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Abstract

The increasing adoption of the Internet of Things (IoT)
paradigm in structuring services for “smart cities” has
led to an explosion of data generated, ingested, pro-
cessed, and stored in the system. Traditional time-series
databases being Cloud-based are not suitable for meet-
ing the low-latency requirement of such geo-distributed
smart services. We propose DataFog, a geo-distributed
data-management platform at the edge of the network to
cater to the needs of smart services for the IoT age. We
identify key challenges towards building such a database
over a widely geo-distributed and heterogeneous edge
computing environment. Preliminary evaluations show
the performance potential of DataFog in comparison to
state-of-the-art distributed data-stores. DataFog is the
first system, to the best of the authors’ knowledge, that is
meant for data-management at the network edge.

1 Introduction

Smart services based on the Internet of Things (IoT)
infrastructure has increased the need for scalable data
management platforms. Recently there have been indus-
try proposals for managing IoT data using (cloud-based)
platforms, for efficient analytics and also for monetiz-
ing the use of data by 3rd parties [3]. Situation aware-
ness applications running on edge computing platforms
utilizing the IoT infrastructure have tight low-latency re-
quirements between sensing and actuation. Often such
applications need timely data about the state of the phys-
ical environment - that too in the critical path of the ap-
plication logic. Cloud-based data management platforms
are incapable of meeting the timeliness requirements of
such applications due to the inevitable high latency in-
curred due to wide-area network traversals. Further, with
the ever increasing deployment of bandwidth intensive
IoT platforms (especially cameras), there is an increas-
ing pressure on the backhaul bandwidth to transport data

back and forth between the edge and the Cloud. Both
these factors point to the need for more efficient man-
agement of the data and the computation on the data at
the edge of the network (i.e., close to the IoT platforms
that are the sources for such data).

Building a datastore on an edge computing infrastruc-
ture, however, has its own set of peculiar challenges. The
wide geo-distribution and heterogeneous nature of this
infrastructure requires data-partitioning and replication
policies that are commensurate with the latency require-
ments of applications. Traditional cloud-based datas-
tores (such as Cassandra) do not differentiate between
data items and partition them evenly across all the nodes
for better load-balancing. In edge computing environ-
ments, where inter-node communication may have to tra-
verse the Internet, an even partitioning of data is detri-
mental to the latency of queries. Moreover, the servers at
the network edge are not as resource rich as their Cloud
counterparts. Thus a data management platform that is
edge friendly should simultaneously take advantage of
the edge servers for low latency and the Cloud for abun-
dance of resources. In this paper, we propose DataFog,
a solution to these issues by designing a system that per-
forms data partitioning between the edge and the Cloud
based on contextual relevance of data-items in space and
time. In the scope of this paper, we assume that all data-
store nodes would be owned or rented by the same or-
ganization. Extending DataFog for federated operation
across clusters managed by multiple parties is a prospec-
tive future work. In this paper, we make the following
contributions as algorithmic insights of DataFog:

• A distributed indexing mechanism that performs
data placement (both among edge nodes, and be-
tween the edge and the Cloud) based on spatio-
temporal attributes to support efficient queries in-
volving multiple edge nodes.

• A replica placement approach that provides both
spatial proximity and resilience to geographically-



correlated failures [7].

• A location-aware load balancing policy to deal with
sudden storage usage surges and hotspots by utiliz-
ing nearby edge nodes.

• A data-eviction and data-compression strategy
based on temporal relevance that takes into account
the low-storage capacity of edge nodes

The rest of paper is organized as follows. Section 2
describes the requirements of an edge-friendly data man-
agement platform using two motivating use cases. Sec-
tion 3 describes the design of DataFog. Section 4
presents performance improvements of DataFog through
results of preliminary evaluations. Section 5 summarizes
the related work on data management for IoT and Sec-
tion 6 concludes the paper.

2 Requirements of situation-awareness ap-
plications

Smart-cities equipped with multi-modal sensing func-
tionalities generate data continuously by sensing the en-
vironment. Raw data streams, e.g. video frames from
smart cameras, need to be pre-processed to detect inter-
esting objects or patterns, e.g. pedestrians or cars, to gen-
erate streams of events, which could in turn be used by
applications as well. We describe two candidate appli-
cations to motivate the necessity of a data-management
platform at the network edge.

• Suspicious vehicle tracking : A distributed cam-
era network deployed on urban roadways generates
streams of vehicle detections for continuous track-
ing of suspicious vehicles. Tracking vehicles in real
time requires spatio-temporal range queries such as
select all vehicle detections within 5 km and 10 min-
utes to be efficient. The distribution of workload is
dependent on the distribution of vehicles in space,
often leading to hotspots. Furthermore, for contin-
uous operation, the camera network generates con-
tinuous streams of vehicle detections that need to be
saved in a datastore.

• IoT to improve quality of life for people with dis-
abilities : Information generated from smart cam-
eras has the potential to help people with naviga-
tional challenges - who due to psychological issues
prefer paths with less crowd density [8]. The navi-
gation application needs to gather crowd density of
nearby regions so as to navigate the person through
the best possible path. Such a density estimate can
be constructed using spatio-temporal range queries
for recent measurements of crowd density at loca-
tions close to the user.

Note that the use-cases described above consume data
generated by specific IoT subsystems (smart surveil-
lance) for performing their functions. Based on these
use-cases we present the key characteristics of applica-
tions that would benefit from DataFog.

1. Spatio-temporal locality in range queries : For
each query, there is a spatio-temporal region such
that data-items belonging to that region are more
relevant than other data-items. For example, in the
vehicle-tracking use-case mentioned earlier, the re-
gion of relevance for a range query would include
all events within 5 km and within 10 minutes from
the current detection. This region is relevant for
real-time operations of an application, while on the
other hand batch processing operations require data
from a large area and over a long period of time.

2. Data-model : DataFog supports data-items hav-
ing a field describing the type of data, location and
timestamp fields and the value. Such a data-model
allows DataFog to handle both continuous streams
emitted by static sensors (e.g. crowd density mon-
itoring) as well as streams concerning moving ob-
jects (e.g. vehicle tracking).

3. Continuous generation of data : Data is generated
at all times, thus posing a challenge to the data man-
agement platform to cater to the low storage capac-
ity on edge-based nodes.

4. High availability requirements : Applications in
the IoT space interact with the environment and per-
form critical tasks. For reliable operation, the data-
store needs to be tolerant to failures, especially ge-
ographically correlated failures.

3 Algorithmic Insights for a Geo-
distributed Datastore

Based on the peculiar characteristics of a geo-distributed
edge computing infrastructure and applications charac-
teristics mentioned above, we take the following design
decisions that will overcome the pitfalls of off-the-shelf
platforms.

3.1 Locality-aware distributed indexing
Based on the requirements of spatio-temporal locality in
range-queries, low-latency response is dependent on the
placement of data-items on datastore nodes in proximity
to clients. Data-items are indexed based on their spatio-
temporal attributes. We propose to use spatio-temporal
encoding techniques (e.g. ST-Hash [9]), or a combina-
tion of spatial encoding (e.g. Geohash, Hilbert’s encod-
ing [13]) and consistent hashing, for using the location
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timestamp, and item-type attributes for partitioning data
across nodes.

3.2 Replication policy
Typical data replication serves two main purposes : load-
balancing and fault-tolerance. We intend to create multi-
ple replicas both on edge nodes for low-latency as well as
on remote datacenter nodes for tolerance from geograph-
ically correlated failures.

The replication policy of DataFog should take into ac-
count the requirements of replication policies in contem-
porary data-stores (e.g., Cassandra) like cross-rack and
cross-datacenter replication (for fault-tolerance). Fur-
thermore, due to the latency-sensitivity in edge comput-
ing environments, we incorporate a constraint that dic-
tates the maximum distance between a replica node and
the location of data-item and can be specified by the de-
veloper based on latency requirement of the application.

3.3 Handling workload skews
DataFog’s data partitioning ensures good load-balancing
against skews in application workload. Its design is a hy-
brid one, that provides both spatial-proximity and even
distribution of data placement. DataFog allows the ap-
plication developer to configure load-balancing regions,
such that all nodes belonging to the same region would
balance workload among each other. The application-
developer is allowed to specify the size of this region,
based on the suitable tradeoff between latency and load-
balancing.

We plan to develop two mechanisms for adapting
to hotspots. For long-lived hotspots, the administra-
tor would launch and attach new datastore nodes to the
running cluster. DataFog ensures that the newly added
nodes balance load from the heavily loaded ones and
bring down the average per-node traffic. For short-lived
hotspots, we propose to develop an offloading mecha-
nism that would allow heavily loaded nodes to offload a
specific portion of its data-items to a lightly loaded node.

3.4 Handling scarce resources at the edge
Resource capacities at the network edge are typically
smaller than those in the cloud. DataFog should leverage
the proximal location of edge nodes, but also take into
account their resource scarcity1. To this end, we make
the following design decisions for lowering storage use
on edge nodes.

1DataFog would be implemented by extending Cassandra, and thus
inherits its resource requirements. Cassandra’s throughput improves
with higher cores and RAM and faster disks, and the developer can
choose resource configuration based on the applications needs. How-
ever, a minimal edge node would require 2 cores and 8 GB of RAM.
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Figure 1: This figure exemplifies load-balancing in a
Cassandra-specific setting. It shows three adjacent load-
balancing regions, colored by green, red and blue on the to-
ken hash ring. Data-items falling in the red region are uni-
formly partitioned across 4 logical (virtual) nodes (ti−1 − ti,
ti − ti+1, ti+1 − ti+2 and ti+2 − ti+3), which are mapped to 2
physical nodes (A and B). Given a data item, we use the lo-
cation to construct a spatial encoding and concatenate it with
the hash of metric type and hash of timestamp to get the parti-
tion key. Then we locate the position of the partition key on the
ring and store the key-value pair on the virtual node that cov-
ers the corresponding position. In this example, the data-item’s
partition-key falls between ti+1 and ti+2, therefore it is stored
on the datastore node B (which owns the region between ti+1
and ti+2).

3.4.1 TTL-based data eviction

The dependence of real-time analytics on temporally lo-
cal data renders records older than a certain application-
dependent threshold irrelevant for those queries. How-
ever, batch-processing use-cases require data spanning
over a large period of time to detect slow-moving pat-
terns. DataFog uses a time-to-live based approach to
evict stale data from the edge-nodes, while maintain-
ing replicas in cloud-based nodes. Hence a range query
spanning a large interval of time would have to retrieve
all concerned data-items from the cloud-based replicas.
This prevents accumulation of stale data on constrained
edge-nodes, as well as makes complete time-series data
available for batch-processing use-cases.
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3.4.2 Data aggregation and compression

Time series data from sensors is generated periodically
and piles up quickly. If each data item (for example, tem-
perature) owns a unique token key, it is likely the meta-
data will occupy a large portion of storage space and lead
to inefficient storage utilization. By aggregating data-
items from the same data source, DataFog is able to save
storage space by omitting redundant metadata and also
improve the memory locality for range queries. Mean-
while, time series data items from the same data source
are usually isomorphic, which leverages the opportuni-
ties to further improve the storage utilization by prop-
erly compressing both the metadata and the actual data
items [12]. For example, the air temperature data only
fluctuates within a small range, so there is no need to use
a full 64-bit integer for each data item, and the difference
between subsequent values can be stored.

3.5 Sketch of System Implementation
As a first approach towards implementing DataFog, we
would extend Apache Cassandra with the aforemen-
tioned design decisions. Cassandra uses the hash of data-
item’s key to search the hash ring for replicas (see Fig
1). In DataFog the hash function is modified to incor-
porate spatio-temporal indexing (Section 3.1). A load-
balancing region is composed of data nodes with the
same GeoHash prefix (similar positions on hash ring)
which forms an arc on the hash ring (Fig 1). When a
load-balancing region is overloaded, application devel-
oper can choose to bring in new data nodes or distribute
workload across existing nodes. In either case migration
of data is involved, where we would leverage the built-
in data migration mechanism of Cassandra 2. A gossip
protocol is used to exchange information between nodes
and detect failures and network partitions. Network par-
titions are handled by caching the writes to unavailable
nodes and later replaying them when those nodes be-
come available (hinted-handoff). TTL-based data evic-
tion extends Cassandra’s existing mechanism to classify
data as expired. Data aggregation and compression will
be performed as in time-series database engines such as
InfluxDB [1].

4 Preliminary Evaluation

The evaluation of DataFog is intended to delve into the
design choices presented in Section 3 and study their
effectiveness. In the interest of brevity, we present the
results of a preliminary evaluation of a spatio-temportal

2The reader is referred to repair and rebuild operations of
Cassandra. https://docs.datastax.com/en/cassandra/3.0/

cassandra/tools/toolsRepair.html

context-aware data partitioning and replication policy. A
more thorough evaluation of DataFog is part of future
work and discussed in Section 6. We compare the per-
formance of DataFog’s data partitioning policy against
the consistent-hashing based policy of off-the-shelf Cas-
sandra. We use the vehicle-tracking use-case described
in Section 2 to generate query workload and quantify the
performance of spatio-temporal range-queries for recent
detections of a particular vehicle.

4.1 Workload description
The objective of the vehicle-tracking application is to
construct trajectories of vehicles in real-time. We use
SUMO [11] to simulate the movement of vehicles on the
road network in Georgia Tech campus equipped with 35
smart cameras. These cameras, upon vehicle detection,
generate an event with the location, timestamp and li-
cense number of the vehicle. For each vehicle detection
by a camera, the application submits a range query for
all vehicle detections of that vehicle within a 5 kilome-
tre radius that happened less than 10 minutes ago. These
previous detections are used to construct vehicle’s recent
trajectory. The application’s performance is contingent
on efficient range-query execution. The datastore to store
these events and trajectories comprises of 4 nodes within
the campus itself and remote nodes in 4 geographically
distant regions of the USA (CA, WA, IL and FL). We
emulate these nodes and corresponding network topol-
ogy using MaxiNet [17] on Microsoft Azure.

4.2 Implementation details
We extend Cassandra to build this first prototype of
DataFog. To enable context-aware data partitioning, we
assign a token to each datastore node, which is composed
of a Geohash encoding of the node’s location at precision
3 followed by a random byte-sequence 3. The choice of
Geohash precision has been made that all the local nodes
(inside Georgia Tech) fall in the same load-balancing re-
gion of the hash ring. For simplicity of implementation,
we add an additional field called part key to each data-
item that is composed of the data-item’s contextual in-
formation (as in Fig.1), and is used for data partitioning.
Using this additional field can easily be avoided by im-
plementing a custom context-aware partitioner 4.

CREATE TABLE vehicle_detections (

geohash VARCHAR, ts_chunk BIGINT,

metric_type VARCHAR, ts_offset BIGINT,

part_key VARCHAR,

PRIMARY KEY (part_key, geohash, ts_offset));

3Auto-token generation is part of future work
4https://docs.datastax.com/en/cassandra/2.1/

cassandra/architecture/architecturePartitionerAbout_

c.html
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Figure 2: The 50th, 95th and 99th percentile range-query laten-
cies with varying number of remote datastore nodes.

The datastore implementation allows millisecond pre-
cision for timestamps, and for partitioning events, di-
vides time into 1 hr long chunks - such that any times-
tamp can be broken down into a chunk with ID ts chunk
and an offset ts o f f set. The partition key field part key
is composed of the GeoHash of record’s location, fol-
lowed by a consistent hash [5] of the ts chunk field fol-
lowed by a hash of the metric type field (see Fig. 1).

We compare the performance of the preliminary
location-based indexing approach to a location-agnostic
indexing done by off-the-shelf Cassandra. The replica-
tion factor is set to 3. To show the drawback of location-
agnostic indexing, we increase the size of the cluster
by adding more remote data-store nodes. The latency
of spatio-temporal range queries against these replica-
tion settings is shown in Figure 2. We expect the range-
query latency to increase with an increase in the number
of remote nodes, due to off-the-shelf Cassandra’s even
data partitioning. When the number of remote nodes is
less than the replication factor (3), one of the replicas
would always be placed on a local node. However, when
the number of remote nodes is 3 or greater, some data-
items end up having replicas only on remote nodes mak-
ing the higher percentiles of latencies becoming higher.
DataFog, on the other hand, performs location-aware
placement of replicas, and hence is not affected by the
increase in cluster size.

5 Related Work

The continuous increase in the amount of telemetry data
has led design of time-series databases becoming an ac-
tive area both in research and industry, with a plethora
of solutions [15, 4, 2, 14]. Hughes et al. [10] designed
GeoMesa, a distributed architecture for spatio-temporal
data, which indexes data based on GeoHash and has been

built by extending Apache AccumuloDB. The design of
indexing keys is similar to DataFog, wherein they incor-
porate spatial encoding and timestamp by interleaving
them. Von et al. [16] discuss the design of a database
for storing events concerning objects that change state
in space and time using a key-value store HBase. They
present the indexing design and highlight important fu-
ture work. These solutions, however, are built for oper-
ation in cloud-based environments, where inter-node la-
tency is significantly smaller than that in edge-computing
environments. The concern for having edge-based data-
stores has been pointed out by Confais et al. [6]. They
conduct a performance evaluation of three off-the-shelf
object stores (Cassandra, Rados and Inter-Planetary File
System) in deployed over an edge-computing infrastruc-
ture. However, their analysis compares off-the-shelf ob-
ject stores and they do not make any design decisions
suited for the edge computing environment.

6 Conclusion

In this paper we present the case for a holistic manage-
ment platform for IoT data on at the network edge. We
identify the challenges of edge infrastructure and come
up with algorithmic insights for addressing them so as
to leverage the benefits of edge-based deployment. Im-
plementation of solutions leveraging those insights and
comparing the possible choices from the solution space
forms an immediate future work. DataFog’s potential is
demonstrated by the performance improvement due to a
replica placement approach based on spatial locality. Our
immediate future work is a thorough quantitative evalu-
ation of the design decisions in comparison to state-of-
the-art Cloud-based datastores.

The overheads of context-aware partitioning and repli-
cation needs to be analyzed. We plan to measure the
ability of our load-balancing solutions to manage work-
loads with inherent skews. We would demonstrate the
benefit of eviction-based strategy on utilization of stor-
age resources at the edge. The reduction of storage con-
sumption through data compression and aggregation is
another metric that would quantify the performance of
DataFog for constrained edge devices. Finally, we would
tune the parameters in the aforementioned policies (e.g.
replication distance, spatial encoding precision, etc.) and
measure their impact on overall performance. Another
important issue is the interaction between datastore plat-
forms owned by different stakeholders [18]. There is a
need for communication protocols and business models
for sharing data across multiple edge administrative do-
mains.
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