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Abstract

While it is clear that edge infrastructures are required for
emerging use-cases related to IoT, VR or NFV, there is
currently no resource management system able to deliver
all features for the edge that made cloud computing suc-
cessful (e.g., an OpenStack for the edge). Since building
a system from scratch is seen by many as impractical,
this paper provides reflections regarding how existing so-
lutions can be leveraged. To that end, we provide a list of
the features required to operate and use edge computing
resources, and investigate how an existing laaS manager
(i.e., OpenStack) satisfies these requirements. Finally,
we identify from this study two approaches to design an
edge infrastructure manager that fulfils our requirements,
and discuss their pros and cons. This paper aims at initi-
ating the discussion in our community.

1 Introduction

While several academic studies have highlighted the ad-
vantages of the edge computing paradigm in various do-
mains [8} 1516} 19} 20], progress on how to operate and
use infrastructures that serve it are marginal. Solutions
like Akamai Cloudlets [1]] or AWS Lambda [2] are close
to the initial fog proposal that allows to run domain-
specific applications on NFV-enabled infrastructures (at
the edge) and centralized clouds [8]]. Since these solu-
tions do not allow to run stateful workloads in isolated
environments (e.g. containers, virtual machines (VM)),
they do not fully cover the requirements from developers
and operators (DevOps) who expect to find most features
that made current cloud solutions successful also at the
edge. Therefore, such solutions are not considered in this
(paper’s) initial debate.

The ETSI Mobile Edge Computing Industry Specifi-
cation Group defined in 2016 an architecture to orches-
trate distinct independent cloud systems, a.k.a. Virtual
Infrastructure Managers (VIM) [14]. The idea consists
in federating VIMs of the different Data Centers (DCs)

that compose the edge infrastructure. By reusing VIMs,
ETSI targets edge computing resource managers that be-
have in the same fashion as traditional ones, while miti-
gating development requirements. Although there is no
implementation available, the idea of federating VIMs
seems promising as several projects have been built on
similar concepts. ONAP [3], an industry-driven solu-
tion, enables the orchestration and automation of virtual
network functions across distinct VIMs. From the aca-
demic side, FogBow [9] aims to support federations of
Infrastructure-as-a-Service (IaaS) providers. More re-
cently, NIST initiated a collaborative effort with IEEE
to advance Federated cloud through the development of
a conceptual architecture and a vocabulary'.

Although all these projects provide valuable contri-
butions, they all have been designed by only consider-
ing the DevOps’ perspective. They provide abstractions
to manage the life cycle of geo-distributed applications,
but do not address administrative requirements. How-
ever, edge computing infrastructures differ from feder-
ated cloud systems in various aspects [18]], for instance:
edge sites are potentially unmanned and therefore must
be administered remotely; management systems should
be designed to cope with intermittent network access to
sites; distinct operators might be interested in intercon-
necting their infrastructures (like network peering).

To capitalize on the advent of edge computing, our
community should take part in current discussions and
actions in order to deliver a well-suited resource manage-
ment system. A system that will (i) let an operator ag-
gregate, supervise and expose the massively distributed
resources of the infrastructure, and (ii) let DevOps im-
plement new kinds of services on top of an infrastructure
that may be deployed and managed on-demand.

In this paper, we present reflections to initiate discus-
sions through our community.

e First, we introduce a classification of the features
expected by both administrators and DevOps. This
classification is valuable to identify missing mecha-
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Figure 1: Edge Computing Infrastructure [11]. The red
dashed lines depict a split-brain situation that isolates
Site 1 from other sites.

nisms in resource management systems.

e Second, based on the identified requirements, we
discuss how an edge resource management system
should be designed. In particular, we study pros and
cons of top-down and bottom-up approaches. The
former consists in interacting with each site only
through exposed VIM APIs, such as in federated ap-
proaches. The latter aims at revising internal mech-
anisms of VIMs to enable native collaborations.

Since there are many possible edge infrastructure de-
signs, we highlight that the infrastructure considered in
this study is composed of several individually-managed
and geo-distributed micro DCs (up to thousands) com-
posed of up to one hundred servers (nearly two racks).
Figure || depicts such an infrastructure. The expected
latency and bandwidth between elements may fluctuate,
in particular because networks can be wired or wireless.
Moreover, disconnections between sites may occur, lead-
ing to network split-brain situations [12]. Finally, it is
possible to consider additional DCs at the extreme edge,
within private institutions or public transports. From the
software viewpoint, since we investigate how existing
cloud managers can be extended to the edge, we consider
as our default VIM OpenStack [5]: the de-facto open-
source solution for cloud computing infrastructures.?

The remainder of the paper is organized as follows.
Section [2| provides a list of features expected by admin-
istrators and DevOps. Section [3]studies how OpenStack
satisfies these features, highlighting the need for collab-
oration across the entire edge infrastructure. Section [4]
discusses two approaches to design a resource manage-
ment system for the edge. Section[5]concludes the paper.

2 Admin/DevOps’ Requirements

Herein we classify features administrators and DevOps
expect to find in the context of edge computing infras-

tructures. The classification is based on 5 levels, starting
from the easiest aspects, i.e., interacting with a single site
(considered in level 1, L1), to more complex aspects like
managing multiple sites (L2), up to taking into account
that sites can be owned by different operators (L5). Ta-
ble [I] summarizes the classification we detail below.

As previously mentioned, a large part of these features
are common to the ones offered by current IaaS resource
management systems. They are implemented by various
services, each of which is in charge of the management
of a particular aspect of the infrastructure [13].

L1. Operate/use any site This level considers the ac-
tions both administrators and DevOps expect to perform
on a single, reachable site. Most operations are elemen-
tary from the edge viewpoint because they correspond to
the ones already provided by a VIM such as OpenStack.
In other words, each edge site can be considered as an in-
dependent cloud at this level. The unmanned aspect only
impacts this level by requiring to perform all operations
remotely if needed. Furthermore, the resource manage-
ment system should provide means to ensure the integrity
of the hardware resources taking part to the edge infras-
tructure. Strategies such as enabling/disabling physical
interactions with the equipment should be considered.

L2. Operate/use several sites In L2, L1 features are
considered but over several sites. This includes opera-
tions such as provisioning/managing multiple resources
or gathering information from various sites simultane-
ously. Operations can be either intra-service (same ser-
vice from different sites) or inter-service (different ser-
vices from different sites). Examples of such operations
include configuring users’ access on a per-site basis; list-
ing available VM images or pushing new ones on multi-
ple sites. From the DevOps viewpoint, a user should be
able to boot a VM on Sife I using an image defined in Site
2 (inter-service operation). Similarly to L1, DevOps also
expect metrics to be collected from several sites and col-
laboration mechanisms regarding the security (e.g., se-
cret key sharing, network encryption).

Because collaboration between sites can be either ex-
plicit (i.e., the targeted sites are explicitly specified in
the operation), or implicit (i.e., the resource manage-
ment system is in charge of selecting resources), we
have defined two sub-levels: L2.1 and L2.2, as depicted
in Table [ The implicit manner suggests that policies
(e.g., performance objectives, energy consumption) and
constraints (e.g., affinity rules, hardware requirements)
are provided by admins/DevOps so that the resource
management system takes the right decisions regarding
the defined desiderata and the state of the infrastructure
(e.g., auto-scaling, relocating workloads between sites,
re-scheduling faulty resources across sites).



Levels

Administrators

DevOps

Both

L1: Operate/use any site

L2: Operate/use several sites

- L2.1 Explicit manner:

- L2.2 Implicit manner:

L3: Robustness w.rt. split brains

- L3.1 Application robustness:

- L3.2 Management service robustness:
L4: Multiple Cloud environments

- L4.1 Different IaaS versions:

- L4.2 Different IaaS technologies:

L5: Multiple operators

Manage any site: install, upgrade site’s
services; manage users, flavors, quotas
Manage multiple sites simultaneously
Manage a specific set of sites
Cross-site autonomous management

Manage reachable site(s)

Manage different IaaS versions
Manage different IaaS technos

Provision compute, storage, network
resources on-demand on any site
Cross-site collaborative resources
Provision on a specific set of sites
Cross-site autonomous provisioning

Access reachable applications
Provision on reacheable site(s)

Provision on different IaaS versions
Provision on different IaaS technos
Provision on one or many sites

Collect metrics and ensure security,
integrity and resiliency for any site

L1 but over a set of sites

Aggregated metrics from multiple sites
and collaborative security mechanisms
L1 for an isolated site; L1 and L2 for
isolated sets of sites

Support intermittent connectivity

L3 with different IaaS environments
Discover sites’ capabilities and
compatibility

L4 with multiple operators

Table 1: Classification of the requirements to operate and use edge computing infrastructures in 5 levels.

L3. Robustness w.r.t. network split-brains L3 in-
cludes L2 operations but with the possibility to face sit-
uations where the infrastructure is partitioned due to net-
work disconnections. Figure[I]depicts such a case where
Site 1 is isolated from the other sites. In this scenario,
administrators/DevOps that can reach Site I (i.e., located
in the same geographical area) should be able to perform
L1 operations on Site I despite the split-brain. Such a
requirement makes sense as L1 is limited to one site and
does not impact other ones. For the remaining sites, L1
and L2 must be guaranteed.

Since split-brains might impact differently already-
provisioned resources and management services, we re-
fine L3 into two sub-features. L3.1 is related to features
that allow already-deployed applications to continue to
serve local requests without being impacted. For in-
stance, an apache server or a storage backend should be
able to satisfy requests coming from the same geographi-
cal area, even if management services cannot be reached.
L3.2 features are related to the provisioning of new re-
sources and other management operations as described
in the previous paragraph. Note that guaranteeing L2
features will not be always possible at the L3.2 level be-
cause information cannot be gathered in case of a dis-
connection. For instance, guaranteeing quotas across the
infrastructure might be a challenge without first relaxing
the consistency requirement of the information. New ap-
proaches will have to be proposed for such operations.

Finally, the possibly intermittent network connectivity
between edge resources requires the ability for sites to
join and leave the infrastructure.

L4. Multiple cloud environments Delivering a re-
source management system at large scale in a unified
manner poses a great challenge from the software view-
point. Since different versions and types of infrastruc-
ture managers might co-exist at the same time across
the whole infrastructure, L4 gathers the related require-
ments. More precisely, L4.1 considers L3 features when
different versions of the same software stack co-exist
across the infrastructure. L4.2 increases the complexity
by considering the collaboration of mutiple systems, in-
cluding possibly different concepts (e.g., OpenStack for

VMs and Kubernetes for Containers). Such a require-
ment implies the ability to get sites’ capabilities in order
to only allow meaningful collaborations.

L5. Multiple operators L5 corresponds to the holy
grail in terms of expected features. In addition to L4, it
includes the possibility to use sites owned by different
operators. We do not specify any requirement for ad-
ministrators at this level as an operator is unlikely to let
other operators administer its own site. However, opera-
tors should be able to collaborate to offer their sites’ re-
sources to any DevOps like it has been done for a while
for cellular networks. The requirements here are more
related to the collection and sharing of relevant metrics
enabling each operator to perform charging/billing.

Summary As previously mentioned, each level of our
classification increases the complexity in terms of design
and development constraints. Note however that since
L4 and L5 both extend L3, they can be considered at the
same level and can be swapped as a consequence.

Although we tried to be exhaustive, this list of features
could probably be extended, e.g., by considering differ-
ent edge infrastructure scenarios (e.g., including smaller
and limited devices). However, we believe it is already
valuable as it delivers significant insights on the design
and implementation of an edge resource management
system. In the next section, we study whether OpenStack
can fulfill the L1, L2, and L3 levels. The discussion of
L4 and LS5 is left as future work.

3 OpenStack at the Edge

This section studies the use of OpenStack to control
an edge infrastructure. Such an analysis is meaningful
as the OpenStack code base has been evolving to deal
with large scale and multi-site objectives for the two last
years. Particularly, the section evaluates OpenStack, in-
cluding its latest improvements, with respect to the re-
quirements defined in the previous section.

At a high level, OpenStack has two types of nodes:
data nodes delivering XaaS capabilities (compute/stor-
age/network, i.e., data plane); control nodes executing
OpenStack services (i.e., control plane). Whenever users



issue a request to OpenStack, the control plane processes
the request which may potentially also affect the data
plane in some manner. Key control plane services in-
clude keystone, nova, glance, and neutron, respec-
tively responsible for authentication/authorization, VM
life cycle management, VM image management and as-
sociated network management.

Because OpenStack comes with several deployment
alternatives and because the edge sites considered in our
study can host data and control nodes, we elected to dis-
cuss two scenarios: a centralized management scenario
and a multiple regions scenario described next.

3.1 Centralized (Remote) Management

In this scenario, OpenStack operates an edge infrastruc-
ture as a traditional single DC environment, the key dif-
ference being the wide-area networking found between
the control and compute nodes [7]]. The distinction be-
tween the different edge sites can be realized by leverag-
ing the concept of host aggregates within OpenStack.
From the requirements’ viewpoint, L1 and most L2
requirements can be fulfilled in a straightforward way
(because the infrastructure can be spread over several
network domains, some L2 operations including specific
network actions cannot be satisfied). For L3, only L3.1
requirements can be satisfied while L3.2 cannot be met
due to the centralized control plane. For instance, most
OpenStack services collaborate through a message sys-
tem and through the manipulation of logical objects that
are persisted in shared databases (DBs). While this en-
ables services to easily collaborate, it imposes a require-
ment of permanent connectivity between the services lo-
cated at the compute nodes and the control services like
the databases and message buses located in the DC. In
other words, while this scenario provides a “single pane
of glass” for administrators and DevOps, it has the draw-
back of being a “single point of failure” preventing Dev-
Ops to use edge resources in case of network split-brains.

3.2 Multiple Regions

In this scenario, each edge site corresponds to a region
in the OpenStack terminology, which is a complete de-
ployment of OpenStack with all control services and a
“shared” Keystone. The main advantage of this deploy-
ment is related to the independency of each site in case of
network disconnections. The downside relates to the fact
that the current codebase does not provide any mecha-
nism to allow the collaboration between several regions
and thus L2 requirements cannot be met. 3

3.3 Effective Collaboration is Needed

Despite the fallibility of the network, and frequent iso-
lation risks of an edge site from the rest of the infras-

tructure, an edge infrastructure may be able to meet L3
requirements. This can be achieved by supposing a col-
laboration a la peer-to-peer, that is, an edge site always
serves local resources and collaborates with other edge
sites if need be. To develop such a resource management
system, two fundamental design options exist: top-down
or bottom-up. Both designs differently impact the way
this required collaboration can be handled.

A top-down collaboration design implements the col-
laboration by federating VIMs” API. As a consequence
the existing VIM codebases are used without introduc-
ing modifications/extensions. Examples of approaches
following this design are: ONAP [3]], Kingbird [4]], Fog-
Bow [9] and p2p-OpenStack [17].

A bottom-up collaboration design lays on making
VIMs mechanisms/services directly collaborative [11]].
For example, having two OpenStack Nova services able
to cooperate and communicate directly would be a real-
ization of a bottom-up design. Such design implies ei-
ther the modification/extension of existing VIMs or the
creation of a completely new system.

4 Design Discussion

In this section, we discuss the pros and cons of the
top-down and bottom-up designs targeted at the end of
the previous section. More precisely, our discussion
is driven by the following questions. (i) On the one
hand, while the top-down design is the most common
approach, can it fulfill all the expected requirements
listed in our classification without requiring changes in
the VIM codebase? (ii) On the other hand, while the
bottom-up design seems to disrupt the design principles
by requiring a la peer-to-peer strategies in VIM’s inter-
nal mechanisms, should it be discarded?

Top-Down Design The top-down approach consists in
designing a set of overlay components that interact with
existing VIM APIs to avoid modifying VIM codebases.
Avoiding codebase modifications is of particular impor-
tance in fast-growing software stacks. For example, a
new version of OpenStack is released every six months
with a lot of changes in the codebase, whereas changes
rarely impact the APIs. Therefore, a top-down design
makes VIM development and the overlay system com-
ponents independent. If designed to do so, the system
can easily allow L4, i.e., the support of different versions
and types of VIMs - as demonstrated by FogBow [9].
Unfortunately, a top-down design cannot satisfy all L2
requirements without extending or revising the existing
VIM codebase. For example, OpenStack Tricircle [6], a
top-down project to allow virtual networking across dif-
ferent sites, ended up "breaking" the core of OpenStack
by introducing specific L2 mechanisms. Such intrusive



modifications negate the aforementioned independence.
Moreover, L2 features in general require reimplementing
many low-level VIM functionalities at the overlay level.
For instance, the OpenStack “boot a VM” process looks
as follows from a bird’s-eye view: (1) Get the URL of
the image by looking up in the database, (2) Schedule
and boot the VM. Thus, booting a VM on Site I using
an image defined in Site 2 would require implementing
a dedicated workflow at the overlay level in order to in-
teract with both sites and copy the image from the im-
age manager (i.e., Glance) of Site 2 to the one of Site /
before booting the VM. This is valid for most L2 fea-
tures such as a fine-grained authorization management
with different rights in different edge sites (L2.1) or a
cross-site scheduling functionality when sites are speci-
fied implicitly (L2.2). Such a mechanism will be similar
to the placement workflow already available in Nova.

Bottom-Up Design In a bottom-up design, the system
is not limited by what is available through VIM APIs.
Specifically, there are two possibilities: 1) rearchitecting
the services/components of existing cloud platforms, in
our case OpenStack; ii) through a clean-slate approach.

By rearchitecting OpenStack to allow native collabo-
ration, several ‘local’ features can be supported across
the entire edge infrastructure for free. For instance, the
aforementioned OpenStack “boot a VM on Site 1 with
image on Site 2" process would be feasible without mod-
ifying the VIM codebase if Site I can either directly con-
tact the image manager of Site 2, or share the database
backend with Site 2. However, since OpenStack has
not been designed to be collaborative, most mechanisms
must be revised to consider side-effects related to collab-
oration operations. For instance, a VM boot process initi-
ated on Site I can be completed on Site 2. The question is
then to define where the states related to this VM should
be stored, keeping in mind the split-brain challenge. It is
noteworthy that identifying all these aspects requires the
understanding of existing code, which is a daunting task
in respect to the OpenStack ecosystem size.

Therefore, the complexity of rearchitecting existing
services/components might make a clean-slate approach
as the most likely approach for a bottom-up design.

Finally, L4 requirements cannot be intrinsically satis-
fied by the bottom-up approach while L5 implies strong
limitations regarding how collaborations should be im-
plemented (for instance sharing internal states of differ-
ent edge sites between operators looks unlikely).

Summary There are pros and cons for both ap-
proaches, and none individually seems to meet all re-
quirements. From the technical perspective, the bottom-
up design seems to be the most appropriate to cope with
L1, L2 and L3 requirements, while the top-down is the

only one to satisfy L4 and LS. From the business per-
spective, a top-down approach is likely to fulfill the short
and medium-term Time-To-Market (TTM) requirements
while a bottom-up approach is required to fulfill all re-
quirements. From the codebase perspective, top-down
approach has limited impact on existing VIM code-
base while the bottom-up, despite the impact on exist-
ing codebase, allows implementing functionalities effi-
ciently, without code duplication. All in all, our commu-
nity should investigate a long-term solution that builds
on a bottom-up approach. This will require first diving
into OpenStack and understanding its intricate internal
mechanisms leveraging tools like EnOS [10] to mitigate
the efforts, and second, to address scientific challenges
such as the definition of a reference architecture for a re-
source management system for edge infrastructures, how
to share internal system states in an edge context etc.

5 Conclusion

The emergence of Network Function Virtualization
(NFV) technologies as well as Internet of Things (IoT)
and Augmented/Virtual Reality (AR/VR) applications
herald a new era of cloud computing where infrastruc-
tures need to leverage resources at the edge of the net-
work in order to cope with latency requirements. Despite
this growing need, there is no cloud management system
that is designed with such an infrastructure in mind.

In this paper, we presented reflections to initiate dis-
cussions on this hot topic. We outlined a systematic
grouping of the features that administrators/DevOps ex-
pect and the requirements an edge infrastructure puts on
a cloud management system. We briefly studied the use
of existing IaaS managers (i.e., OpenStack) to control an
edge infrastructure highlighting the need for an effective
collaboration between the edge sites. We then discussed
pros and cons of two possible strategies to follow when
designing a solution: (1) a fop-down approach which de-
signs overlay components that interact with underlying
TaaS managers without modifying their codebase; (2) a
bottom-up approach that extensively improves existing
software to fulfill the requirements. We concluded that in
the short-term, a top-down approach is required to have
a timely working solution available. In the long-term,
both approaches should be considered simultaneously:
bottom-up to realize a native and efficient system for the
edge; top-down to enable collaboration between different
cloud stacks (e.g., OpenStack, Kubernetes).

Finally, it is noteworthy that our study considers one
kind of edge infrastructure. Other variants can be en-
visioned where, for example, third-party hardware re-
sources can dynamically join and leave the infrastruc-
ture. For such cases, this study needs to be extended to
integrate additional features not discussed in this paper.
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Notes

1 https://collaborate.nist.gov/twiki- cloud- computing/
bin/view/CloudComputing/FederatedCloudPWGFC (March 2018).

2Note that our study applies to any other resource manager built
on the similar building blocks as OpenStack (e.g., Kubernetes). Such
building blocks are conceptually identified in [[13]].

3Due to space limitation, we did not discuss a third scenario lever-
aging the OpenStack cells concept. However, we underline that such
an approach has the drawback of the two discussed scenarios.
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