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Abstract
Powerful edge compute frameworks address the issue of
latency for IoT data processing at the edge. However,
continuous application layer WAN streaming to core for
consolidated deep analysis and learning consumes exces-
sive bandwidth and becomes the bottleneck for respon-
siveness at the core. A state-of-the-art storage or hy-
perconverged system, on the other hand, advertises com-
pelling in-built features like WAN efficient data protec-
tion and delta replication, global unified management,
space and bandwidth saving through inline data com-
pression and deduplication. Traditional storage seman-
tics and services, however, are built for data at rest while
edge analytics prioritizes responsiveness by processing
and moving streaming data at an application layer. In this
paper, we propose to enable streaming of IoT data trans-
parently through storage replication. Based on this foun-
dation, we further present light-weight storage plugins
to reduce IoT data transfer by detecting and translating
semantic redundancies to a deduplication friendly form.
Our early results demonstrate that (a) leveraging storage
to take responsibility of streaming data in an application-
consistent way results in efficient data transfer (b) real-
world IoT time-series datasets exhibit a high degree of
similarity which can be detected to reduce data transfer
from edge (c) video streams for autonomous cars, the
transfer of which cannot be reduced enough using tradi-
tional video compression or storage deduplication tech-
niques, have significant semantic redundancy. Collec-
tively, advancing research in this direction paves the way
to enhance the versatility of state-of-the-art infrastructure
for optimized edge computing.

1 Introduction
Traditional Internet of Things (IoT) analytics solutions
tradeoff speed and depth - they deliver immediate “time-
to-insight” or delayed “depth-of-insight”[8]. Edge com-
puting alleviates this tradeoff - because both speed and
depth are desirable, thus driving more compute and

storage capabilities closer to the data’s origin (“Shift-
left”). However, the IoT ecosystem presents multiple
challenges for traditional compute and storage infrastruc-
tural paradigms: (1) The scale and diversity of deploy-
ment scenarios necessitates managing intermittently con-
nected geographically dispersed edge sites with simple
interfaces, while allowing flexibility in analytics process-
ing as applications evolve. (2) The high volume and high
velocity of data generation requires novel approaches to
deal with continuous streaming data and manage it
based on its semantic value since hot/cold are no longer
good indicators of value. (3) Analytics can be performed
in devices at the edge, in gateways, and in data centers,
creating new data and insights along the way to manage,
store and transfer efficiently. (4) IoT sensor data is usu-
ally time-series, video streams, geo-spatial or asset data.
Conventional storage de-duplication fails to be effective
for such data because of the presence of embedded times-
tamps and statistical variation, resulting in higher storage
and bandwidth usage, besides redundant processing.

One approach to address such challenges would be to
build dedicated edge solutions comprising a specialized
infrastructure stack packaged with frameworks and ap-
plication components that implement a variety of data
reduction, filtering, function distribution, streaming ana-
lytics and distributed learning optimization techniques.
However, specialization can become limiting for edge
platforms which may potentially evolve to run diverse
workloads and varied analytics pipelines.What if we
could repurpose the existing software defined infrastruc-
ture paradigm (with appealing features like unified man-
ageability, storage, WAN optimization) for edge? We be-
lieve that the preferred approach to achieve this should
embed generic capabilities in compute and storage plat-
forms so that they can learn about the data; thereby em-
powering future solutions with enough versatility to han-
dle diversity of IoT data in an application and location
transparent way.

Contributions: First, our approach unifies manage-



ment of data at rest and data in motion at the storage layer
(section 2), by linking streaming platform(s) with asyn-
chronous storage replication for data movement from
edge to core. To achieve this, we replace chatty ap-
plication layer edge to core streaming data transfers
by transparently riding on WAN optimized application-
consistent storage replication and local streaming trans-
fers. The processing layer (applications) built with these
frameworks remains unchanged. Second, once the stor-
age layer is plugged in to optimize data transfer, “in-
sights” about nature of streaming IoT data are incorpo-
rated to further optimize the transfer. This is illustrated
by presenting the relative benefits of two similarity detec-
tion plugins that identify semantic redundancies in time-
series (section 3) and video streams (section 3.2) to lever-
age storage layer data deduplication and WAN efficient
data transfer. Reducing data transfer by identifying se-
mantic redundancies and enabling compute mobility can
help ensure that IoT processing (including data analytics,
data movement, compute shift and data management) is
performed optimally across all edge sites and the core.
2 Storage Replication for Streaming

Figure 1: Transparent replication of stored data streams

In a typical edge to core computing pipeline, the data
is transferred using application frameworks (e.g. Apache
NiFi[3], Kafka[2], Storm[4] etc.) to core. These frame-
works also persist the data in storage. We propose to
transparently replace streaming of data through appli-
cation frameworks across WAN with optimized edge to
core storage replication. Instead of data streams getting
transported as payload in the application layer, changed
blocks of the log files used to persist these data streams
are replicated at specified intervals by using the asyn-
chronous replication protocol supported by the underly-
ing storage. The replication protocol would stream these
delta blocks from the source edges to the destination dat-
acenter (Figure 1). Applications designed on the data
streams need not change. Instead of connecting to a
server in the remote datacenter, the application connects
to a local server to fetch data. A restart of the frame-
work will force it to reevaluate its offsets and recognize
the newly added logs. Restart of the framework can be

done unobtrusively by restarting the container hosting
the framework. Consumer applications communicating
with the framework need not restart. Thus the applica-
tions are served the same data, though at a maximum
lag defined by the replication interval. Application work-
flows which can work on near real-time data having pre-
dictable and consistent amount of latency can take advan-
tage of the WAN optimizations offered by this approach.

Application consistency: The application frame-
works used for streaming rely on filesystem fsync for
the consistency guarantee of the streams and can be con-
figured with a checkpoint interval for their logs. Stor-
age replication is triggered after the file is checkpointed
thereby ensuring that the streams are application consis-
tent. When the filesystem receives fsync system call,
all the pending writes are persisted to the disk and fur-
ther writes are quiesced, the file is snapshotted and com-
pressed unique changed blocks are replicated by tak-
ing advantage of built-in deduplication, compression and
delta replication features of the underlying storage layer.
Further, frameworks such as Kafka incorporate mech-
anisms such as CRC32 checksums appended to each
record of the data streams which can be used to verify
the consistency of records at the destination.

Evaluation: We simulated two identical IoT environ-
ments consisting of traffic sensors (Refer Figure 4) send-
ing their data to a Kafka broker at edge. This data was
forwarded to applications at core which analyzed data
from multiple edges. In the storage streaming setup,
Kafka logs of processed streams from each edge server
were replicated to the log folder of Kafka broker at the
core using rsync[12] (a utility for efficiently transfer-
ring and synchronizing files across computer systems),
whereas in the application streaming setup, streams were
remotely consumed at Core from edges using Kafka. Al-
though we have used rsync for our experiments, typi-
cally any efficient built-in asynchronous storage repli-
cation mechanism could be leveraged. The various fac-
tors taken into consideration for characterizing the ben-
efits were payload size, frequency of messages, number
of sensors, number of consumers, streaming interval and
compression. With very small payload, application layer
streaming performs better than the storage streaming,
but with increasing number of Kafka consumers sharing
same streams, storage streaming fares much better. With
increasing workload (Figure 2) (increase in payload, fre-
quency and number of sensors), storage streaming per-
formed significantly better than application streaming.
The exact benefits obtained could vary depending on the
type of the dataset. A comparison of bandwidth used
with and without rsync compression showed significant
bandwidth savings due to compression. The results also
show that increasing streaming interval decreases the
bandwidth needed for storage streaming as larger time



Figure 2: Bandwidth consumption (log scale) of Storage streaming (rsync) vs Application streaming (Kafka) measured
using tcpdump [13] and analysed with wireshark[15]

windows result in better compression ratios. Overall, the
combination of Kafka compression coupled with Rsync
compression is the sweet spot for large amount of data
transfer through WAN.

Discussion and Related Work: Kafka Mirror
Maker[9] helps to maintain a replica of an existing Kafka
cluster in a different datacenter. This would solve the
problem of multiple consumers consuming the same
records, resulting in fetching the stream multiple times
across the WAN. WAN optimizers are dedicated appli-
ances placed at WAN endpoints behind the router. Both
these solutions introduce added complexity and cost to
the overall ecosystem. We leverage the in-built strengths
in storage systems like deduplication and compression.
Any streaming framework that uses storage to persist/log
state of its consumers/producers and maintains a logi-
cal organization (e.g. Kafka has topic-wise directories
in log folder, Apache Bookkeeper[1] has separate index
files managing data for each ledger) can use replication
as a way of streaming data. Streaming through storage,
however, poses challenges in application consistency and
seamless consumption of the replicated streams by the
framework. We take care of application consistency by
relying on the periodic flushing of the frameworks to the
filesystem at the source and by the consistency checks
done by the frameworks at the destination. We are also
investigating a possibility of thin framework plugin to
make replicated records immediately consumable at the
destination without requiring a broker restart.

3 Similarity Awareness for Store-Edge
There are two kinds of applications at the core: (a) appli-
cations that periodically derive summary insights from
incoming batches of input data (b) deep learning appli-
cations that learn updated models/rules to be communi-
cated to edge. We detect similarities between streams of
data using similarity service plugin at the edge for these
applications. Similarity detection happens in a transpar-
ent manner without impacting the analytics workflow.
The light-weight similarity service plugin depends on the
type of data and augments conventional block deduplica-
tion to dedupe semantically similar data.

3.1 Time-series Data

Typical time-series IoT data often contain similar trend
and cyclical components that can generate semantically

Figure 3: Similarity Plugin for Time-series datasets

similar analytical outcomes. Traditional storage dedupli-
cation does not detect such duplicates because it com-
pares raw bytes. We leverage the method SEeSAW[20]
to detect similarity early in the analytics workflow, sav-
ing both edge storage and edge to core data transfers.

Figure 3 shows how we extend traditional infras-
tructure to detect similarities between streams using a
similarity service plugin at the edge. We use Discrete
Wavelet Transform (DWT) to convert time-series data to
a smaller set of representative coefficients (signatures)
for each micro-batch (“streamlet”). DWT signatures are
stored in an efficient index (e.g. by reusing storage layer
de-duplication hash). When an incoming streamlet re-
sembles a previously seen streamlet (signature match), it
gets linked to the previous streamlet and its transfer to
core is dropped (or delayed). This is achieved by rid-
ing on mechanisms already in place for de-duplication
of storage thus avoiding duplicate data transfer. Coupled
with storage streaming (section 2), this approach pro-
vides extra benefit by sending only semantically unique
data across WAN to the core (as relevant for analytics re-
sults). We also plan to explore the possibility of using
a transformation plugin that distributes only the signa-
ture instead of the raw stream from edge to core. The
similarity transformation service plugin at the core can
reconstruct the stream (with a tolerable error bound) by
performing an inverse transform (IDWT) on a smaller
subset of these signatures.

Evaluation and Correctness: We created a simulated
IoT environment for CityPulse traffic dataset [6] for eval-



Figure 4: Example Experimental Setup

uating the correctness of DWT based similarity detection
for time-series datasets. As shown in Figure 4, we use
a containerized simulator for traffic dataset for all 450
sensors and replay it at 1 second interval. These produc-
ers communicate to the Kafka broker at the edge, where
moving average streams of vehicle count for each traf-
fic signal are generated. The similarity plugin achieves
savings in storage and transfer by detecting similarity be-
tween streamlets before they are stored and replicated to
the core. At the core, we run a Hotspot Identification
Spark streaming application which operates on incoming
streamlets and identifies the top 5 busiest signals for each
3-minute period. We observe 95% reduction in over-
all data transferred from edge to the core in this setup.
To verify correctness, two identical synchronized setups
were used with and without the similarity plugin. The
top 5 busiest signals identified by the hotspot application
on both setups were the same in every iteration. Table 1
shows significant data reduction potential in real world
IoT datasets when using first 4 coefficients of DWT as
the signature for similarity detection.

Dataset Dataset Size Saving
GREEND[7] 10GB 84.05%
CityPulse Pollution[6] 570 MB 8.28%
CityPulse Traffic[6] 1.35GB 97.71%

Table 1: Similarity Detection for time-series datasets
Discussion and Related Work: Papageorgiou et.

al.[21] automate the switching between different data
handling algorithms at the network edge, including an
analysis of adjusted data reduction methods primarily for
time series data. Managing the tradeoff between data
reduction and accuracy across different scenarios is an
interesting challenge. This may be approached in sev-
eral ways: (1) adjusting the metrics (streamlet window
size, number of DWT coefficients, distance threshold,
desired accuracy) via application guidance or a core-to-
edge feedback driven adaptive configuration mechanism
as proposed in SEeSAW[20] (2) maintaining both exact
and semantically de-duplicated views at different prior-
ity levels by differentiated storage and transfer treatment
to exact and semantically similar data (3) shifting analyt-
ics stages that are sensitive to exact data (e.g. anomaly
detection) to the edge before semantic redundancy detec-
tion (4) expending extra computation at the core to apply

needed corrective adjustments.

3.2 Autonomous Driving

Figure 5: Similarity Plugin for Autonomous cars

Autonomous cars generate huge amounts of video
data[10]. Poor network conditions (e.g. WiFi/4G etc.)
make it impractical for all of this data to be sent to core
(or cloud) for deep learning and training. Video com-
pression requires temporal context to reduce the data
size and is thus ineffective for detecting semantic or
contextual similarity spread across time (e.g. consider
video streams generated during home to office drive ev-
ery morning). Storage deduplication works beyond tem-
poral context and can be used for WAN efficient stream-
ing as described in section 2. However, storage dedu-
plication and compression are not effective on already
compressed video data formats (e.g. mp4, mpeg).

There is an already existing video processing pipeline
at the edge for taking real time driving decisions. This
involves techniques like object detection, semantic seg-
mentation, SLAM (simultaneous localization and map-
ping) etc. We propose to leverage it by introducing a
native thin semantic deduplication layer for efficient data
transfer from autonomous cars. Similar to section 3, we
create a signature for each video frame and maintain a
dictionary at the edge for similarity detection. We use
a combination of Mobilenet Caffe model[5] for object
identification and GIST descriptors[19] to detect seman-
tic similarity between an incoming video frame and pre-
viously encountered frames. If a match is found, we
replace new frame with the matching frame. With this
approach, semantically similar frames are made exactly
similar before they are stored; so that block deduplica-
tion and incremental transfer is efficient. If the entire



video is needed to be replayed at core, similarity plugin
for post-processing (stitching or smoothing) is used. In
other use-cases (like training/deep learning), the repre-
sentative video presented to applications at core could be
shorter as it captures the most informative bits of video
from model building perspective.

Dataset Size Saving
(Frames)

Gzip-
Saving

Saving
(Video)

Kitti[17] 6.3GB 42% 1.5% 13%
UMich Downtown[14] 78GB 66% 26% 60%
UMich Ford[14] 119GB 66% 27% 51%
CCSAD*[18] 8MB 38% 17% 23%

Table 2: Similarity Detection for Autonomous Cars
(*sample video used for visual verification)

Correctness and Results: We were able to reduce
CCSAD sample video[18] to 62% its size. Visual val-
idation showed little difference (we observed minor jerk-
iness) between original and processed video, even after
replacing 38% of the frames. As mentioned before, in
use-cases where application at core learns a model, only
incremental bits can be moved to core. We tested across
night and day trips[11] of the same route and achieved
41% reduction for object identification model at core.
We needed small video clips for visual validation, how-
ever the reduction usually improves for more amount of
data, so bigger datasets also mean better semantic simi-
larity. Table 2 shows how we performed on some real-
world datasets for autonomous cars. Early results show
the relative advantage and future potential of our ap-
proach as compared to tar-gzip based compression.

Discussion and Related Work: Optimizing self-
driving car video transfer is an upcoming area of fast-
paced innovation. Traditional video compression tech-
niques optimize human perception quality and require
decompression of the video frames at the time of use,
thus increasing the size in the process [22]. Techniques
applied for compressed sensing of surveillance videos
[16] can potentially be leveraged for autonomous driv-
ing. We complement such techniques by translating se-
mantic redundancies to leverage existing de-duplication
and delta replication. The proposed approach provides
extra reduction to video streams transferred through stor-
age replication. Most video processing pipelines at edge
tend to work on raw camera feed before sending the
video in codec format to edge. It is at this stage that
we intercept or leverage the pipeline which results in na-
tive and organic reduction to encoded video before it is
stored or sent. We are also investigating an approach
to identify keyframes and transform video snippets to
a signature so that replacement and block deduplication
happens at a snippet granularity rather than frame gran-
ularity. Thus, the resultant video stream after replacing
semantically similar frames/snippets is guaranteed to be

lower in size than what it originally would have been.
As per our tests (Table 3, column 4) , the reduction %
in terms of video size comparison is marginally smaller
(but still better than gzip saving) than reduction % for
input image datasets.

Our experience showed a low overhead on object iden-
tification but relatively higher overhead for GIST. Good
news is that with two-stage semantic deduplication ap-
proach, we don’t propose doing GIST comparison over
the entire sample space. We narrow down candidates
for near-exact comparison (like GIST) by performing
a light-weight first stage signature-comparison (object
identification). More importantly, these two are just the
representatives but the right thing would be to leverage
the edge processing pipeline itself to identify candidate
analytics stages for semantic deduplication. If this pro-
cessing is native or inherent to the pipeline, it is not really
an overhead.

4 Conclusion and Future Work
We presented a two-fold vision to empower general pur-
pose storage infrastructure to be operated at the edge
for efficient data transfer. First, facilitating streaming
of IoT data transparently through storage leverages (a)
streaming frameworks’ ability to separate streams by ap-
plication determined context (e.g. topics) at the time
of persistence (b) storage layers’ ability to do selective
data replication for application-consistent transfer. This
opens up possibilities to build more intelligence in the
storage layer. Second, we proposed thin storage plug-
ins at the edge for time-series and video data so that se-
mantic redundancies can be detected before its storage or
transfer. These plugins essentially translate semantically
similar data to exactly similar so that storage deduplica-
tion, compression and replication becomes effective on
streams of IoT data. We demonstrated that this transla-
tion doesn’t affect the overall essence and pattern of the
original data; thereby maintaining the accuracy of appli-
cation at core, with much lesser bandwidth cost. These
early findings open up fresh questions about the best way
to leverage end to end infrastructure features for an effi-
cient edge-to-core pipeline. How should computation be
distributed to enable effective detection of semantic re-
dundancies? How should framework and infrastructure
layers be co-designed for maximum versatility? We be-
lieve there’s a place for general purpose optimizations
even in a data-diverse IOT world as we continue investi-
gations towards versatile and all-inclusive approaches to
enhance infrastructure at the edge.
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