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Abstract

Bring Your Own Device, or BYOD, has become the new

norm for many enterprise networks; but it also raises se-

curity concerns. We present our vision of programmable

in-network security, and sketch an initial system design,

Poise. Poise has a high-level policy language that can

express a wide range of existing and new security poli-

cies. These policies can then be compiled to device con-

figurations to collect device/apps information, as well as

switch programs in P4 that enforce security inside the

network. Our initial results seem promising—Poise runs

with reasonable overhead, and it successfully detects pol-

icy violations for seven useful BYOD policies.

1 Introduction

BYOD, or Bring Your Own Device, refers to the policy

that allows enterprise employees to use privately owned

tablets, phones, and laptops at work [21]. It has become

the new norm in many companies [5, 10–12, 16, 20]: it is

estimated that the BYOD market will exceed $73 billion

by 2021 [12]. The rise of BYOD is not only because

it reduces device ownership cost of the companies, but

also because it proves to boost productivity and improve

employee satisfaction—in part because they can directly

work with devices they are already familiar with [1, 3].

Despite its popularity, BYOD devices raise security

concerns, because they are less well-managed than their

enterprise-owned counterparts [4,6,27,53], and they may

be used to access both sensitive services inside the en-

terprise and untrustworthy services in the wild [3, 15].

In fact, BYOD security represents a concrete instance

of a more fundamental challenge, sometimes known as

“the end node problem” [8, 9]. The “end nodes” are not

subject to the same central control and management as

the core infrastructure, such as the network and servers.

For instance, the enterprise infrastructure can be updated

relatively easily to patch a security problem, but ensur-

ing that all BYOD devices are properly patched is much

more challenging. As such, insecure end devices tend to

become the weakest link in the security chain [18].

Therefore, it is important to establish and enforce

security policies for BYOD devices [32]. Although
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some BYOD policies, such as blacklisting certain ser-

vices [37], can be supported by conventional enterprise

security solutions, plenty of them go beyond what off-

the-shelf solutions can offer. For instance, a policy may

deny access from a client if its TLS library is not the

most recent version [51], it may allow access to a sen-

sitive service only if the client is physically located in

the server room [45], or it may grant access to a client

only if another admin device is online [31, 44]. These

policies refer to device-specific context, such as sensor

readings, library versions, and active apps, which are not

directly visible from a request’s packet header. Such con-

text awareness also makes the policies rather diverse—

enterprises may require drastically different policies de-

pending on their device types and services, and even the

same enterprise may need to update its policies dynami-

cally in response to new security problems.

Existing work has developed security solutions at the

server side [46, 50] and at the client side [32, 46, 48, 50,

51]. Security enforcement at the server side is easier to

manage and update, as the enterprise has central control

over the servers; this also places a minimum amount of

trust on the clients, as sensitive policies are maintained

at the server side and their enforcement does not assume

client cooperation. However, much of the device-specific

context essential to BYOD security is only available at

the client side. Client-side solutions, on the other hand,

can readily access such information, but delegating pol-

icy enforcement to the clients requires a strong trust in

the BYOD devices; such solutions also cannot easily

support network-wide policies—such as granting access

to a device only if another admin device is online—as

clients only have device-local information. Ideally, we

desire a solution that achieves the “best of both worlds”:

a similar security guarantee as server-side systems, and a

similar context awareness as client-side systems.

In this paper, we explore this point in the design

space and propose programmable in-network security,

or Poise. Poise does not modify server-side software;

it only requires clients to send occasional context in-

formation, and it moves the entire policy enforcement

logic inside the network. Poise still relies on the end

devices to collect their context information, but the poli-

cies are kept private to the clients and enforced inside

the well-protected enterprise infrastructure, which sig-

nificantly lowers the amount of trust granted to the end



devices compared to existing work [32, 48]. This archi-

tecture also preserves the ease of policy maintenance and

update found in server-side solutions.

Although a number of in-network solutions already

exist, they only support fixed functions that are difficult

to programmatically control or update. For instance, one

could install access control list (ACL) rules on switches

for traffic filtering [19], but ACL rules can only match on

a limited set of header fields. One could also deploy cus-

tom hardware appliances for traffic scrubbing [17, 40],

but hardware middleboxes are specialized to perform

specific tasks and cannot easily support evolving poli-

cies. One could in principle virtualize the middleboxes

as VMs that run on the end servers for more programma-

bility [51], but software-based middleboxes often cannot

match the performance of their hardware counterparts.

Our key insight is to leverage recent advances in pro-

grammable data planes [26] to achieve both programma-

bility and performance. This emerging switch architec-

ture allows a customized definition of packet headers,

which can be used to store and parse user-defined con-

texts, and a richer set of operations over header fields,

which can be used to make policy decisions at linespeed.

Poise installs a lightweight module on BYOD devices to

collect device context, and embeds it in customized head-

ers recognizable by programmable switches. The switch

programs are generated by the Poise compiler, which an-

alyzes the BYOD policies and maps them into P4 pro-

grams [14] that run on the data plane.

In the rest of this paper, we sketch an initial system

design of Poise, propose a policy language that captures

a wide range of existing and new BYOD policies, and

present our preliminary experience with Poise.

2 Programmable In-Network Security

Security policies can be enforced at the server side [46,

50], at the client side [32, 48], or inside the network [17,

40]. Server-side and client-solutions typically offer more

programmability than in-network solutions, as servers

and end devices are equipped with general-purpose pro-

cessors and can implement a wide range of policies,

whereas the network only provides fixed functions spe-

cialized for packet processing. For instance, PBS [32]

installs a software switch inside BYOD clients, which

can dynamically accept policy configurations from the

controller and enforce them on the clients. However,

client-side solutions suffer from three limitations: a) they

do not support network-wide policies, as each device

only has a local view; b) policy information is com-

pletely revealed to the clients; and c) policy enforce-

ment on the clients introduce extra processing overhead

to resource-constraint mobile devices. Server-side solu-

tions are free from these limitations, but they cannot eas-

ily obtain device-specific context information, which is a

critical part of security policies [32, 33].
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Figure 1: Poise compiles a high-level policy into a)

switch programs, and b) device configurations, and en-

forces the policy inside the network.

In proposing to move the security enforcement inside

the network, Poise must address the lack of programma-

bility in traditional networks. In order to support dy-

namic, evolving policies that depend on application-layer

and/or device-specific context, the network needs to be

able to a) recognize context information associated with

a packet, and b) perform customized processing depend-

ing on the context. Unfortunately, neither is feasible in a

traditional network with fixed-function switches.

Recent advances in programmable data planes, how-

ever, are quickly changing the landscape. Emerging

switch ASICs, such as Barefoot Tofino [2] and Cavium

XPliant [7], are designed with a reconfigurable match-

action architecture [26]. Switch programs written in

P4 [25] or PoF [43] can be compiled to run on these

switches, parse customized packet formats, and perform

a richer set of operations over header fields at line speed.

Poise leverages programmable switches to enforce

context-aware BYOD policies in the network. Con-

cretely, enterprise administrators can write security poli-

cies in a high-level language. The Poise compiler will

automatically generate BYOD configurations to collect

device-level contexts, as well as switch programs in P4

that make policy decisions using the contexts carried

in packets. This incurs minimum overhead, as BYOD

clients only occasionally send out context packets, and

all packet processing happens in the network at hardware

speeds. Figure 1 shows the architecture of Poise, which

we will describe in more detail in the following sections.

Threat model: Poise assumes that BYOD devices can

be compromised, e.g., by malicious apps, but that a) the

enterprise network is trustworthy, and b) the OS kernel

in the device and the BYOD module that collects device

contexts in the kernel are intact. a) is reasonable be-

cause the enterprise infrastructure tends to be more well-

protected than the BYOD clients. b) still requires some

trust on the devices, but it is already much weaker than

existing work [32] that enforces security on-device.



3 The Poise Policy Language

Poise supports a wide range of existing and new security

policies for BYOD. Similar with other SDN languages

such as NetKAT [24] and Pyretic [36], a Poise policy

represents a function that maps an incoming packet to

zero (i.e., drop), one (i.e., unicast), or more (i.e., mul-

ticast) outgoing packets. A policy could be as simple as

drop, which drops all packets, although more practically,

the policy would make a decision based on the context

a packet carries, such as match(dip==66.220.144.0)

>> drop, which blacklists certain destination addresses,

or match((time>=0800)&(time<=1800)) >> drop,

which blocks access depending on the time of day.

More generally, the Poise policies are written in a new

language that we have designed based on Pyretic Net-

Core [36]. Policies consist of a series of match-action

statements, such as the ones discussed above. Addi-

tionally, some policies may involve a monitor expres-

sion, which collects traffic statistics that will be used for

making decisions. A monitor expression is written as

count(pred), which counts the number of packets that

satisfy the predicate pred in the current time window; for

instance, count(match(is admin)) counts the num-

ber of packets generated from a device with an admin-

istrative role. The counters are periodically reset to zero

when a new time window begins. These monitors en-

able programmers to write network-wide policies, where

the processing of a packet depends on not only its own

context, but also the context of other traffic.

Poise policies could also contain pre-defined con-

stant lists, which are typically used to encode mem-

bership relations. For instance, one could define a list

of devices with administrative roles as def adminlst

= ["dev1", "dev2"]. Then, the decision subpol-

icy could refer to the lists as part of the decision-

making process, such as match(!dev in adminlist)

>> fwd(mbox), which forwards traffic from non-admin

devices to a middlebox for traffic scrubbing.

Poise policies can be composed sequentially or in

parallel, similar to NetCore. A sequential composition

P1>>P2 pipes a packet through both policies in order.

Parallel compositions, written as P1|P2, apply both poli-

cies to the same packet at the same time. Figure 2 sum-

marizes the syntax of our policy language, and the high-

lighted portions show the differences from NetCore.

3.1 Policies by example

Next, we describe seven practical BYOD policies, where

the first two are adapted from existing work [32] and the

rest are new policies supported by Poise. Variables dev,

time, lat, lon, and usr are customized header fields.

P1: Block certain services in work hours [32]: A com-

Primitive Actions

A ::= drop | fwd(port) | flood
Expressions

E ::= v | e1+ e2 | e1− e2| e1 ∗ e2 | M

Constant Lists

L ::= def l= [v]
Predicates

P ::= match(e1 ◦ e2) | match(h◦ e) |

match(h in l) | P&P | (P|P) | !P

Monitors

M ::= count(P)
Policies

C ::= A | (C|C) | C>> C

if P then C else C

Figure 2: The language syntax for Poise policies.

mon BYOD policy is to block access from certain de-

vices to entertainment websites during work hours:

def businesslst = ["dev1", "dev2"]

match(dip ==66.220.144.0) >>

match(dev in businesslst) >>

match ((time >=0800)&( time <=1800)) >> drop

P2: Direct traffic from guest devices through a mid-

dlebox [32]: Another useful policy is to distinguish traf-

fic from authorized devices and guest devices, and direct

guest traffic through a middlebox for traffic scrubbing:

def authlst = ["dev1", "dev2"]

if match(dev in authlst)

then fwd(server)

else fwd(mbox)

New policies: There are also useful policies in Poise

that cannot be easily supported in traditional networks;

they are implementable in Poise due to the use of pro-

grammable data planes, which can perform simple arith-

metic operations and maintain switch-local states.

P3: Distance-based access control: This policy grants

access to a service only if the user is within a certain

distance from a physical location (e.g., the server room);

this requires performing arithmetic operations over GPS

coordinates embedded in the packet header:

if ((lat -x)*(lat -x)+(lon -y)*(lon -y) < D)

then fwd(server)

else drop

P4: Allow access only if admin is online: Poise

can support network-wide policies by monitoring certain

events and making decisions based on the result. One

such example is to grant access to a service only if the

admin device is online:
def adminlst = ["Bob", "Alice"]

c = count(match(usr in adminlst ))

match(c>0) >> fwd(server)



Advanced policies: Inspired by the literature of “con-

tinuous authentication” [23, 28, 29, 49], we propose a set

of advanced policies that leverage device contexts to de-

tect subtle but important indicators of potential attacks.

Due to space constraints, we only describe the high-level

policy, but not the programs. P5: Block requests without

explicit user interaction, which denies access to a sen-

sitive service if all apps are running in the background

and there is no user interaction with the touchscreen, be-

cause such requests are likely generated by malware. P6:

Scrub traffic if UIs are overlapping, which forwards traf-

fic through a middlebox if the context information shows

that app UIs are overlapping — a potential sign for at-

tacks [30]. P7: Conduct deep packet inspection if camer-

a/recorder is on, which detects if sensitive information is

being leaked through an active camera/recorder app [22].

4 The Poise System

Next, we describe the architecture of Poise, which has

three components: a) a client module that runs on each

BYOD device to collect context information and tag

packets, b) a compiler that generates switch programs

and device configurations, and c) a runtime system.

4.1 The client module

The Poise client module is responsible for collecting de-

vice context and embedding it in the network traffic. As

shown in Figure 3, it has a userspace component and

a kernel module. The kernel module uses netfilter

hooks to intercept network packets, and tags selected

packets with three types of tags: a) app information, such

as UID, b) system information, such as screen light sta-

tus, and c) sensor readings, such as accelerometer and

gyroscope readings. This kernel module can be further

extended to protect the user-space component [41].
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Figure 3: The architecture of the client module.

The kernel module periodically crafts special “con-

text” packets with tags containing b) and c), and sends

them out to the network. Moreover, when an app opens a

new socket, or an existing socket sends out packets after

being dormant for a while, the module generates a con-

text packet tagged with a), b) and c). The kernel module

obtains a) by getting UID from the sk buff structure of

each packet in the socket’s send buffer and looking up its

owning app; the current implementation obtains b) and

c) from the userspace component through a registered

virtual device, although our final prototype will directly

obtain this from the Hardware Abstraction Layer (HAL).

The userspace component runs as a system service.

It starts upon boot, and periodically collects system in-

formation from the /proc and /sys virtual filesystems

and sensor readings from various sensor modules. For

instance, it gets the screen brightness information from

the virtual file /sys/class/leds/lcd-blacklight/b

rightness, and it obtains the sensor readings from the

HAL module sensor.msm8794.so on Nexus 5, which is

loaded by invoking the native interface hw get module()

of libhardware.so. This component only collects infor-

mation relevant to the desired policy, based on the device

configuration generated by the compiler.

4.2 Compiler

Our compiler takes in a policy program, and gener-

ates two types of outputs: a) a configuration file for

the BYOD devices, which describes the information the

client module should collect and embed in the packets,

and b) switch programs written in P4, which is to be

deployed on the programmable switches to enforce the

policy in-network. At the time of writing, our compiler

prototype is still unfinished, but we have designed the

compilation strategies our prototype will use.

Switch programs: If the Poise policy contains a mon-

itoring subpolicy, our compiler will instantiate a read-

write register to hold the monitored value, and generate

logic to update the register when the monitoring predi-

cate is fulfilled, and to reset the register after a predefined

period of time has elapsed. For a constant list, our com-

piler generates a match-action table, where the match

keys are the elements in the list, and the values are sim-

ply dummy values since they are unimportant. A mem-

bership test on the list can be implemented as matching a

packet’s tag with the table, and seeing whether there is a

successful match. The expressions in the Poise program

can be mapped directly to their P4 counterparts.

Device configurations: Our compiler will additionally

generate configuration files that specify which types of

information to collect from the BYOD devices, the for-

mat and sequence of tags in the context packets. The

compiler ensures that the switch programs in P4 contain

the same definition and order of tags, so that the context

packets can be parsed correctly.

4.3 Runtime

The Poise runtime is implemented in an SDN controller

that configures P4 programs on the switches, and com-

/sys/class/leds/lcd-blacklight/brightness
/sys/class/leds/lcd-blacklight/brightness
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Figure 4: Poise incurs small CPU overhead.

municates with BYOD devices to deploy context con-

figurations. The centralized controller is not a perfor-

mance bottleneck, as it is not involved in packet process-

ing; per-packet decisions are made directly on the switch

data plane, and the controller is only used for policy de-

ployment or change, which is typically infrequent.

5 Initial Results

Although a full implementation of our Poise system is

still ongoing, we have conducted an initial validation us-

ing a preliminary prototype. The client module is im-

plemented in C, the policies are hand-written in P4, and

the runtime consists of several Python scripts integrated

with the Mininet [35] environment to instantiate network

topologies with programmable switches. The P4 pro-

grams are compiled to the bmv2 model [13] and run in-

side the software switches in Mininet.

Experimental setup: Our mobile traces are collected

from a Nexus 5 device running the client module; these

traces contain requests that pass or violate the security

policies we have described in Section 3. We then injected

these traces to Mininet with one programmable switch

and six end hosts, three as clients and three as servers

in the enterprise network. Our primary metrics include

the overhead incurred by the client module, the traffic

overhead due to tagging, and, most importantly, the ef-

fectiveness of Poise in detecting security violations.

Overhead: Figure 4 shows the average CPU overhead

with different frequencies of context packets; the over-

head results were collected for the last 1/5/15 minutes,

respectively, from /proc/loadavg. As the results show,

Poise incurs less than 1% overhead consistently. In terms

of traffic overhead, at a sending rate of one context packet

per second, the additional traffic is under 11.2 kbps,

which also seems to be within a reasonable range.

Effectiveness: We have tested all seven policies P1–P7

in Section 3, and our Poise prototype successfully de-

tected all requests that violate one of the policies, and

it granted access to all other policy-compliant requests.

This is good news, because it shows that programmable

in-network security indeed seems to be a promising basis

for new BYOD security solutions.

6 Related Work

BYOD security: Security policies can be enforced at the

client side, such as in DeepDroid [48] and PBS [32], or at

the server side [46,50]; we have discussed their pros and

cons in Section 2. [52] sketches a solution for context-

aware IoT security, and proposes to use software mid-

dleboxes to enforce security. In contrast, Poise leverages

emerging programmable switches to implement security

policies at hardware speeds inside the network.

Enterprise security: There is a long body of work in

enterprise security, including PSI [51], which uses virtu-

alized middleboxes for security, Kinetic [34] which sup-

ports automatic verification of control programs, Fort-

NOX [38], which supports policy conflict detection and

resolution, and OFX [42], which uses SDNs to install

arbitrary security applications in existing physical mid-

dleboxes. These traditional enterprise security solutions

do not address challenges that arise in a BYOD context,

such as supporting context-aware security policies.

Policy languages: Many domain-specific languages

have been proposed for networking, such as in

NetKAT [24], Concurrent NetCore [39], PSI [51], Net-

tle [47], PBS [32], Pyretic [36]. Although our key idea

of programmable in-network security is not tied to any

specific language, the Poise language is closest to Net-

Core [36], an SDN language recognized for its ease of

use. Our language also extends NetCore to a) specify

application contexts, and b) capture a richer set of oper-

ations supported on P4 switches.

7 Summary and Future Work

In this paper, we have sketched our vision of pro-

grammable in-network security for BYOD devices, as

well as a system design that we call Poise. In Poise,

administrators can express a rich set of BYOD policies

in a high-level language; our compiler then generates de-

vice configurations to collect BYOD contexts, as well as

switch programs to enforce the policies on emerging pro-

grammable data planes. Our initial prototype and results

demonstrate that Poise supports a wide range of existing

and new policies with reasonable overhead. Neverthe-

less, much is left to be done: in ongoing work, we are

building a full prototype of Poise, and performing larger-

scale experiments on real-world BYOD traces.
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