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Abstract

Edge Computing and Machine Learning are complemen-
tary advances: edge devices drive volumes of rich data
that benefit ML, and ML drives insights that can jus-
tify edge investments and create killer applications such
as AR/VR. We describe the challenges of ML/DL on the
edge and describe guidelines for addressing them. We
present Edge Cloud Orchestrator (ECO), an architecture
for enabling realistic ML deployments that leverage both
edge and cloud by providing an abstraction to orches-
trate, manage, and automate ML pipelines. By separat-
ing the control path from the data path, ECO handles
scale, heterogeneity, and advanced ML patterns.
1 Introduction
Edge devices are generating more data and more com-
plex data than ever before [19]. Devices ranging from
sensors to robots are generating vast amounts of sen-
sor readings, images, sounds, and videos, whose ulti-
mate value typically comes from the analytics that ex-
tract the insights hidden within. As the richness of edge
data grows, so does the need for advanced analytics such
as Machine Learning (ML) and Deep Learning (DL).

It is challenging to effectively deploy and manage
edge ML/DL in production. Data is usually generated
on edge devices, but multiple levels of compute can ex-
ist between the data generation point and the final data
repository [30]. From an analytics point of view, each of
these compute elements may see different liveness, his-
tory, and perspective of the data. Typically, edge com-
pute nodes closest to the data generation point have high-
est liveness but little or no history and no perspective.
Compute nodes further away from the sensor and closer
to the cloud have more history and perspective but older
data. An ideal ML/DL solution would optimize accu-
racy, latency, and infrastructure efficiency by enabling
each layer to focus on the analysis that is optimal for the
liveness, history, and perspective of the available data.

In real world production, data patterns change without

warning. Previously trained ML/DL models can become
irrelevant and subsequent predictions inaccurate. Model
re-training is therefore needed and can require human in-
tervention. Even determining when to retrain can be dif-
ficult. A common practice is to retrain frequently, but
this is expensive. An ideal ML/DL solution would main-
tain accuracy in the face of changing data via dynamic
models that can adapt, as well as a management system
that can refresh models as needed.

While analytics can run virtually anywhere, the re-
sources at each layer can be very different. An edge node
could be a single server on a manufacturing floor, while
a higher layer could be a public or private cloud. An
ideal ML/DL solution would reduce management cost by
combining the best suited analytic engines at each level
of the topology into a seamless unified workflow.

This paper describes Edge Cloud Orchestrator (ECO)
which orchestrates and manages ML/DL execution
across distributed layers. Our contributions are: (i) We
describe the key challenges to be addressed in a success-
ful ML deployment with edge devices; (ii) We describe
and advocate a graph-based overlay network approach to
specify ML pipeline dependencies and an Agent/Server
architecture to manage ML execution; and (iii) We il-
lustrate the use of our approach on several common ML
execution patterns for edge/cloud ML deployment.

Section 2 describes the challenges of ML/DL using
edge/cloud. Section 3 describes the resulting require-
ments. Sections 4 and 5 describe our approach and im-
plementation. Section 6 illustrates how our system en-
ables both common and advanced ML patterns for edge
computing. Section 7 covers related work and Section 8
concludes with a discussion and future work.

2 Motivation
The rise of IoT with its voluminous data is pushing
computing back to the edge necessitating intelligent de-
vices [36]. Interestingly, edge computing and ML are
two sides of the same coin [46].



2.1 Challenges Edge brings to ML
Edge computing connects “things” to a compute/storage
infrastructure. The number of such devices and the vol-
ume of data has been exponentially increasing [11, 15]
and is expected to continue in the future [20]. In
this section, we outline the Edge ML/DL challenges we
have experienced working with a variety of edge ap-
plications including industrial IoT (such as wind en-
ergy turbines), transportation (smart trains), smart build-
ings, and AR/VR and distributed entertainment systems.
Such Edge environments generate unique challenges for
ML/DL.
Latency and Disconnected Operation: Latency sensi-
tive applications must generate insights or react to data
changes quickly. For example, in a Smart Building ap-
plication such as video based intruder detection, it is not
always possible to send the image data to the cloud for
processing and wait seconds for a response. In Industrial
IoT applications, fault detection windows can sometimes
be in the 10s of milliseconds, precluding a round trip to a
cloud. Even latency tolerant applications (such as health
diagnostics) may require edge ML to operate in discon-
nected scenarios. These types of scenarios necessitate
at a minimum ML/DL inference at edge, possibly with
training in cloud, edge, or across both.
Security and Cost: The cost of sending petabytes or
terabytes of data per hour to cloud devices can be pro-
hibitive [39] and may incur security or privacy concerns
[13] . For example, it is possible for industrial IoT ap-
plications to generate several MB/s of time series sen-
sor data, and for other apps such as smart transportation
(that capture image or video data) to generate even more.
Moreover, using precious backbone bandwidth to trans-
mit data is not always beneficial if value can be generated
by bringing the compute to the data. Such constraints can
affect how and where ML/Dl training is deployed.
ML Processing Overhead: Sensor data can also be
complex [9, 18, 21], mandating significant resources.
Edge devices need to reduce cost and power, thus requir-
ing the complex processing on rich data be efficiently
distributed across both edge and cloud.

Managing these constraints efficiently requires dis-
tributing inference and training operations in toplogies
that match the needs of the specific environment, recog-
nizing that one topology will not work for all.

2.2 Challenges ML brings to Edge
The promise of data volumes from edge could greatly
benefit ML/DL [18, 38]. However, to enable effective
edge ML, we need to address the following challenges.
(Re)Training: Since the models trained via ML are data
dependent, one would have to periodically retrain when
the data pattern changes. (Re)training is compute inten-
sive and iterative [12]. Traditionally, offline algorithms
are predominantly used to train models and such trained

models are deployed in production to serve requests. On-
line learning enables the model to locally evolve while
also serving requests. Recent advancements in ML have
enabled a combination of both online and offline training
methods to be used to improve accuracy [34, 41]. This
is particularly relevant for edge devices since many edge
devices may deploy the same centrally trained model but
then evolve it online to meet edge-specific scenarios.
Diversity and Heterogeneity: There are many ML/DL
Engines (such as Spark and TensorFlow). Moreover, ML
pipelines from the same application may run on different
analytic engines. For example, it is a common applica-
tion pattern to run training as a batch job on Spark and
predictions in a streaming context or REST service. [5,
7]. For latency-sensitive edge environments, streaming
inference can be quite common [32], but the model used
therein could have been batch-trained on the cloud.
Model and Code Propagation: ML requires models to
be periodically updated. Model updates and deployment
are critical to the health of ML initiatives. A single model
from training could be deployed over thousands of edge
nodes. For a large-scale edge installation, one may not
want to deploy a new model to all of the edge instances
at the same time, but rather incrementally deploy the new
model with increasing confidence in the field. This re-
quires a way to seamlessly deploy both code and models
with different deployment policies.
Diagnostics: Debugging issues in a decentralized envi-
ronment is challenging. In addition to issues with run-
times, algorithms, configuration parameters, model de-
ployment, etc., ML adds an additional dimension since
it is data dependent and model performance is loosely
coupled with its training pipeline(s). One has to enable
collection of information not only about the distributed
ML pipelines but also their runtime statistics, logs, and
any user-defined statistics. It is most productive to debug
an ML application as a single entity and not as a set of
independent entities.

The above ML-specific requirements will need to be
supported for varied compute topologies to best match
the edge/cloud constraints previously described.

3 Requirements for Edge/Cloud ML/DL
To effectively address the challenges highlighted in Sec-
tion 2, ML needs to be distributed across edge and/or
cloud instances. Multiple edge instances can use the
same model, making model management important.
(Re)training can be done periodically and model deploy-
ment needs to be staged. Multiple combinations of both
online and offline algorithms can used to generate mean-
ingful insights and quickly adapt to changes in the data.
With these assumptions, we now list the requirements for
a distributed ML deployment.
Scalable and Automated: The Edge applications com-



Figure 1: Architecture of ECO

monly scale from 100s to 1000s of nodes. Manag-
ing ML at such scale requires automating ML including
model/code deployment and replacement, schedules to
run training/inference pipelines (if needed), policies to
decide on the staging, and propagation decisions.
Panoptic View: It is important to have a global view
of ML initiatives deployed in both the edge and cloud
nodes. Given the scale of possible deployments, it is im-
portant to enable centralized oversight. Moreover, sup-
port should be built to fetch runtime information from
remote instances for analysis and diagnostics.
Consistent: The connectivity between the edge and
cloud can be intermittent. It is important to provide the
flexibility to choose the consistency guarantees for differ-
ent ML updates (such as models or code). A good start-
ing point would be to support weak, eventual, and strong
consistency because these support commonly built-upon
guarantees that span a spectrum of trade-offs between
Consistency, Availability, and Performance (CAP).
Topology and Dependency Tracking: Understanding
the relationship between training and inference pipelines
can help automate model deployment, improve diagnos-
tics, and define provenance to track issues. While this
problem exists across ML, it is exacerbated by complex
topologies, including large numbers of distributed inter-
dependent pipelines. When connectivity limitations and
large scale force weak or eventual consistency policies
for model updates, a strong governance mechanism to
track who has what when becomes critical [45].

4 Edge Cloud Orchestrator (ECO)
We describe ECO, our approach to manage ML over
edge and cloud. Our solution supports a wide variety
of deployment scenarios with diversity in ML engines
and programming languages. Figure 1 shows the ECO
architecture. ECO works on the control plane, enabling
organizations to continue to run existing ML pipelines
and enforce their data security mechanisms unchanged.

Figure 2: Example ION: An example ION containing
a training and inference pipeline with a model approval
policy node between them.

ECO employs a distributed server-agent architecture.
The server is a highly available, scale-out entity that or-
chestrates, tracks, and manages all ML pipelines across
edge and cloud systems. The server communicates with
Agents, each of which manages a logical Analytic En-
gine that runs ML pipelines. Engines can run on edge
compute devices, on the cloud, or on any compute in be-
tween. Agents can also manage standalone programs in
resource-constrained environments.

4.1 Intelligent Overlay Network (ION)
We create IONs to address the core issues of having a
panoptic view and ability to track dependencies. IONs
contain a two-level logical graph of ML/data pipelines,
policy modules, and messages. Each node of the ION
graph can in turn be a Directed Acyclic Graph (DAG) of
components. All executions (ML Pipelines, Policy Mod-
ules) are nodes. Nodes run on schedules (batch), con-
tinuously (streaming), or are event triggered. Nodes can
pass messages between them (see Figure 2). Each node
can be a DAG of components (matching the pipeline
frameworks in Spark and other engines). Users specify
their pipeline topology and dependencies into an ION.
For example, Figure 2b shows an ION where the cloud
periodically trains a batch model and then, after opera-
tor approval, pushes it to 3 edge devices for streaming
inference. Through IONs, ECO can track all the inter-
dependencies within a single ML application. ECO has
the information about all ML pipelines, deployed models
at each instance, and status of each of the ML pipelines.

4.2 Server and Agents
The ECO server is responsible for managing and execut-
ing IONs. Each node of the ION is an executable com-
ponent (such as pipeline and policy) that runs on either a
schedule or an event trigger (such as a model approval).
The ECO server maps the nodes of an ION (each execu-
tion) to one or more Agents. With this construct, differ-
ent parts of an ION can run on geographically distributed
analytic engines ranging from small edge-based engines
to powerful multi-node cloud-based engines.

The Agent’s job is to coordinate with the server, con-
trol execution of ML pipelines on its assigned ana-
lytic engine, and monitor the progress and state of ML
pipelines. Agents periodically connect to the server and
update the state of the running ML pipelines. The server



can also request (either on a schedule or via a user trig-
gered event) the status from an agent. The ECO agents
integrate with their respective analytic engines using
standard engine APIs (i.e., the engines are unmodified).
The agent also schedules execution of ML pipelines at
specified intervals and relaunches jobs on failure.

The ECO server communicates with the agents and
launches the pipelines and policies as needed through
the Agents. It transfers the models and other depen-
dent messages between agents. The ECO server gathers
runtime statistics/events from all execution elements and
stores them in a SQL-compliant database. This database,
combined with the dependency/relationship information
specified in the ION, enables a global timeline record and
centralized view that is used for diagnostics, governance,
auditability, and overall optimization.

4.3 Scalability
The server is responsible for control and information dis-
semination to the agents, and each agent, in turn, is re-
sponsible for communication with ML instances to exe-
cute the ML pipelines. The decoupling of responsibility
between the server and its agent, along with operating on
the control path, enable scalability of our solution.

4.4 Heterogeneity
Heterogeneity of analytic engines is supported via the
Agent model. Each agent communicates with the server
via the same protocol but communicates with engines in
engine-specific ways. With this model, heterogeneity is
seamlessly accommodated. For example, an ML algo-
rithm written in Java can be trained on a Spark cluster
in the cloud, with the resulting model used in a Python-
based streaming inference pipeline at the edge.

4.5 Disconnected Operation
Each agent maintains network connectivity with its ML
engine(s) and at least intermittent connectivity with the
server. Agents buffer during disconnection from the
server and the managed pipelines continue to run (statis-
tics are temporarily stored locally). When disconnected
for long periods of time, intermediate statistics may be
lost if the edge device has limited storage. The server
queues control actions (such as model updates) and is-
sues them when connection is re-established.

5 Implementation
The ECO is ∼50K lines of Java and works in all en-
vironments. We chose a platform-neutral implementa-
tion to support many edge/cloud configurations [4, 6, 33].
For storing ECO-gathered metadata (statistics, models,
configurations, and other objects), we use SQLite [22]
and InfluxDB [24]. We use Zookeeper for ECO Server
quorum and Zookeeper’s storage for the ION configu-
rations [23]. The ECO server/agents communicate via
REST APIs. ECO agents are multi-threaded and require

a minimum of 128MB of memory. In the current version,
the services are not automatically scaled based on the
local site requirements. In an edge-only configuration,
an ECO server can run on an edge or gateway compute.
Otherwise, we expect the ECO server to run in a cloud
environment and the Agents to run wherever needed. To
date, we have tested our system with up to 512 edge in-
stances, each running on at least 128MB of memory and
a range of compute cores.

We currently support three Analytic Engines
(Spark [54], Flink [3], and TensorFlow [8]) and
pipelines in Scala, Java, and Python. We have tested our
system with both online and offline ML algorithms.

6 Use Cases
We illustrate the versatility of ECO/ION via use cases
demonstrating ML edge challenges: Federated Learning,
Transfer Learning, and Staged Model Deployment.

6.1 Federated Learning
Federated Learning avoids transferring data to the cloud
and leverages independent edge models [42]. These edge
models are merged to learn a global predictive model in-
cluding the ability to track the relationship between these
models [43]. This approach also ensures adaptability of
these models to changing incoming data.

Figure 2(a) shows the ION graph for Federated Learn-
ing. Each edge node learns models, and the distributed
“edge” models are periodically sent to a merge, which
combines them to create a global model.

Our experiment deploys 3 edge ML pipelines running
Online KMeans. Our test dataset uses 2 features and 4
dynamically varying clusters. The results shown in Fig-
ure 4 demonstrate that the system was able to not only
adapt to the changes in their data pattern but also learn
across edge instances without transferring data from the
edge to the cloud.

6.2 Transfer Learning
In Transfer Learning, [16, 37, 40, 48, 49, 51], a “generic”
model is trained offline (likely in the cloud) and the re-
sulting model is refined with incremental training at each
local edge node. It is popular in face recognition where
the “generic” model is trained on millions of faces and
then “edge” models customize further for a target user
subset [14, 52]. Periodically, the “generic” model could
be retrained to improve baseline accuracy and updates
would periodically need to be sent to the edge instances.

Figure 2(b) shows the ION graph for this use case. The
”General” model is trained (and retrained) on a cloud en-
gine. Once an operator is satisfied with the accuracy, the
model is deployed to the edge nodes. The edge nodes
combine the “generic” model with its “edge” model us-
ing an incremental training pipeline. We have enabled
transfer learning in our system for four algorithms. On



Figure 3: Example Use Cases. (a) Federated Learning: (i) The “edge” models are sent to the ECO server; (ii) ECO
server forwards the models to the Agent in the cloud for combining them; (iii) The combined model is sent back to
the server; and (iv) The server forwards the combined model to the Agents at the edge. (b) Transfer Learning: (i) A
model is trained in an offline way in the cloud and the agent forwards the trained model; (ii) This (pre)trained model
is deployed to the ML instances via the Agents at the edge; (iii) (Not Shown) the edge ML instances use the pre-trained
model to initialize their learning and continue to learn and predict in their environment. (c) Model Deployment:
Models are deployed in phases using ECO server. Periodically the server checks the efficacy of the models and
propagates the new model to other agents on a user-defined policy.

Figure 4: Data on each of the 3 edge nodes is shown in a
different color. Blue points represent the global clusters
calculated at the server.

average, the accuracy at the edge was 40% higher when
transfer learning was used in our experiments.

6.3 Staged Model Deployment
Figure 2(c) shows the ION for a staged model deploy-
ment from training (at cloud) to inference (at edge). We
focus on deploying in the presence of intermittent con-
nectivity, edge node failures, and the likelihood of a par-
tial update increasing with scale of edge nodes. When
configured for strong consistency, ECO guarantees con-
sistent model updates via two phase commit between the
server and agents. The server can also use the statistics
collected at the agents and stage model deployment in
multiple phases with increasing levels of confidence. For
example, a model can be deployed to 10 percent of the
nodes, monitored, and then deployed to the next 10 per-
cent, etc. As such, the confidence of deploying a model
across 1000s of nodes can be gradually increased.

7 Related Work
ML on edge is described in prior works [26, 27, 31, 42,
47, 55]. These efforts focus on reducing the data trans-
fer, memory footprint, and CPU cycles of ML pipelines.
Our ECO work is complementary; ECO Agents can work
with such edge-optimized ML engines.

Recent Amazon and Microsoft initiatives orchestrate
between cloud and edge instances [10, 17]. These limit
users to the vendor’s cloud and do not support interoper-
ability. Our approach is cloud- and edge-neutral.

Existing orchestrators [1, 25, 28, 29, 35, 50, 53] focus
on performance or resource utilization. ECO is the first
system we are aware of that supports distributed ML/DL
deployments using heterogeneous ML engines.

Dataflow-specific orchestrators [2, 44] are designed
to track dependencies between components (or stages)
within a data management pipeline. ECO is complemen-
tary to these approaches and can work above them.

8 Summary and Future Work

We described the challenges involved in edge/cloud
ML and demonstrated an architecture for managing
edge/cloud ML pipelines and dependencies. We use
a graph-based overlay network approach (i.e., ION) to
model pipeline dependencies and map IONs to analytic
engines to enable a wide range of geographically dis-
tributed topologies, analytic engines, and ML patterns.
Via this approach, we have met all of the challenges de-
scribed in Section 3. Via the overlay network approach,
ML computation can be distributed as needed to man-
age cost and performance, with other practical realities
such as engine heterogeneity and disconnected operation
supported. We do not explicitly discuss security in this
paper, but since ECO is an application running on Edge
and Cloud nodes, our approach layers on top of existing
mechanisms for authentication and secure access. For
future work, we intend to focus on further demonstrat-
ing the scale and flexibility of our ECO platform with
different ML patterns, as well as better quantifying the
performance of our Server and Agents.
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