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Abstract
The availability and usage of embedded systems in-
creases permanently and the industry drives the IoT to
become more and more relevant in daily life. Factory
lines, planes and cars, traffic lights, or even clothes are
equipped with sensors and small computers constantly
communicating with the outside world. One challenge
in maintaining those devices is updating their software.
Due to slow connections or only because of the huge
amount of devices data transfers can be problematic.

Data compression algorithms can be applied to re-
duce the amount of data that must be transferred. A
data reduction technique that provides high efficiency,
but which has not been considered so far for embedded
systems is data deduplication. In this work we present
the results of a long term study for updating a car mul-
timedia system. The results show that deduplication can
achieve significantly better results than commonly used
data compression techniques.

1 Introduction

Software maintenance in general is a challenging and
costly task [1, 8, 13]. Usually update techniques can be
classified into two groups: package-driven and image-
driven. While the package-driven approach replaces in-
dividual components and their dependencies, the image-
driven approach replaces larger system parts.

Packages upgrades can become difficult for complex
projects in general [5] and for client driven package man-
agers [21, 31] in particular. Identifying conflicts and
resolving dependencies among packages is a complex
task [31] and might not be a suitable approach for clients
with limited resources such as embedded devices.

Instead of client driven package managers, embedded
system firmware can be upgraded by flashing full sys-
tem images [10]. To reduce the image size different ap-
proaches have been presented [15,22,26], which in some

cases also try to minimize the energy consumption dur-
ing updates [18], [14].

In this paper we present an approach that takes advan-
tage of the combination of both techniques. It can be
used to update full images, while it transfers only those
parts that have been modified. The technique is tailored
for updating large data sets on systems that offer only
low computational power and/or limited bandwidth.

The approach bases on data deduplication which is
usually used for backups. It reduces the amount of data
that must be transferred by exploiting redundancies be-
tween successive images. Data is therefore partitioned
into similar sized chunks and a cryptographically secure
fingerprint is computed for every chunk. This fingerprint
can identify whether a chunk is new or if it was stored
before in a previous image. When a new chunk is iden-
tified the fingerprint is added to an index and the chunk
is persistently stored. However, chunking requires much
computational efforts.

We analyze the feasibility of deduplication for soft-
ware updates of IoT-systems and focus on updating au-
tomotive multimedia systems. Nowadays those systems
have many responsibilities, such as navigation, entertain-
ment, connectivity, and climate control (see Fig. 1). In-
stead of relying on the update procedures of those in-
dividual components, we present an universal image-
driven approach.

Figure 1: A modern car multimedia system is connected
to the vendor and its content is regularly updated.



Updating the software image of multimedia systems in
cars using deduplication includes a central server, edge
computing devices and the car itself. The central server
provides the image, which can already be broken up into
chunks. The edge computing servers only have to trans-
fer data, which is not yet available in the car. It therefore
applies a simple protocol, where the complete image is
processed chunk by chunk and for each chunk, there is a
short handshake between the car and the edge computing
server, whether car already stores the chunk.

We collected two years of updates for a Debian-based
Linux multimedia system whose navigation software
uses Open Street Maps to evaluate the update process.
We have chosen Debian since it is the base for many
SoC linux distributions (e.g. Raspbian, Ubuntu, Bana-
nian). Every week we downloaded a new software ver-
sion and a map of a fixed sized region. The complete
system occupied about 4.9 GiB storage in the beginning,
while it has grown to 5.4 GiB at the end of our experi-
ment. One challenge for the deduplication is the hetero-
geneity of the data. This means that the system without
the map has directly shown good deduplication behavior
while the map’s properties had a negative effect on data
reduction. By removing the origins of these effects we
reduced the amount of data to be transferred on average
by a factor of 3.7 in comparison to LZMA compressed
data. Experiments with rsync using delta updates have
shown that this application is unsuitable for our needs.
A single update transfers more than twice as much data
as our approach, which also shows that deduplication is
applicable for system updates.

2 Background

The following sections provide the background about
system image updates and deduplication techniques.

2.1 Update Encoding And Distribution

Embedded systems usually operate on limited resources.
This requires system updates to be encoded, transmitted
and installed in a resource-efficient manner. TinyOs, a
popular operating system for wireless sensor networks,
comes with an update protocol named Deluge [10]. Del-
uge can be used to disseminate large data objects and
thereby replace system images of embedded devices.
However, diff-like algorithms for embedded systems
[15,22,24–26] are more memory and bandwidth efficient
and minimizing the number of (flash) writes is beneficial
on systems with limited energy resources [25].

Byte Pair Encoding (BPE) [16] is a lossless compres-
sion technique presented by Kiyohara et al. BPE replaces
common byte sequences with single byte representatives

that did not occur in the original data. The low decom-
pression effort is advantageous for embedded devices op-
erating on limited resources.

Another issue in sensor networks is to enable system
upgrades without downtime. Koshy and Pandey pro-
pose remote incremental linking for energy efficient re-
programming of sensor networks [17]. Zephyr uses a
modified rsync diff approach to reduce data size [25]
and Elon [6] uses replaceable components to minimize
downtime during updates.

2.2 Data Deduplication
A major issue for data deduplication environments is
to overcome the fingerprint-lookup disk bottleneck [19],
which is typically achieved by combinations of caching,
bloom filters, and locality-preserving data structures
[11]. There are two deduplication approaches: exact
(e. g., used in DDFS [34] or BLC [23]) and approximate
deduplication (e. g., Sparse Indexing [19]). In contrast to
exact deduplication, where every chunk is stored exactly
once [27, 32], chunks might be stored redundantly in the
approximate method [2, 9, 28, 33].

One challenge in data deduplication is the identifica-
tion of chunks that have been parts of previous images.
Usually chunks do not have a static size, since already
small insertions would affect all following chunks. In-
stead, the data is screened for bit sequences with spe-
cial properties that are expected to appear in regular dis-
tances. In these places the data is cut into pieces. For
this so-called content defined chunking algorithms like
Rabin-fingerprinting are used [3].

Tan et al. present a causality-based backup system for
clouds called CABdedupe [29]. For reducing the data
transferred clients require information about previous
backup runs. Kaiser et al. present an approach designed
for deduplicating thousands of data streams in parallel
on the same fingerprint index [12]. The approach creates
a new locality by sorting the fingerprints and thereby it
achieves that the backup server can always access the in-
dex sequentially.

Several systems exploit the similarity of different
backup data [2, 7, 30, 33] using Broder’s theorem [4] and
comparing the smallest fingerprints of two sets of finger-
prints. Douglis et al. [7] extend this idea; they sort both
sets and compare the n smallest fingerprints of each set.
In our system we also sort fingerprints, but for the pur-
pose of avoiding I/O operations on the server.

3 Methodology

Modern cars are highly connected and can include a mul-
titude of client applications. The software is a crucial
and safety critical component of today’s drive-by-wire
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Figure 2: Development of the image size over time.

cars and upcoming autonomous vehicles. Being able to
guarantee the correctness of over-the-air (OTA) upgrades
could become an obligation imposed by insurance com-
panies or even a legal requirement [20]. A full system
image update has the advantage of unifying the update
procedures of those clients and to deploy bit-exact im-
ages, which can significantly reduce testing overheads.

For our experiments we chose Debian 8.0 as Linux
distribution. We installed a minimal system and extended
it by the display manager Mate, the video system VLC,
and the navigation system OSM. The initial size of this
system was 1.923 GiB. Additionally, we installed Open
Street Map for Germany with a 3.021 GiB compressed
map (zip format) and 9.898 GiB when it was extracted.
Every week we performed an update of the complete
system: the OS, the installed applications, and the map.
Once the updates were performed, we created a system
backup using tar. The sizes of the image (full), the sys-
tem part (system), the compressed map (map), and the
extracted map (map extracted) can be seen in Figure 2.

While the system image size merely grew to 1.935 GiB
(see Figure 2), the map size increased significantly. The
volume of the compressed map grew to 3.465 GiB and to
11.415 GiB for the extracted map.

We analyzed if the image sizes could be reduced by
compressing the data. In our tests we used LZ4 with the
option -9 (best compression) and the program xz (using
LZMA) with the option -e. The compression ratios of
both programs are illustrated in Figure 3a and the sizes
of the compressed images are shown in Figure 3b.

The size of this compressed images is the base line for
our tests since the transferred data volume of the dedu-
plication must be lower than the compressed data.
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Figure 3: Properties of the compressed data.

4 Evaluation

In this section we present our evaluation. First we show
how the number of unique fingerprints increases in the
successive update generations. The growth of the index
storing the chunks’ fingerprints indicates the amount of
data that must be transferred. Furthermore, we show the
negative impact of compression on deduplication.

In the real world it might happen that an update is
skipped. In this case more data must be transferred dur-
ing the next update. We analyze the impact on the dedu-
plication ratio when one or three updates are skipped.

4.1 Data Properties
In our first experiment we analyzed the growth of the
fingerprint index for different chunk sizes. Therefore, we
partitioned the data set into chunks of different average
sizes using Rabin’s content defined chunking algorithm.
We configured the algorithm so that the minimal chunk
size was 50 % smaller and the maximum size was 50 %
larger than the aimed average. Figures 4a-4c show the
growth of the indices.
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(b) 4 KiB chunks
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Figure 4: Growth of the fingerprint index

These diagrams indicate that the system has been mod-



ified rarely. The amount of data that must be transferred
for this component is negligible in comparison to the map
content. The number of full fingerprints for the complete
image is (almost) the same as the sum of the fingerprints
for the compressed map and the system.

The diagrams also show the impact on the index size
when the compressed map is extracted and stored in a
single file. At a chunk size of 4 KiB more fingerprints
are produced for the extracted map than the compressed
counterpart (see Figure 4b). The difference is (almost)
constant for this chunk size, but this changes for vary-
ing chunk sizes. The extracted map fingerprint number
grows significantly faster than it does for the compressed
map when 16 KiB chunks are used (see Figure 4c). How-
ever, when the chunk size is decreased fewer fingerprints
are produced for the compressed map only for the first
updates. Quickly the extracted map generates fewer fin-
gerprints than its compressed counterpart as the crossing
of the lines in Figure 4a illustrates.

The index growth is an indicator for the data that must
be transferred per update. Since the system part behaves
nicely for all chunk sizes we focus only on the com-
pressed and extracted map. For this we multiplied the
number of new fingerprints with the average chunk size.
We did this for every update and display the results in
Figures 5a and 5b.
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Figure 5: Transferred data

The diagrams illustrate that the transferred data vol-
ume can be reduced if the map is extracted and only
1 KiB chunks are used. That reduces the transferred data
volume by 33 %. However, whenever large chunks are
required the data should not be extracted. For different
chunk sizes Figure 6 shows how much data can be saved
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Figure 6: Transfer savings when extracted data is used
for deduplication.

or must be additionally transferred if an extracted map
is used instead of a compressed one. On the one hand
it is possible to save up to 750 MiB when uncompressed
maps at a chunk size of 1 KiB are used. On the other
hand additional 2,000 MiB of data must be transferred
when 16k chunks are used instead. Rabin’s algorithm
and small chunks are better suited to determine redun-
dancies than large chunks.

Although metadata handling is a major challenge in
data deduplication systems, this only applies to the server
side of our system. In contrast to traditional backup sce-
narios, where full files or complete systems need to be
recovered, our clients update existing files. Instead of a
so called file receipt, clients could receive an efficiently
encoded patch-like data structure.

Next we determine the efficiency of the different
chunkings. In our experiment the smallest fingerprint in-
dex size is achieved with the smallest chunk size. To de-
termine the efficiency of the other chunk sizes, we com-
pute the ratio of the index size when 1 KiB chunks are
used to the index size when another chunk size x is used.
For every week i we calculate:

e f fi =
1KiB ·#1 KiB hashes in week i
xKiB ·#x KiB hashes in week i

,x∈{1,2,4,8,16}
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Figure 7: Efficiency of the different chunk sizes.

An average chunk size of 1 KiB has a constant effi-
ciency of 1 by definition. That neither of the other chunk
sizes accomplish a higher efficiency indicates that 1 KiB
chunks achieve the lowest update size. Furthermore, the
graph in Figure 7 shows that the larger the chunks the less



efficient they are. This follows the expected behavior of
deduplication.

4.2 Skipping Updates
There are different situations when an update cannot be
performed (e.g., when there is no connection). This influ-
ences the data that must be transferred. In our next exper-
iment we show the impact on the required data transfers
when the extracted maps are only updated every second
respectively fourth week. We only use chunk sizes of
1 KiB, 2 KiB, and 4 KiB because only with these values
data could be saved in the previous experiments.
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Figure 8: Transferred extracted data on 2-weekly update
cycles.

The comparison of Figure 8 and Figure 5b shows that
more data must be transferred in all cases. While for
1 KiB chunks and a weekly update only about 500 MiB
were transferred this value was rarely achieved for a bi-
weekly update frequency. Nevertheless, in comparison
to the compressed maps an equivalent amount of trans-
ferred data is saved (see Figure 9).
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Figure 9: Transfer savings when extracted data is dedu-
plicated on 2-weekly update cycles.

Finally, we evaluate the effects when updates are per-
formed every four weeks instead of every week. As ex-
pected the transferred data volume increases because of
the bigger differences (see Figure 10). When the fre-
quency is reduced, more data must be transferred during
an update and therefore, also the savings for the aver-
age chunk sizes of 1 KiB and 2 KiB increase (see Fig-
ure 11). Consequently, the larger 4 KiB chunks suffer a
larger penalty.
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Figure 10: Transferred extracted data on 4-weekly up-
date cycles.
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Figure 11: Transfer savings when extracted data is dedu-
plicated on 4-weekly update cycles.

The results of our experiments show, that there can
be a benefit when extracted data is transferred instead of
compressed. Smaller chunks can compensate the penal-
ties of a bigger real (logical) data volume. The disadvan-
tage of small chunk sizes is a larger fingerprint index and
increased effort of identifying unique fingerprints. How-
ever, those are offline server-side costs and not relevant
for the clients.

5 Conclusion

We have shown that deduplication is a suitable technique
for updating systems. In comparison to other techniques,
such as packaging or replacing complete images, dedu-
plication requires fewer data transfers and less computa-
tional power. Operating on small chunk sizes, our exper-
iments have shown that only a few hundred megabytes
must be transferred per update instead of several gi-
gabytes. For rolling updates, typically used compres-
sion techniques cannot compete with the data reduction
of deduplication. Additionally, we observed that com-
pressed content limits the effectiveness of our approach.
The reason for this is loss of redundancies between suc-
cessive updates. Therefore, data should be decompressed
and transferred in smaller chunks. In the future, we will
develop a real environment for updating huge numbers of
clients. Using this system, the impacts of varying band-
widths and client numbers can be analyzed.

The used data set is still updated and will be made
available at https://research.zdv.uni-mainz.de.
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