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Abstract

Multi-camera real-time vision at the Edge is facili-
tated by low-latency distributed data stores. In this
paper, we take the position that latency criticality in
the challenging operating conditions at the Edge can
only be attained through application specific designs
incorporating autonomous computing techniques. In
our initial prototype, we implement a key-value Edge
data store that autonomously monitors run-time con-
ditions to maintain latency-criticality of one class of
data (feature vectors), while sacrificing the latency
and accuracy of another class of data (keyframes).
Early results show a median latency improvement
of 84.8% over non-autonomous operation, for videos
with large scene dynamics, and operational condi-
tions of intermittent wireless channel interference.

1 Introduction

The recent emergence of powerful Deep Learning al-
gorithms, along with the ability to store and pro-
cess massive amounts of data, has given us the abil-
ity to potentially recognize objects in near real-time
[13]. Such real-time machine vision is a founda-
tional technology in a number of applications such
as automatic video surveillance, augmented and vir-
tual reality, and vision assisted robots. In many
of these applications, timely recognition of objects
and their activity is important since events need to
be responded to within tight deadline constraints.
The latency critical nature of machine vision appli-
cations motivates the use of the Edge computing
paradigm [22][14][21][20][25][23][7][8]. While single

cameras have been used for machine vision applica-
tions, increasingly researchers are investigating the
use of multiple cameras for distributed video analyt-
ics. In scenarios such as surveillance in dense urban
environments, where occlusions are common, multi-
ple camera views increases tracking robustness [26].
Vision analytics applications at the Edge aggregates
data from multiple camera nodes to perform trajec-
tory and behavioral analysis. A data storage abstrac-
tion at the Edge is a key system component that fa-
cilitates development of such analytics applications.

A number of Cloud storage systems have been pro-
posed over the last decade [9][12][6][4][18]. While
Edge and Cloud systems share similar features such
as the need for scalability, and fault tolerance, signif-
icant differences exist.

1. Cloud systems are housed in pristine datacen-
ters. On the other hand, Edge systems are often
deployed in the “field” where highly dynamic op-
erating conditions exist. For example, the nodes
most likely use a wireless communication link op-
erating in unlicensed bands, where significant in-
termittent interference exists from other users.

2. The data is inherently distributed at the Edge
nodes due to the distributed nature of the data
sources (for example, cameras). This is differ-
ent from the Cloud where the data is distributed
by design across multiple nodes to accommodate
large data sizes.

3. The heterogeneity of the storage nodes at the
Edge is far more diverse than the Cloud. From
a storage perspective, the embedded boards (at
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the camera) has GB of storage, the Edge nodes
(at access points/base stations) offer TB of stor-
age, and the backend Cloud offers PB of storage.

4. The physical insecurity of the nodes in the field
and the use of the Edge in critical cyberphysical
systems brings additional security challenges to
the Edge.

In this paper, we present early results from our in-
vestigation of a storage architecture that can poten-
tially meet the needs of distributed vision analytics at
the Edge. Our position is that the challenging perfor-
mance requirements at the Edge is best addressed by
(a) designing the storage architecture specifically for
the application - in our case, multi-camera machine
vision, and (b) employing system techniques from au-
tonomic computing to meet performance metrics un-
der dynamic operating conditions. In our initial pro-
totype, we implement a key-value Edge data store
that autonomously monitors run-time conditions to
maintain latency-criticality of one class of data (im-
age feature vectors), while sacrificing the latency and
accuracy of another class of data (keyframes). Early
results show a median latency improvement of 84.8%
over non-autonomous operation, for videos with large
scene dynamics, and WiFi operational conditions of
intermittent channel interference.

The paper is organized as follows - Section 2 briefly
introduces recent work on designing data stores for
the Edge. Section 3 provides a description of the
system architecture for distributed machine vision at
the Edge. Section 4 identifies latency control knobs,
while Section 5 presents the design of the data store.
Section 6 reports the results. Section 7 discusses fu-
ture research directions, and concludes the paper.

2 Related Work

In the VisFlow project, Lu et al. [16] describe a
system that can analyze feeds from multiple cam-
eras. In particular, they describe a dataflow plat-
form for vision queries that is built on top of the
SCOPE dataflow engine, that offers general SQL syn-
tax, and supports added user-defined operators such
as extractors, processors, reducers and combiners. In

the Cachier project, Drolia et. al. [10] propose a
caching system for the Edge that caches Deep learn-
ing models available on the Cloud on to the Edge
nodes to take advantage of spatio-temporal locality of
user access, thus minimizing the number of requests
that go to the Cloud. In the CloudPath project, Mor-
tazavi et. al [17] propose Path Computing as a new
paradigm that generalizes the Edge computing vision
into a multi-tier Cloud architecture deployed over the
geographic span of the network. CloudPath has a
distributed eventual consistent storage system (Path-
Store) that replicates application data on-demand.
The above projects can be considered complementary
to our work; our focus is on enabling latency critical
operation of Edge data stores through autonomous
computing.
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Figure 1: Distributed machine vision at the Edge

3 System Architecture

Figure 1 illustrates the Edge computing architecture
for distributed machine vision. At the lowest level,
a number of End-nodes equipped with cameras col-
lectively monitors a geographic region (for example,
a neighborhood) to determine events of interest (for
example, drunk driving). A cluster of End-nodes (of-
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ten based on proximity) is served by an Edge-node
with communication over a wireless link (cellular or
WiFi). Depending on the scale of the system, a clus-
ter of such Edge-nodes may be served by a Core-
node (not shown), and so on, with the Cloud at the
top-most level. The End-nodes are assumed capable
of one-hop communication to the Edge-node, with
the Edge-node connected to the Cloud over the In-
ternet. Physically, the End-nodes are located in the
field (for example, traffic signal pole), the Edge-node,
in a more secure location adjacent to the End-node
(for example, traffic signal box), and the Cloud is
hosted in a data center. We assume that the nodes
at the higher levels of the hierarchy have more re-
sources (compute, storage, network bandwidth, en-
ergy) available to them. Also, we assume that latency
from the cameras increases as we go up the hierarchy
from the End-nodes to the Cloud.

Each End-node is equipped with a powerful em-
bedded computing board that has multiple process-
ing engines including CPUs, GPUs, and custom
FPGA based accelerators capable of processing video
frames at real-time using compute-intensive vision
algorithms (often involving Deep Learning) to ex-
tract image feature vectors (N-dimensional vector of
numerical features that represent objects in an im-
age), and key-frames (images with maximal number
of feature vectors) [24]. The feature vectors and key-
frames are transfered from the End-node to the Edge-
node. Note that the feature vectors are typically 100x
smaller in size than the key-frames. However, the fea-
ture vectors are generated at a higher rate (typically
30 fps) compared to key-frames (typically 1 fps). The
Edge-node aggregates the feature vectors, from multi-
ple End-nodes, to perform analytics (for example, be-
havioral analysis) across space and time depending on
the event of interest. The Edge-node also aggregates
the key-frames from the End-nodes both for archival
purposes (for example, legal evidence), and to ob-
tain any information not contained in the feature
vectors extracted by the End-node. The data store
operations involving the feature vectors is considered
latency critical, while those involving key-frames is
considered latency sensitive. Additionally, since the
key-frames primarily serve archival purposes, we as-
sume some loss of accuracy can be tolerated.

4 Latency Control Knobs

The primary component of the Edge data store la-
tency is the data transfer operation from the End-
node to the Edge-node over the wireless link. For
WiFi, this latency could be on the order of tens of mil-
liseconds [11]. Additionally, due to crowding in the
unlicensed WiFi spectrum, there is considerable vari-
ability in the latency due to interference from other
users. While low latency 5G links will become avail-
able in the near future, the low cost of WiFi asso-
ciated with operation in unlicensed bands and ease
of setup, will continue to make WiFi an attractive
technology for many Edge computing applications.
Another source of of latency is due to head-of-line
blocking from bufferbloat associated with transmit
buffering of feature vectors and key-frames. In a
video stream with low scene dynamics (key-frames
and feature vectors with low temporal variation), a
new feature vector (key-frame) can be discarded if
it is similar to a previously transmitted feature vec-
tor (key-frame), leading to low transmit buffer ingress
rate. Conversely, high scene dynamics results in min-
imal discarding of feature vectors (key-frames), and
consequently, a high transmit buffer ingress rate. Ad-
ditionally, if the wireless network is congested due
to interference in the channel, the egress rates from
the transmit buffer is low, leading to transmit buffer
bloat.

Other sources of latencies such as read/write op-
erations involving persistent storage such as flash
(hundreds of microseconds) are far less significant
as compared to that due to the wireless link, and
transmit buffer bloat. Additionally, prior work has
made available low latency data stores (for exam-
ple, RAMCloud[18], RocksDB[3]) that utilize RAM-
based log structured data structures to effectively
mask latencies associated with persistent storage.

Based on the above observations on latency
sources, our goal is to design latency tuning knobs
that a controller can use to tune the latency associ-
ated with channel interference, and transmit buffer
bloat. A simple solution of using static priority
classes per traffic has the disadvantage of prioritiz-
ing traffic even under conditions where the channel is
not congested. Intermittent congestion is dynamic,
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and effectively addressing it requires a dynamic con-
troller. Our key idea is to exploit the differing latency
requirements of feature vectors, and key-frames, and
the possibility of tolerating loss of key-frame accu-
racy. The first control knob, key-frame TX, deter-
mines the rate at which the key-frame is transmitted.
When channel interference is detected, the key-frame
transmission rate is reduced by the key-frame TX
knob so as to improve the signal-to-noise ratio (SNR),
and thereby the feature vector packet delivery prob-
ability (and hence latency) is improved. Unfortu-
nately, reducing the transmission rate of key-frames
can exacerbate the bufferbloat problem. To amelio-
rate bufferbloat, a second control knob, key-frame
Sim, that determines the degree of similarity of key-
frames in the buffer, is introduced. When transmit
bufferbloat exceeds a high-threshold, the key-frame
Sim knob discards K closest matching key-frames
from the buffer, thereby reducing the head-of-line
blocking experienced by key-frames. The discard-
ing of the key-frames can be considered as trading
off accuracy for latency. A controller located at the
End-node utilizes the two control knobs and a suit-
able control policy to ensure the best possible latency
for the latency critical feature vectors under varying
operating conditions (channel interference, and video
scene dynamics).

5 Data store design

The key-frames and feature vectors obtained from the
video processing engines at the End-nodes are time-
stamped and inserted along with the unique node ID
into the respective transmit buffers to be transferred
to the Edge-node server. An image similarity index
such as Structural Similarity (SSIM) [27] is used to
discard temporally adjacent images that are similar
above a threshold level.

The Edge-node server implements a persistent low-
latency data store such as RocksDB [3] or a dis-
tributed low-latency data store such as RAMCloud
[18] depending on the data size and fault tolerance to
node failure requirements. Note that we avoid per-
sistent storage at the End-node, since the End-node
could be illegally accessed because of limited physical

security. Encrypted persistent storage may be used
at the Edge-nodes; however, this entails additional
encryption latency. The Edge-nodes backup the data
to a Cloud storage; this operation is considered to be
latency insensitive.

6 Evaluation and Results

Our primary goal was to prototype an emulation
testbed that can be used to explore various aspects
of the Edge data store for distributed machine vi-
sion including video workloads, wireless channel in-
terference, data structures, key-frame similarity, and
control algorithms. We use LXC containers to em-
ulate End and Edge nodes. Containers implement
light-weight OS level virtualization allowing a large
number of containers to be spun-up on a single phys-
ical machine. The one-hop WiFi network was sim-
ulated using an 802.11a based adhoc WiFi network
model simulated using the NS3 [2] network simula-
tor. The LXC containers emulating the nodes are
connected to NS3 using a tap-bridge device allowing
communication between the nodes through the sim-
ulated WiFi network. The End-node and Edge-node
servers were implemented in Golang and support an
RPC interface. Image similarity was computed using
the Python sckit-image[5]. BadgerDB [1], a Golang
implementation of RocksDB, was used to implement
the persistent key-value store at the Edge-node.

We use a synthetic workload consisting of key-
frames with an average size of 500 KB, and feature
vectors of size 4 KB. High scene (low scene) dynam-
ics was simulated by deriving the key-frames from a
distribution with 0.1 (0.9) probability of temporally
adjacent key-frames being sufficiently similar to al-
low discard. The wireless channel interference was
modeled through a 1 second long transmission gen-
erated by a Poisson process with a mean arrival time
of 30 seconds. The TCP latency was measured using
the Linux qperf utility. Figure 2 shows the latency
CDF with and without latency control for high scene
dynamics using the key-frame TX control knob de-
scribed in Section 4. A simple bang-bang controller
was used - the key-frame transfer from the End-node
to the Edge-node was disabled if the latency mea-
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Figure 2: Feature vector latency CDF at high scene
dynamics and intermittent channel interference
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Figure 3: Transmit buffer queue length at high scene
dynamics and intermittent channel interference

sured with qperf exceeded 25 ms. As seen from Fig-
ure 2, the controller improves the feature vector la-
tency CDF, with the median latency improving by
84.5%. However, the latency at the tail is determined
by the limited bandwidth of the simulated wireless
channel (200 KB/s). Figure 3 shows the resulting
increasing bufferbloat of the transmit buffer queue.
The bufferbloat was controlled using a simple bang-
bang controller using the key-frame Sim control knob
- if the buffer length exceeded 12 key-frames, K = 2
key-frames was randomly chosen and dropped from
the transmit queue. Note that the choice of param-
eters (for example, buffer length and latency thresh-
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Figure 4: Image similarity index histogram of a
pedestrian car accident surveillance video

olds), are determined by the application. Addition-
ally, the control architecture is scalable since the in-
dividual End-node controllers operate independently.

To understand the scene dynamics of real-life Edge
computing video workloads, we studied a pedes-
trian car accident surveillance video obtained from
YouTube. Figure 4 plots the histogram of the im-
age similarity of all keyframe pairs in the video. We
note that a policy of randomly dropping keyframes
yields 63.1% less dissimilar keyframe pairs in the top
20 percentile as compared to the computationally ex-
pensive exhaustive evaluation of SSIM index of all
image pairs.

7 Conclusions and Future work

In this paper, we have laid the ground work for a
data store architecture for latency critical distributed
vision applications at the Edge that incorporates ap-
plication specific design, and autonomous computing
techniques.

Future extensions of our work include - node scal-
ability studies, characterization of scene dynamics
from multiple surveillance video benchmarks, incor-
poration of measurement based WiFi channel inter-
ference [15], and investigation of more sophisticated
control algorithms as described in [19]. An experi-
mental testbed would serve to evaluate the proposed
approaches under real-life conditions.
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