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Abstract

Static code checkers have been useful for finding bugs in
large-scale C code. Domain-specific checkers are partic-
ularly effective in finding deep/subtle bugs because they
can make use of domain-specific knowledge. To develop
domain-specific checkers, however, typical bug patterns
in certain domains must first be extracted. This paper
explores the use of machine learning to help extract bug
patterns from bug repositories. We used natural language
processing to analyze over 370,000 bug descriptions of
Linux and classified them into 66 clusters. Our prelimi-
nary work with this approach is encouraging: by inves-
tigating one of the 66 clusters, we were able to identify
typical bug patterns in PCI device drivers and developed
static code checkers to find them. When applied to the
latest version of Linux, the developed checkers found
two unknown bugs.

1 Introduction

Static code checkers are one of the most useful tools for
finding bugs in software. Numerous tools and techniques
for static code checkers have been proposed to debug
large-scale C code. A good example of large-scale C
code is an operating system such as Linux and Windows
because the code bases of such OSs are huge and com-
plicated. In fact, static code checkers are widely used to
find bugs in Linux or Windows, especially in their device
drivers [7] [19] [22] [4] [11] [18] [3] [1] [8].

The key concept of static code checkers is identify-
ing typical bug patterns in code. Some checkers em-
body well-known rules of programming. A NULL-
pointer checker, for example, searches for code loca-
tions in which a potentially NULL pointer is deref-
erenced without checking its nullity. In addition to
checkers that embody well-known programming rules,
domain-specific checkers are very effective for finding
bugs [24] [22] [18] [11]. A field study of Linux bugs
in file systems [14] reveals that domain-specific bugs are
dominant. An example of domain-specific checkers that
makes file system knowledge is one that verifies the file
system code does not invoke a memory allocator that
may invoke the swapper process. If the swapper is in-
voked, it will recursively invoke the file system code,
which can lead to the deadlock of an entire system.

Unfortunately, it is not straightforward to develop
static code checkers that make good use of domain-
specific knowledge. Existing code checkers are derived
from the insights of experienced developers, from careful
field studies of bug fixes [15] and/or from a developer’s
own experience. Although checkers derived from expe-
rience can uncover defects in large-scale software sys-
tems, the “experience-based” approach is ad hoc and it
is not easy to use it for extracting useful bug patterns. In
open-source projects such as Linux, there are many con-
tributors but no formal means to share experiences. In
addition, a large-scale software system consists of many
components, each of which requires different expertise
to develop domain-specific checkers.

In this paper, we explore “mining” domain-specific
bug knowledge from the past repositories of bug fixes.
We use machine learning to extract bug patterns whose
occurrence is statistically frequent in the bug-fix reposi-
tories. Using state-of-the-art natural language process-
ing, the bug reports in the repositories are classified
based on topic. Closely related bug reports are expected
to contain similar bug patterns and to capture domain-
specific patterns of bugs. In this work, bug descriptions
in English are analyzed instead of code patches that de-
scribe actual code changes in C because code patches do
not contain any semantic information. If one function
call is added to the code, we cannot understand why it
has been added to the code only from the patch itself. In
contrast, the bug description clearly states why the func-
tion call is added. It describes, for example, the function
unmasks interrupts.

In this paper, we report our preliminary work with
writing checkers based on knowledge extracted from a
large number of bug reports. We applied our method to
the Linux bug repository (git log) and grouped 370,403
patches in Linux from 2.6.12-rc2 to 3.12-rc5 into 66 clus-
ters based on their content similarity. We then identified
nine bug patterns in one cluster that contained device-
driver bugs related to interrupt handling and developed
checkers for those patterns. These checkers discovered
two bugs in PCI device drivers in the latest Linux (ver-
sion 3.15).

The rest of this paper is organized as follows. Section
2 gives an overview of existing checkers and discusses
our motivation. Section 3 describes our strategy for writ-
ing checkers and explains natural language processing



and clustering. Section 4 reports our preliminary results
with learning bug patterns, our checker implementation,
and bugs that we found in Linux device drivers. Section
5 concludes this paper.

2 Background and Motivation

To the best of our knowledge, this work is the first at-
tempt to help checker implementers extract bugs by ma-
chine learning. Checker implementers must recognize
certain bug patterns or system rules to check before im-
plementing checkers. In this section, we briefly discuss
existing methods for extracting bug patterns and our mo-
tivation for the work.

2.1 Learning from Bugs

In the context of model checking, the biggest obstacle to
finding bugs is simply knowing which rules to check, as
mentioned by Engler et al. [8]. Checker implementation
faces the same issue. The current methods of extracting
bug patterns are to perform field studies on bugs or to
investigate implicit coding rules.

Bug field study: Studying real bugs is usually per-
formed with past failure logs and bug reports for target
systems such as the Linux kernel [6], Linux file sys-
tems [14], other open source systems [26] [15], and Win-
dows [9]. A typical study defines the authors’ bug crite-
ria: for example, aging-related Mandelbugs [6], file sys-
tem semantic bugs [14], misconfiguration types [26], and
concurrency bugs (atomicity violation and order viola-
tion) [15]. The results of such field studies are useful for
extracting bug patterns. However, the identified patterns
of bugs closely depend on the bug criteria. Defining a
useful and effective set of bug criteria requires intimate
knowledge of the target software systems.

Bug studies usually suffer from a large amount of
noise in the target resources. Information retrieval and/or
machine learning is useful for extracting bug fixes [23]
and de-duplicating bug reports [20] [10]. Similar to pre-
vious efforts, we analyze textual data in bug reports.
However, while the other works focus on extracting a
particular collection of bug reports by analyzing the tex-
tual characteristics of the reports, we focus on extracting
the content of bug descriptions using state-of-the-art nat-
ural language processing, as described later.

Extracting system rules from code: Bug patterns
can be identified as behavior that deviates from the cod-
ing rules. Engler et al. pioneered the idea of checking
API usage rules [7] and propose searching for them in
the form of pairs of functions that occur together fre-
quently [8], while Yang et al. [25] extract system models
from source code by tracking system behavior. Lawall
et al. [13] use the insights of experienced developers to

extract Linux API protocols. Saha et al. [22] focus on
resource release operations inside a function in order to
reduce the number of false positives.

While these techniques are all effective for finding
bugs, we can only learn patterns defined by some devel-
opers and by the methods they propose. Note that these
methods also derive from the authors’ experience in field
studies and software development.

Using specification: Given the complete specification
of coding rules, it is easier to recognize bug patterns be-
cause all deviations from the specification can be con-
sidered bugs. In the case of Windows, the specification
of the kernel interfaces to the device drivers is provided.
Static Driver Verifier [1] makes use of the specification to
find bugs in Windows device drivers. SelL.4 [12] enables
the formal verification of an entire code by designing a
verification-friendly OS architecture. In Linux, device
drivers can avoid bugs by automatic synthesis of a for-
mal specification [21].

One approach for reducing many bugs is to check
as many common and known bug patterns as possi-
ble [5] [17]. The sheer number of the previous works for
finding bug patterns ([24] [22] [11] [13] [18] [25] [8] [7],
etc.) implies that new bug patterns will continue to show
up in the future. Our method of organizing learning bugs
in this work assists with prioritizing bug patterns to check
on the basis of found bugs in the past.

2.2 Organizing Learning Bugs

In this work, we organize the method of learning bugs so
that we can relax the limit of the obtained bug patterns.
We do not use the method of extracting system rules from
code because this requires insights that might be difficult
to obtain. Ultimately, we aim to help field studies define
appropriate bug criteria to write checkers.

The root cause of the challenge of obtaining appropri-
ate bug criteria is that the size of target resources is too
large to be read in full. Thus, sampling is necessary. A
simple approach is to limit the number of investigation
by selecting random resources within a certain period of
time. The drawback of this approach is that the represen-
tativeness is lost. We cannot determine whether the con-
tents of sampled resources are rare cases or not. Another
simple approach is to sample the resources that contain
bug-like keywords that we already know (e.g., “NULL”
or “race”). However, we do not always know such key-
words, especially when checker implementers attempt to
learn bug patterns related to OS semantics.

Our solution to these challenges is to group similar
resources into a cluster based on the resource content,
i.e., bug descriptions written in English. Past bug de-
scriptions are useful in that they contain the insights of
many developers and their efforts to solve real problems



in target software. We can learn representative bug de-
scriptions from the relatively large clusters for effective
checking. Although this approach does not uncover un-
known problems in target software, it enables developers
to check if problems that many developers have encoun-
tered in the past occur in other places for improving the
quality of target software. Mining bug patterns from ex-
isting bug fixes in a system can give us the insight re-
quired to implement effective, domain-specific checkers
for the system. One drawback is that we still require
learning bug patterns for each target software. Automatic
synthesis of domain-specific checkers can reduce the dif-
ficulty of this, but it remains challenging to identify vio-
lated semantics from bug fixes. In this paper, we report
our experience with manual checker implementation.

3 Proposed Method

3.1 Overview

By our methodology, learning and checking for bugs is
organized into patch clustering, defining bug criteria, and
implementing checkers. Patch clustering is performed
through patch weighting with latent Dirichlet allocation
(LDA) [2] and top-down clustering [16], with the weight
calculated by LDA. Top-down clustering enables us to
group similar patches while ensuring their contents ap-
pear frequently among all target patches. Top-down clus-
tering cannot calculate the similarity by raw patches writ-
ten in English, so we need natural language processing
and LDA.

LDA lets us weight documents with abstract “topics”
that occur in a collection of documents. For example,
when a developer finds a bug, he or she describes it us-
ing such as “bug”, “problem”, “failure”, “crash”, or simi-
lar. Such words co-occurrences shape the document’s se-
mantics or context and appear more often in documents
that contain similar topics. LDA enables us to automate
the process of learning the topics by recognizing the pat-
tern of word co-occurrences. We find better parameters
by running LDA several times. Each run is around 16 to
40 hours depending on the given parameters. In LDA,
topics are represented as the probability distribution of
words, i.e., the extent to which each word appears in each
topic.

In this work, we use bug reports from the Linux up-
stream git repository excluding merge commits. Our tar-
get resource is a collection of 370,403 patch descriptions
from Linux 2.6.12-rc2 on April 2005 to Linux 3.12-rc5
on October 2013.

3.2 Natural Language Processing

Before running LDA, we stem and drop noisy words. By
“stemming” we mean grouping together words that have
the same meaning but different grammatical variations
(e.g., ‘leaks’, ‘leak’, and ‘leaking’). Noisy words to be
reduced include not only well-known “stopwords” (fre-
quently appearing in general English documents: ‘is’,
‘a’, ‘that’, etc.) but also decimal (‘8’, ‘16’, etc.) and
hexadecimal (‘Oxff’, ‘1e’, etc.) numbers, except for ones
that are bonded to other letters e.g., “x86”. Since infor-
mation on the development process is not relevant to our
work here, we also get rid of paragraphs that contains
“Signed-off-by:”, which always appears in the signature
paragraph in Linux patch reports.

The Linux coding style is well organized and func-
tion names frequently appear in bug descriptions for
Linux patches. For example, “fat_alloc_inode()” and
“ext3_alloc_inode()” are functions for an inode alloca-
tion in FAT and ext3. In this case, we should proba-
bly mine general inode allocation failures by regarding
them as similar. To do so, we use non-alphabet and -
digit words as split tokens in addition to spaces. From
the example functions, we obtain two sets of words, e.g.,
(“fat”, “alloc”, “inode”) and (“ext3”, “alloc”, “inode”).

LDA is one of the main topic models in natural lan-
guage processing. In LDA, a document is assumed to
be generated over multiple topics and the topics are as-
sumed to be generated by multiple words that appear in
the collection of documents. A topic is inferred by the
frequency of word co-occurrences in a given document.
For example, if “memory” and “leak” frequently appear
in the same report, LDA assigns a topic that weights
these two words high and other words low. LDA then
weights the assigned topic for reports that contain “mem-
ory” and “leak”. Using LDA enables documents to be
translated into probability sets of topics that can be used
as the weight of each document. In this work, we use the
Apache Mahout implementation of LDA.

3.3 Top-Down Clustering

The results produced by LDA are not human under-
standable because of the large amounts of data involved.
Therefore, we need an additional grouping method. Top-
down clustering is a method of hierarchical clustering in
which the algorithm starts from one cluster containing all
the data and divides the cluster into two recursively un-
til all clusters becomes small enough to understand (cur-
rently, less than 5,000 patches). We implement the divi-
sion part of the algorithm by 2-means (k-means given k =
2) due to its scalable and concurrent-friendly properties,
suitable for the processing of large amounts of data.
LDA does not consider the structure of documents



Table 1: Cluster examples

From left, ID of a cluster, number of patches, and three most probable topics of centroids for a cluster. Each topic is
expressed by two most probable words of a topic (if highest probability is >0.9, expressed only by the word).

ID | Size | 3 top topics for cluster ID Size | 3 top topics for cluster

CO0 | 7021 | (http, org), (bug, show), (id, cd) C8 5733 | (block, transact), (queue, blk), (length, sg)
C1 | 8921 | (thank, cc), (manag, appli), (miss, add) || C9 5025 | (drm, radeon), (auto, engin), (1915, pipe)

C2 | 5005 | (tx, rx), (queue, blk), (packet, skb) C10 | 5348 | (pci, slot), (bu, driver), (cmd, pcie)

C3 | 5334 | (irq), (interrupt, msi), (handler, c) C11 | 5296 | (memori, leak), (cpu, hotplug), (node, numa)
C4 | 5514 | (dma, channel), (map), (id, cd) C12 | 8078 | (page, insert), (map), (scan, direct)

C5 | 8243 | (write), (complet, abort), (caus, race) Cl13 | 5152 | (gcc, git), (like, low), (version, increment)
C6 | 5005 | (x86,iommu), (pci, slot), (max, min) C14 | 5697 | (lock, unlock), (lock, poll), (lock, protect)
C7 | 5331 | (arm, mach), (h, asm), (omap, omap2) C15 | 6955 | (null, derefer), (pointer, cast), (close, cap)

(e.g., the order of words), which may result in poor
results in terms of analyzing Linux patches. A lot of
patches for Linux contain various common phrases such
as references to bugzilla’s URL, error logs, oops call
traces, device ID tables, or test scripts. These can fre-
quently appear in bug descriptions, and LDA may mis-
takenly weight the phrases higher and weaken the actual
bug descriptions. To avoid this issue, we divide bug de-
scriptions into paragraphs (most such phrases in Linux
appear as a paragraph) and then merge their results when
top-down clustering checks the convergence. This merg-
ing strategy is just to regard patches in the same cluster as
their employing paragraphs. For example, when a clus-
ter has three paragraphs, pl, p2, and p3, whose clusters
are cl, c2, and cl, respectively, we regard the clusters
to which the patch belongs as cl and c2 (i.e., we ignore
how frequently each cluster appears).

4 Preliminary Results

This section reports the preliminary results of learning
bug patterns using the proposed method.

4.1 Patch Clustering

We obtained 66 clusters from over 370,000 patches by
extracting clusters containing 5,000 to 10,000 patches.
We performed 1,000 iterations on 500 topics for inferring
LDA parameters. Other hyper parameters were given
as suggested by Mahout’s documentation. We stemmed
words by using the Porter’s stemmer, which is the de
facto standard for stemming English [16]. It utilizes suf-
fix stripping based on a rule to conflate inflected words
to a root. Stemming does not always preserve the root
as a valid word, so the results contain partially corrupted
words such as “memori” instead of “memory”.

Table 1 shows 16 examples of clusters and their top-
ics. Each cluster is characterized by words that repre-
sent topics for the centroid of a cluster. The biggest

Table 2: Nearest bug description of a cluster centroid.

Cluster C7, commit 9c¢ff337 3rd paragraph

Topic: (arm, mach), (watchdog, nmi), (specif, code)
So far as I am aware this problem is ARM specific, be-
cause only ARM supports software change of the CPU
(memory system) byte sex, however the partition ta-
ble parsing is in generic MTD code. The patch below
has been tested on NSLU?2 (an IXP4XX based system)
with a patch, 10-ixp4xx-copy-from.patch (submitted
to Linux-arm-kernel - it’s ARM specific) required to
make the maps/ixp4xx.c driver work with an LE ker-
nel.

categories of clusters have topics about OS semantics,
including common features (C3: interrupt, C4: DMA,
C12: page), devices (C2: network, C8: block, C9: graph-
ics, C10: PCI), and platforms (C6: x86, C7: arm). We
found that general, well-known bugs appear frequently in
Linux patches (C11: memory leak, C5 and C14: concur-
rency bugs, C15: null dereference). Other clusters con-
sist of words that often show up in development discus-
sions (CO: URL, C1: thanks, C13: development tools).

Table 2 shows an example of the bug description and
calculated topics in cluster C7. We can confirm words
that represent topics characterized bug descriptions. We
also investigated more than 30 patches for each cluster
in Table 1 and confirmed that the centroid topics mostly
represent the patches of each cluster.

4.2 Defining Bug Criteria

As a demonstration, we learn bug patterns from cluster
C3 by focusing on patches containing the topic “(free,
descriptor)”, which appears in 331 patches in this clus-
ter. We identified 160 device driver bugs in the 331
patches. Most bug patterns are identified as mistakes



Table 3: Bug patterns in cluster C3.

ID Bug description No.
Bl free_irq() with inconsistent dev_id 41
B2 missing free_irq() (initialization error) 25
B3 | free_irq() with an invalid irq number 25
B4 missing free_irq() (module unload) 13
B5 | double free_irq() 9
B6 releasing other src before free_irq() 7
B7 | releasing pages with interrupt disabled 7
B8 | missing free_irq() before device suspend 6
B9 | freeing shraed irq with interrupt disabled 5
B10 | other 22
B11 | notbug 171

on the release of interrupt handlers in device drivers. In
our observation, request_irq(), request_threaded_irq() and
free_irq() are frequently used APIs. In order to classify
reports, we refer to the words representing the topics of
each report. For example, we classified a report as “irq
leak on an error path during a device probing” (a sub-
class of B2 in Table 3) because the report was represented
by five topics of which the highly probable words are
“(memori, leak)”, “(irq)”, “(probe, driver)”, “(error)”,
and “(path)”. Note that topics do not always reflect a
bug directly, so we perform manual analyses to learn the
bugs precisely.

Request_irq() and request_threaded_irq() are used for
the registration of interrupt handler. They require various
arguments, including an interrupt request number (irq), a
flag of interrupt types, a function pointer for the interrupt
handler corresponding to the irq, and an extra variable
(dev_id). Dev_id is used when multiple drivers share the
irq. free_irq() is used for releasing a registered irq by
specifying the irq and dev_id.

Table 3 shows our observation results. We define nine
bug patterns (B1-B9). Inconsistent arguments (B1 and
B3) are the major category of bug patterns, since a bug
finding tool (Coccinelle [13]) found many of them. Miss-
ing free_irq() is the second largest category in our obser-
vation (B2, B4, B8). Like general bugs, we observed
double-frees (B5), order violations (B6 and B9), and
deadlock bugs (B7). Only B7 is a major category that
is not for interrupt handler registrations; all other cate-
gories, including B10, are for them.

4.3 Implementing Checkers

Our observation shows that the balance of request_irq()
(or request_threaded_irq()) and free_irq() should be
checked. However, pair operations are not called deter-
ministically in the case of B4 and B8. Note that other

cases, even B1, can be non-deterministic since an irq is
often freed when users attempt to stop drivers. Checking
non-deterministic resource releases is challenging.

Our solution is to specify the model that simulates the
invocation sequence of typical drivers by instrumenting
the driver code as a function and then using it as the en-
try point of symbolic executions. We assume PCI device
drivers, since they are a major source of interrupts. In our
model, drivers are invoked sequentially and no device in-
terrupts are delivered because we only need to check the
balance of the operations. Although this model poten-
tially ignores the cases in B6, B7, and B9, most of the
cases in Table 3 can be covered.

The sequence follows the life-cycle of a typical PCI
driver: a device probe, power management (e.g., suspend
and resume), and device removal. Each step of the driver
invocation is implemented simply by utilizing the corre-
sponding driver callbacks (e.g., for a device probe, we
call a registered function; struct pci_driver::probe()).

We used the Clang static analyzer for implementing
checkers and checked 593 PCI drivers in Linux 3.15. Our
checkers ultimately obtained 230 bug reports and found
at least two cases of real bugs (the others are currently
under investigation). One of the found cases belongs to
B2 in a Cardbus driver and is manifested only when pcm-
cia_register_socket() fails and the device delivers an in-
terrupt. Missing free_irq() lets the interrupt handler read
from or write to resources freed by the error handling
of pcmcia_register_socket(). Another case we found be-
longs to B4 in a network driver. The callback for reset-
ting device states before system shutdown is deleted in
order to avoid other problems. This results in a missing
free_irq().

5 Conclusion

We proposed a method for checking bug patterns that
employs LDA and top-down clustering. Preliminary
results show that organizing learning bugs is effec-
tive for detecting bugs to improve the quality of tar-
get software. Although our bug criteria contain non-
deterministic bugs, we were able to detect bugs that de-
rive from insights obtained in this work. As future work,
we will continue to find bugs through patch clustering,
defining bug criteria, and implementing checkers.
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