RECap: Run-Escape Capsule for On-demand Managed Service
Delivery in the Cloud

Shripad Nadgowda, Sahil Suneja, Canturk Isci
IBM TJ Watson Research Center, NY USA

Abstract

Application runtimes are undergoing a fundamental
transformation in the cloud, from general-purpose op-
erating systems (OSes) in virtual machines (VMs) to
lightweight, minimal OSes in microcontainers. On one
hand, such transformation is helping reduce application
footprint in the cloud to increase agility, density and to
minimize attack surface. On the other hand it makes it
challenging to implement system and application man-
agement tasks. Inspired from the on-demand Function
as a Service (FaaS) model in serverless computing, in
RECap we are designing a cloud-native solution to de-
liver systems and application management tasks through
specially-managed Capsule containers. Capsule contain-
ers are dynamically attached to the running containers for
the duration of their implemented function and are safely
removed from application context afterwards. More gen-
erally, RECap framework allows us to design disaggre-
gated on-demand managed service delivery for contain-
ers in the cloud. In this paper, we describe the motivation
and the emerging opportunity for RECap in the cloud.
We discuss its core design principles, performance, se-
curity and manageability trade-offs. We present current
design of RECap for the Kubernetes platform.

1 Introduction

The application deployment environment has been shift-
ing from traditional physical machines to virtual ma-
chines (VMs), and more recently to containers. Tech-
nology maturity is fueling the desire for a leaner, special
purpose, and more secure applications and execution en-
vironments. We see the ideals of immutability[1] and
minimization[2, 3] beginning to gain momentum.

This push towards application footprint reduction is at
odds with a necessary dependency on application moni-
toring and management utilities. General-purpose oper-
ating environments offer various such utilities, for exam-
ple ps, top, gdb, strace, netcat, iostat, iperf, etc. And,
if not present, these utilities are easily accessible from
standard package repositories to install and add to the ap-
plication’s runtime. Different IaaS cloud providers even
offer VM image templates[4][5] baked with all common
tools for better application management. With minimiza-

tion approaches removing these auxiliary components
from the container runtime, and the immutability ideal
prohibiting their installation, application management
has become highly challenging in the cloud.

In this paper, we propose a novel approach to address
this growing challenge in the cloud. We present our dis-
aggregated managed service delivery platform for con-
tainer clouds, RECap. RECap is inspired from the fun-
damentals behind serverless computing [6, 7, 8] to de-
liver functionality on demand. We provide application
monitoring and management tasks for lean, immutable
container runtimes, without baking them into the con-
tainer image. In RECap, we orchestrate the delivery of
management functionality, on-demand to an application
container, through a special-purpose, dynamically-linked
sidecar container called Capsule. The Capsule is at-
tached to the container only for the duration of Running
the add-on functionality, after which it is detached or
Escapes the application container.

We envision RECap as a value-added offering of a
cloud platform, similar to the likes of load balancing,
auto scaling, and migration [9]. In this context, and de-
signed to operate on one of the most popular container
cloud platforms, Kubernetes, RECap enables an on-
demand managed service delivery for container clouds,
where the micro-services stay lean and immutable, while
the cloud platform takes on the responsibility of provid-
ing auxiliary services.

2 Motivation

With technology maturity, containers are being adopted
as a lightweight virtualization alternative to VMs, with
applications being on-boarded on PaaS container clouds,
such as Amazon Container service[10], Google Con-
tainer Engine[11] and IBM Container Service[12]. With
increasing popularity, as is common with most new tech-
nologies, the container runtime is also undergoing trans-
formation for betterment, as shown in Figure 1.
Following the principles of the microservice architec-
ture, the first wave saw large monolithic applications
being separated into multiple independent microservice
containers. But, container images were still based on
general-purpose operating runtimes like Ubuntu, Debain,

| Container runtime, image size, TCB

Deps -> Dependent
Packages/Libraries

gm

gm

General-purpose
runtime (e.g. ubuntu)

General-purpose
runtime (e.g. ubuntu)

(b) Container w/ general-
purpose runtime

gm
-Apps -“Tools Svc

Lightweight runtime
(e.g. alpine)

(c) Container w/ lightweight

(d) Microcontainers
runtime

Barrier for on-demand system management function ‘

Figure 1: Application runtime evolution

CentOS, RHEL, etc. Thus, the runtime had most system
management tools (and other unused software) available,
or a package repository to pull those from. Basing con-
tainer images off of general purpose OSes, however, cre-
ated more challenges, not just for managing and secur-
ing containers, but also for the host platform[13]. The
traditional concerns of package conflicts and vulnerabil-
ity exposure with a large software footprint stayed the
same, due to existence of several auxiliary packages bor-
rowed from a general purpose OS. In addition, the then-
fragile container boundary and its proximity to the host
OS, meant that the large container footprint made the
shared-host itself vulnerable to a breach from any of its
guest containers.

The next wave saw application footprint reduction,
with container images being based upon lightweight run-
times, like Alpine Linux[14]. This certainly helped re-
duce the size of images, e.g. a nodejs container image
size reduction from 431MB to 66MB on the lightweight
Alpine base runtime. However, the runtime still con-
tained the secondary system management tools and their
dependent packages, and thus the package vulnerability
exposure still remained.

Recently, new techniques [3][15][16][17][18]
emerged that perform static and dynamic analysis of
applications to identify all the runtime resources (e.g.
binaries, libraries, configuration files etc.) necessary for
only the primary application to run. These techniques
then create a minimum runtime image containing only
those resources. For certain applications (e.g., new
golang apps) only a single statically linked executable
is created and stored inside an image. Such minimum
runtimes are also defined as microcontainers. These
techniques help reduce application runtime footprint by
up to 95%[16]. The reduction in the package footprint,
more importantly, reduces the TCB (Trusted Computing
Base) to lower the vulnerability exposure.

To substantiate our claims regarding application run-
time minimization trend, we survey all 136 official ap-
plication images from public DockerHub[19] repository.
Most of these applications had multiple runtimes iden-

of images

Application runtimes
Figure 2: Docker Hub Image survey

tified with different tags, but in our study we consid-
ered only one image per application with default larest
tag. As shown in the Figure 2, there are still about 75%
images built from the base of general-purpose OS run-
times like debain, rhel etc. At the same time, there is
steady movement in migrating to leaner runtimes like
alpine (13%) and even microcontainers (12%) in form
of scratch containers with minimal-runtime or a single
statically built executable.

On one hand, the path from general-purpose runtimes
to microcontainers has led to leaner, and more secure ap-
plication environment. On the other hand, it has made
the management of the applications more challenging,
by removing the corresponding utilities. Furthermore,
the container immutability ideal also precludes the tradi-
tional installation method, and dictates a new image be
built from scratch, each time a container is to be changed.
This translates to creating a new container instance just
to monitor the application!

We thus believe there is a need and an opportunity
for the the cloud platform itself to deliver such capa-
bilities on-demand. The analogy here is akin to the
common traditional OS utilities for process monitor-
ing, analysis, debugging and management, where they
can be dynamically attached or applied to running pro-

cesses. Inspired from another emerging cloud pro-
gramming model, serverless computing or Function-as-
a-Service, in RECap we have designed a disaggregated
managed service delivery framework for cloud, to pro-
vide common add-on functionalities for running contain-
ers, on demand.

3 Use Cases

The RECap framework is suitable for delivery of most
common software functions inside containerized appli-
cations, such as:

System and Application Administration: Common
system administrative tasks like malware scans, clock
time corrections with ntpupdate, log rotations, etc., are
performed periodically, and typically implemented as
cron jobs on general-purpose runtimes. Similarly, ap-
plications themselves have various management tasks,
for example, data storage applications performing peri-
odic consistency checks with MD5, archival with zar,
etc. Such administrative and management tasks can be
easily de-coupled from the primary application runtime,
and provided as on-demand functions by the cloud plat-
form through RECap.

Debugging: At times, there is need to provide ad-hoc
debugging capabilities into the application runtimes like
gdb, strace, tcpdump, iperf, etc. On general-purpose
platforms these capabilities are added by installing their
packages from standard repositories. While on a con-
tainer cloud platform, following standard DevOps prac-
tices, respective images of microservices need to be re-
built with new capabilities, and re-deployed to make
them available to use. On the other hand, using RECap
such capabilities can be bundled into capsules, and deliv-
ered on-demand to the running application containers.

Monitoring: Tracking of system-level resource utiliza-
tion metrics (CPU, memory, etc.), as well as application-
level metrics (number of connections, requests, workers,
etc.) for microservice containers, can also be provided as
on-demand functionality over RECap.

Here, we have highlighted only the first few use cases
of RECap. As our design matures we are adding new
managed services for use cases including auditing, trac-
ing, security and compliance among others.

4 System Design

We are designing RECap for Kubernetes which is one of
the most most popular container cloud platforms. Fig-
ure 3 shows the overall architecture of RECap. We de-
scribe its key components below.

4.1 Capsule image creation

For every managed service RECap provides, first an im-
age needs to be created encapsulating the operating run-
time for that service. This image essentially contains the
service executable, associated binaries, libraries and nec-
essary configuration objects. Users can leverage all of
the existing tools and practices (e.g., Dockerfile) for cre-
ating a Capsule image, with the only requirement being
compliance with the standard OCI (Open Container Ini-
tiative) format. This is an important distinction compared
to the functions provided by the existing serverless plat-
form. In serverless platforms, the users can only provide
function scripts (python, javascript, etc,) that are com-
monly statically bound to a trigger. In RECap , the scope
of provided managed services are expanded to include
dynamically-linked executables, which can bind to have
actual live context of a running application. Therefore
we require the Capsule image to contain the complete
runtime for the provided service. We expect the Cap-
sule ecosystem to evolve around the RECap platform,
akin to the virtual appliance marketplaces that emerged
around VM services. As the platform gains adoption, we
expect common, ready-to-use service images to emerge
over open registries or from cloud provider catalogues.

4.2 RECap deployment

Kubernetes supports different deployment resource kinds
for microservices including Statefulset, Daemonset,
Cronjobs etc. [20]. These deployment kinds define how
microservices are deployed on the cloud substrate and
managed throughout their lifecycle. We are are adding
a new deployment kind to kubernetes, to facilitate de-
ployment of the Capsule functions characterized by their
following unique requirements:

1) Ensuring affinity: The Capsule container is to be
deployed on the same node as the applicable microser-
vice(s). Such affinity is facilitated through kubernetes
labels. In the deployment manifest, matching labels are
defined to establish association between the Capsule con-
tainer and the microservice containers.

2) Shared namespace: To operate within the target
guest’s context, the Capsule container needs to share nec-
essary Linux namespaces with the running microservice
container. For this, we utilize kubernetes pods— the basic
deployable units in kubernetes within which all contain-
ers share all namespaces. For RECap, we need to dy-
namically attach (Run) and detach (Escape) namespaces
between the Capsule and the microservice container.

3) Scheduler: We currently define three scheduling or
exec policies for a Capsule — (a) Periodic: these are sim-
ilar to the kubernetes cronjobs except they are executed
in-context of the respective microservices as opposed to

apiVersion: extensions/v1beta1

, ! Capsule Container

kind: Capsule Y}y T TTTT-===
———————— ~ metadata:
,' ‘, labels: :] Application
! — type: kafka Container
1 1 spec: e — A
a2 ! exePolicy: parallel :_______________,: Kubernets controller
l([):s;:le —» Control Path
Capsule Deployment Manifest
[Kubernetes Control Plane (Cloud Platform)]

App App

type: kafka type: redis

E kubelet

App App

type: kafka type: nginx

Figure 3: RunEscape Capsule Architecture

the global cluster context, (b) Parallel: these functions
are executed simultaneously for all applicable microser-
vices, e.g. running iperf client and server Capsule be-
tween two microservices, and (c) Iterative: these func-
tions are applied to all applicable microservices in-order,
e.g. logrotation done iteratively to avoid disk bottleneck.

4.3 RECap controller

A standard kubernetes cluster runs a kubelet as a pri-
mary “node agent” on every node, which ensures that
the containers are started as per the deployment speci-
fication. However, as a design principle, a kubelet en-
forces immutability for deployment specification, and
does not allow attaching a new container to an already
running one. Therefore, we deploy a separate “node
agent” on every node, specifically for managing the life-
cycle of Capsule containers, called Caplet. The Caplet
controllers are responsible for starting the Capsule con-
tainers against the running microservice containers (with
the required namespace sharing), monitoring the execu-
tion of the Capsule functions, and finally safely removing
the Capsule containers.

4.4 Application Security

In RECap, we adopt the following measures to ensure
safety of application containers from the dynamically
‘run-escape’-ing Capsules:

1) Capsule Image scan: As a secure DevOps prac-
tice for a container platform, every application image
is scanned for security vulnerabilities and compliance
violations[21][22][23], before it can be used to instan-
tiate container(s). Since, a Capsule container shares the
namespace(s) with an application container, any vulner-
ability in the Capsule will make the application equally
vulnerable. Therefore, it is important to ensure that every

Scenarios Image App Docker Capsule
Build Deploy Exec RunEscape

Function exists in | 0 0 0.083s 0

app container

Function does not | 5.24s 0.29s 0.083s 0

exist in app con-

tainer

Capsule image is | O 0 0 0.243s

present

Capsule image is | 6.2s 0 0 0.243s

not present

Table 1: Evaluation of function delivery on RECap framework

Capsule image is subjected to the same scanning and val-
idation practices as the applications themselves. In RE-
Cap, we enforce the standard OCI format for the Capsule
images, therefore these images can be easily integrated
with the existing DevOps processes.

2) Sandboxing Capsule container: It is important to
secure the application against potentially malicious Cap-
sules. In RECap, we leverage various container sandbox-
ing techniques, to control the access and actions a Cap-
sule can perform inside an application container. These
include sharing only the required namespaces, and con-
trolling system call interface through seccomp and sys-
tem functions through Linux capabilities.

3) Safe sharing: One of the important features of RECap
is the ability to share a single Capsule across multiple ap-
plications. Therefore, it is imperative to ensure that there
is no information leak across multiple runs of the Cap-
sule. Currently, we enforce this for persistent state only
by using a Copy-on-Write (CoW) layer in the Capsule
at the start of every run, and removing this layer while
escaping the application container.

5 Evaluation

To validate RECap’s correctness, we verified the out-
put of various utilities, ranging from process listing to

vulnerability scanning, to match when run inside the
Capsule and the application container.

Next, to evaluate the efficiency of the RECap frame-
work, we consider a debugging use case wherein
tcpdump function needs to be implemented inside a run-
ning nginx application container. Further, we define a
new metric called function latency or fiaency as total
turn-around time for implementing any add-on system
management function inside a running microservice on
cloud. For evaluation we consider four possible scenar-
ios as shown in Table 1.

First row of Table 1 represents the baseline scenario:
the application container is built from a general-purpose
runtime and the required service is available inside the
container image. In this case, the service is simply trig-
gered by the container from its context. This is per-
formed via the standard docker exec command in our
evaluation and takes only 83ms to complete.

As discussed in Section 2, for minimum-runtimes or
microcontainers, these add-on functions are not avail-
able by default. Therefore, following DevOps principles,
a new application image needs to built and redeployed
with required new function, which then can be triggered
by user with fjueney of 5.6s (row 2). For different mi-
croservices their respective images need to be build in-
dependently, as a result each incurs the same fiency-

On RECap platform, Capsule images are expected to
be available for most common functions. During execu-
tion a Capsule container is created and attached to the
running microservice with fjency of 243ms (row 3).

Although rare, but if not present, the Capsule image
for tcpdump function has to be built with an additional
build latency of 6.2s (row 4). Capsule images incur
higher build latency because they are built from a small
generic base image. So less of the dependencies exist
within and need to be added as part of the build. Un-
like the DevOps flow of row 2, a single Capsule image
need to built only once and thereafter is shared between
several microservices containers.

Overall, we observe that RECap can be used very effi-
ciently for delivering add-on functionailty.

6 Related Work
The continuing maturity and adoption of containers in
the cloud environment, provides unique opportunities for
more efficient service delivery. In our previous work[9],
we had argued making container applications and the
cloud platform aware of each other for optimizing cloud
management tasks such as migration and autoscaling.
With RECap, we add to the cloud platform’s arsenal of
managed services.

Sidecars[24] is one such unique attribute of a container
ecosystem, which enables augmenting containerized ap-
plications with auxiliary capabilities such as intelligent

routing and load balancing[25], service discovery, reg-
istration and communication[26, 27], etc. In RECap,
we use sidecars to deliver application management func-
tionality, with one difference being the sidecar lifetime.
While a regular sidecar is created and deleted with the
primary application container, a Capsule is created on-
demand, and attached to the application container only
for the duration of executing its software function. Ad-
ditionally, with regular sidecars, while a separate sidecar
container is typically created for each application con-
tainer, the Capsule for a given function can be shared
between all the applicable containers (say, belonging to
the same tenant). A separate Capsule is created only for
a new software function.

Another unique proposition with containers in cloud is
the serverless platform or Function-as-a-Service, which
allows spawning functions in response to events[6, 7, 8].
This on-demand functionality aspect inspires our RECap
solution to deliver management software to application
(micro)containers (Section 2). WatchIT[28] also uses on-
demand container instantiation, but they do so to control
an IT admin’s view of the host, by restricting the admin’s
actions inside a ‘perforated’ container. Motivated by the
serverless delivery approach, Ali et al.[29] also propose
using containers to implement new functionality on the
host, instead of installing new packages directly. In RE-
Cap, we are enabling a more generic cloud-native frame-
work for managed service delivery for microservices.

Finally, while host-level [30], container-tailored[31],
or introspection-based[32][33] solutions are capable of
providing some system-level tasks from outside the con-
tainer context, such as resource and metrics monitoring,
RECap covers a broader functionality spectrum, includ-
ing even application-level management tasks. Addition-
ally, RECap is designed to be more easily consumable in
a container cloud setting, offering service delivery as a
run-escape sidecar in a kubernetes environment.

7 Conclusion

We highlighted the need and opportunity for on-demand
delivery of managed services, in the context of modern
container clouds, driven by the impetus of immutabil-
ity and runtime minimization philosophy. Towards this
vision, we presented our serverless-computing-inspired
RECap framework, to enable on-demand managed ser-
vice delivery, via our Run-Escape Capsule sidecars as the
delivery vehicle. We also discuss the design and opera-
tional model for integrating RECap into one of the most
popular cloud substrate, i.e. Kubernetes and duly stated
the security, manageability and performance trade-offs.
In addition to monitoring, debugging, and system admin-
istration, we aim to add new managed services as our de-
sign matures, for use cases including auditing, security
and compliance, amongst others.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Major Hayden and Richard Carbone. Securing
linux containers. GIAC (GCUX) Gold Certifica-
tion, Creative Commons Attribution-ShareAlike 4.0
International License, 19, 2015.

Travis Reeder. = Microcontainers-tiny, portable
docker containers, 2017.

Docker-slim. https://github.com/docker-
slim/docker-slim.

Amazon Elastic Compute Cloud. Amazon web ser-
vices. Retrieved November, 9:2011, 2011.

Daniel Aguado, Thomas Andersen, Aram
Avetisyan, Jeff Budnik, Mihai Criveti, Adrian
Doroiman, Andrew Hoppe, Gerardo Menegaz,
Alejandro Morales, Adrian Moti, et al. A practical
approach to cloud laaS with IBM SoftLayer:
Presentations guide. IBM Redbooks, 2016.

Amazon, Inc. https://aws.amazon.com/
lambda/.

IBM, Inc. https://console.bluemix.net/
openwhisk/.

Google, Inc. https://cloud.google.com/
functions/.

Shripad Nadgowda, Sahil Suneja, and Canturk Isci.
Paracloud: bringing application insight into cloud
operations. In 9th USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud 17). USENIX
Association, 2017.

Amazon EC2 Container Service. https://aws.
amazon.com/ecs/.

Container Engine. https://cloud.google.
com/container-engine/.

IBM Bluemix. https://console.ng.bluemix.
net/.

Byungchul Tak, Canturk Isci, Sastry Duri, Nilton
Bila, Shripad Nadgowda, and James Doran. Under-
standing security implications of using containers
in the cloud. In USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 313-319. USENIX
Association, 2017.

Alpine Linux: Small. Simple, Secure. https://
www.alpinelinux.org/about/.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]
(26]

(27]

Katharina Gschwind, Constantin Adam, Sastry
Duri, Shripad Nadgowda, and Maja Vukovic. Opti-
mizing service delivery with minimal runtimes. In
Proceedings of the 15th International Conference
on Service-Oriented Computing, 2017.

Vaibhav Rastogi, Chaitra Niddodi, Sibin Mohan,
and Somesh Jha. New directions for container de-
bloating. In Proceedings of the 2017 Workshop on
Forming an Ecosystem Around Software Transfor-
mation, pages 51-56. ACM, 2017.

Vaibhav Rastogi, Drew Davidson, Lorenzo
De Carli, Somesh Jha, and Patrick McDaniel.
Cimplifier: automatically debloating containers.
In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages
476-486. ACM, 2017.

Microcontainers Tiny, Portable Docker Containers.
https://blog.iron.io/microcontainers-
tiny-portable-containers/.

Docker. Official Docker Repository. https://
hub.docker.com/explore/.

Kubernetes. Daemonset. https://
kubernetes.io/docs/concepts/workloads/
controllers/daemonset/.

IBM. Managing container and image security
with vulnerability advisor. https://console.
bluemix.net/docs/containers/va/, 2015.

Amazon, Inc. Amazon Inspector: Automated secu-
rity assessment service to help improve the security
and compliance of applications deployed on AWS.
https://aws.amazon.com/inspector/.

Docker. Scan images for vulnerabilities. https:
//docs.docker.com/datacenter/dtr/2.4/
guides/user/manage-images/scan-images-
for-vulnerabilities/.

Brendan Burns and David Oppenheimer. Design
patterns for container-based distributed systems. In
HotCloud, 2016.

Istio. https://istio.io.

AirBnb. SmartStack: Service Discovery in
the Cloud. https://medium.com/airbnb-
engineering/smartstack-service-
discovery-in-the-cloud-4b8a080de619.

Netflix. Prana. https://github.com/Netflix/
Prana/wiki.

(28]

[29]

[30]

[31]
[32]

[33]

Noam Shalev, Idit Keidar, Yaron Weinsberg, Yosef
Moatti, and Elad Ben-Yehuda. Watchit: Who
watches your it guy? In Proceedings of the 26th
Symposium on Operating Systems Principles, pages
515-530. ACM, 2017.

Ali Kanso and Alaa Youssef. Serverless: beyond
the cloud. In Proceedings of the 2nd International
Workshop on Serverless Computing, pages 6—10.
ACM, 2017.

Sysdig. Cloud FunctionsDocker Monitoring, Ku-
bernetes Monitoring and more. https://sysdig.
com/opensource/.

Twistlock. https://www.twistlock.com/.

Cloudviz. Agentless system crawler.
https://github.com/cloudviz/agentless-
system-crawler.

Ricardo Koller, Canturk Isci, Sahil Suneja, and
Eyal De Lara. Unified monitoring and analytics in
the cloud. In HotCloud, 2015.

