of packets being sent from lo-
cal VMs (and also those received from the network, al-
though that datapath is not shown for simplicity). The
flow table contains OpenFlow rules, maintained by the
sNICh backend process running in the hypervisor (e.g.,
Xen’s Dom0). Since we do not expect a sNICh to have
room for many hardware flow-table entries, the backend
manages the hardware table as a cache of a much larger
software-based table.

When a packet’s headers match a table entry, the flow-
table engine can instruct (dashed lines, in the figure)
the copy engine and switch how to route the rest of the
packet. It can also invoke the appropriate rate limiters (as
supported in OpenFlow 1.3 via themeter table), and by
other means in earlier versions of OpenFlow), and encap-
sulation/decapsulation functions (as supported by Open-
Flow’s tunnelling mechanism).

Because this approach integrates an OpenFlow-style
switch into the server, with the sNICh backend process
implementing the switch’s side of the OpenFlow control
protocol, it allows extension of switch-based network
management into the virtual-switch domain. Compared
to a purely software approach, such as Open vSwitch,
the integration of flow switching with DMA hardware
provides higher performance, according to experiments
reported in [18].

3 System design

We start by observing that modern server platforms in-
clude integrated remote-management engines (RMEs),
which allow system administrators or automated con-
trollers to remotely manage many aspects of server oper-
ation. These include IBM’sRemote Supervisor Adapter,
Dell’s Integrated Dell Remote Access Controller, Intel’s
Active Management Technology, and HP’s Integrated
Lights-Out (iLO) technologies. We are most familiar
with the details of iLO, so we will focus on HP’s mech-
anism, but we believe that all other major server vendors
support the necessary functions, or will soon do so.

RMEs such as iLO were originally designed to support
non-virtualized servers, and hence they work even when
the server CPU is turned off or is otherwise inaccessi-
ble. The iLO design [9, 10] includes a small autonomous
CPU and DRAM, power-isolated from the main server,
but with the ability to control the server CPU, power and
power states, memory, and I/O devices. Recent versions
of iLO can communicate with an external controller ei-
ther via a private NIC, or via the server’s own NIC



(via theNetwork Controller Side-band Interface(NC-SI)
commonly implemented for server NICs [6]).

For hyperscale systems based on low-power proces-
sors (as suggested by [1, 12]), some vendors have em-
bedded RMEs directly on multicore CPU chips (e.g., Ap-
plied Micro’s SLIMPRO [2]).

3.1 Existing support for BMGs

Many IaaS providers already support bare-metal guests.
To the best of our knowledge, they use an integrated man-
agement engine to manage the runtime environment on
the server, and VLANs to isolate tenants [19].

VLAN support is ubiquitous in modern network
switches, which makes this an attractive option for rela-
tively small-scale clouds. However, VLANs do not scale
well, since the VLAN tag is limited to 12 bits. Also, it
appears difficult to provide customized performance iso-
lation using VLANs. Finally, we expect that most cus-
tomers will want to combine both BMGs and VMs in
their virtual networks, and we therefore would like a so-
lution that supports scalable encapsulation-based isola-
tion (such as VXLAN) mechanisms.

3.2 Our approach

In our design, we refactor the IaaS-provider functions
typically performed by a hypervisor, as listed in§2.1, so
that:
• a modified sNICh-like NIC protects the rest of the net-

work from the bare-metal guest, including access con-
trol, encapsulation, and rate limiting.

• a management engine, such as iLO, handles the in-
stallation and removal of BMGs, BMG migration, and
BMG checkpoint/restore.

• functions that are superfluous for BMGs, including iso-
lation of server-internal resources, do not have to be
implemented on those servers.

We believe our design does not require any changes
to a guest operating system, except perhaps for check-
point/recovery support, which we discuss below.

Fig. 3 sketches the resulting system design, which ex-
ploits tight integration between theBMGNIC and RME.
One can map the functional blocks of theBMGNIC onto
those of the sNICh-like design in Fig. 2 (althoughnot
onto the original sNICh design, which lacks support for
rate-limiting and encapsulation). We move the functions
of the sNICh backend into the RME block, since without
a hypervisor, there is no other local environment in which
to run this processing. The figure shows the RME com-
municating with the cloud controller via its private NIC
and a private management network, but with an RME
such as iLO, the RME could instead use the main server
NIC via the main cloud network. In either case, the

ACLs

Rate Limit

Encap/Decap

B
ar

e−
M

et
al

 G
ue

st

Remote
Management

Engine

E
nh

an
ce

d 
N

IC
 (

B
M

G
N

IC
)

Application

Guest OS

sNICh
Backend

Cloud Network Cloud
Provider’s
Controller

Figure 3: Stack withBMGNIC support

OpenFlow protocol would suffice to manage the network
aspects of the server (the sNICh backend corresponding
to a switch’s control plane, and theBMGNIC to the data
plane.) Another protocol (such as in OpenStack) would
be used to manage the BMG runtime environment.

The BMGNIC must provide two configuration inter-
faces: one available to the bare-metal guest, via PCIe,
for things that a guest is allowed to change, and another
available only to the RME, via NC-SI, for other aspects
of configuration. To implement this, we split theBMG-
NIC’s configuration registers into two subsets, one which
is accessible to both the guest operating and the RME,
and one which is only accessible to the RME.

We believe that checkpoint/restart can be supported
with modified iLO software on existing iLO hardware.
However, this might require some help from the guest
OS, either to support hibernation (as in a laptop OS) or
to install a special driver that pre-configures the mem-
ory controller to grant iLO DMA access to all of server
DRAM. Checkpoint/recovery requires access to storage;
iLO supports remote virtual disks, but for higher perfor-
mance theBMGNIC could include iSCSI support. Migra-
tion (but not “live migration”) can be implemented by
restarting from a checkpoint on a different server.

3.3 Why not do this all in the switches?

One might argue that our NIC-based approach is not nec-
essary, because it is possible to support the network-
related aspects of bare-metal guests using only switch-
based features, along with traditional NICs. In fact, the
argument has been made (e.g., by Davis [5]) that SDN
support in switches is sufficient – after all, ourBMGNIC

design meets our goals precisely because it incorporates
OpenFlow mechanisms directly into the NIC.

However, we see several reasons for locating BMG
support in NICs rather than in switches:



• The tight integration possible between aBMGNIC and
the server’s RME can reduce the complexity of the im-
plementation of the provider’s entire control system.
For example, preserving a guest’s MAC address during
migration is easy if the RME controls the NIC config-
uration; it seems much harder to do this entirely at the
edge switch.

Some CPU chip vendors are starting to integrate NIC
functions onto CPU chips; for example, Marvell’s Ar-
mada XP has multiple Ethernet ports [15], and some
Intel chips may soon include them [16]. This trend to-
wards on-chip NICs, combined with the integration of
RMEs (e.g., SLIMPRO [2]) suggests that tightBMG-
NIC-RME integration will become easier to exploit in
the future.

• Our approach provides a cleaner separation of the net-
work fabric from the network edge, a principle articu-
lated (for different reasons) by Casadoet al. [4].

• A BMGNIC can be implemented using the same hard-
ware as the enhanced-sNICh design shown in Fig. 2.
We believe that sNICh-like NICs provide substantial
performance and management benefits when multiple
VMs sharing the same server communicate actively,
and if the same NIC hardware can efficiently support
both sNICh-like functions andBMGNIC functions, this
gives the provider considerable flexibility.

• Cloud providers have occasionally experienced long
outages due to network misconfigurations. We be-
lieve that there are stability advantages to be gained
by avoiding frequent reconfiguration operations on
switches, even via well-defined interfaces such as
OpenFlow. The use ofBMGNICs means that no short-
term reconfigurations need to be applied to network
switches.

• We believe that cloud infrastructures scale better if the
resources (TCAM, rate limiters, encapsulation lookup
tables, etc.) required to support each additional server
come with that server (in this case, as part of the NIC)
rather than being pre-provisioned in the switches. This
also allows, but does not require, a provider to create
a pool of servers that support BMGs without having to
upgrade the associated switches.

We admit that none of these reasons are definitive,
and that BMGs could probably be supported via SDN
switches, with controllers that integrate SDN switches
and remote management engines into one seamless en-
vironment. However, theBMGNIC approach solves the
problems of BMG support with one relatively simple
mechanism.

3.4 NIC power and area costs

We would have liked to provide a power and area cost
comparison between a traditional server NIC and the

BMGNIC design. One could assume that theBMGNIC,
for these metrics, would lie between a typical NIC and a
low-port-count switch ASIC.

Unfortunately, we have not been able to locate pub-
lished information on chip areas for such chips. Even
power consumption specifications are often covered by
non-disclosure agreements. Sohanet al. [20] measured
active and idle power consumption for a variety of 2010-
era 10GbE NIC cards (thereby including PHY power,
which has a large effect). They showed that adding an of-
fload engine increases NIC power consumption, but can
decrease total system power consumption, so a narrow
focus on NIC power might be misleading.

4 Summary

Cloud providers need to isolate their tenants from each
other and from the infrastructure. This isolation is largely
an aspect of the networking environment: who can talk
to whom, and who can consume which resources. While
cloud providers have traditionally used hypervisor fea-
tures to implement network isolation, that approach does
not work for bare-metal guests. We have argued that a
specialized NIC, orBMGNIC, can provide the necessary
isolation, through its integration with the remote man-
agement engine located on most modern servers. We
have described a specific design for aBMGNIC, which
is a modest extension of previously-proposed NIC de-
signs.

References

[1] A NDERSEN, D. G., FRANKLIN , J., KAMINSKY,
M., PHANISHAYEE, A., TAN , L., AND VASUDE-
VAN , V. FAWN: a Fast Array of Wimpy Nodes. In
Proc. SOSP(2009), pp. 1–14.

[2] A PPLIED M ICRO. APM ”X-Gene” Launch Press
Briefing. http://www.apm.com/global/x-gene/
docs/X-GeneOverview.pdf, Jan. 2012.

[3] BUTLER, B. New bare metal cloud offer-
ings emerging. Network World (May 2012).
https://www.networkworld.com/news/2012/
050112-bare-metal-cloud-258849.html.

[4] CASADO, M., KOPONEN, T., SHENKER, S.,AND

TOOTOONCHIAN, A. Fabric: a Retrospective on
Evolving SDN. InProc. HotSDN(2012), pp. 85–
90.

[5] DAVIS , D. Do we need a network hypervisor for
virtualization? http://nicira.com/do-we-need-
network-hypervisor-for-virtualization, May
2012.



[6] D ISTRIBUTED MANAGEMENT TASK FORCE,
INC. (DTMF). Network Controller Sideband In-
terface (NC-SI) Specification, Jul. 2009.

[7] DRISCOLL, M. Four Lessons for Building A
Petabyte Data Platform.http://metamarkets.com/
2011/four-lessons-for-a-petabyte-platform/,
2011.

[8] HOFF, B. VMware and Emulex Demonstrate
New Network Virtualization Capabilities for
Enterprise Data Centers.http://o-www.emulex.
com/blogs/labs/2012/08/29/vmware-emulex-
demonstrate-new-network-virtualization-
capabilities-enterprise-data-centers/, Aug.
2012.

[9] HP. Integrated Lights-Out 3 technology.
http://h20000.www2.hp.com/bc/docs/support/
SupportManual/c02714903/c02714903.pdf,
Feb. 2011.

[10] HP. HP iLO Management Engine technologies.
http://h20000.www2.hp.com/bc/docs/support/
SupportManual/c03207602/c03207602.pdf,
Aug. 2012.

[11] 802.1Qau - Congestion Notification.http://www.
ieee802.org/1/pages/802.1au.html.

[12] L IM , K., RANGANATHAN , P., CHANG, J., PATEL ,
C., MUDGE, T., AND REINHARDT, S. Under-
standing and designing new server architectures for
emerging warehouse-computing environments. In
Proc. ISCA(2008), pp. 315–326.

[13] L INTHICUM , D. Going native: The move to
bare-metal cloud services. InfoWorld (May
2012). https://www.infoworld.com/d/cloud-
computing/going-native-the-move-bare-
metal-cloud-services-192507.

[14] MAHALINGAM , M., DUTT, D., DUDA , K.,
AGARWAL, P., KREEGER, L., SRIDHAR, T.,
BURSELL, M., AND WRIGHT, C. VXLAN: A
Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks, August 2012.
https://tools.ietf.org/html/draft-mahalingam-
dutt-dcops-vxlan-02.

[15] MARVELL . Embedded Processors – AR-
MADA XP. https://origin-www.marvell.com/
embedded-processors/armada-xp/, 2012.

[16] MORGAN, T. P. ARM server hype ramps faster
than ARM server chips. The Register(2 Jan.
2013). http://www.theregister.co.uk/2013/01/
02/arm server future/.

[17] PAN , R., PRABHAKAR , B., AND LAXMIKANTHA ,
A. QCN: Quantized Congestion Notification: An
Overview. IEEE 802.1 Interim Meeting, May 2007.

[18] RAM , K. K., MUDIGONDA, J., COX, A. L.,
RIXNER, S., RANGANATHAN , P., AND SANTOS,
J. R. sNICh: Efficient Last Hop Networking in
the Data Center. InProc. ANCS(2010), pp. 26:1–
26:12.

[19] RUSSKIKH, D. Configuring Bare-metal Switches
in OpenStack Cloud Networks: Bare-metal provi-
sioning, part 4. http://www.mirantis.com/blog/
configuring-baremetal-openstack-cloud/, Sept.
2012.

[20] SOHAN, R., RICE, A., MOORE, A. W., AND

MANSLEY, K. Characterizing 10 Gbps Network
Interface Energy Consumption, Oct. 2010.

[21] SZEFER, J., KELLER, E., LEE, R. B., AND REX-
FORD, J. Eliminating the Hypervisor Attack Sur-
face for a More Secure Cloud. InProc. ACM
Conf. on Computer and Communications Security
(2011), pp. 401–412.


