
M������: Gaining Command on Geo-Distributed Graph Analytics

Anand Padmanabha Iyer?, Aurojit Panda�, Mosharaf Chowdhury†,
Aditya Akella•, Scott Shenker?, Ion Stoica?

?University of California, Berkeley �NYU †University of Michigan •University of Wisconsin

Abstract
A number of existing and emerging application scenarios
generate graph-structured data in a geo-distributed fashion.
Although there is a lot of interest in distributed graph
processing systems, none of them support geo-distributed
graph processing. Geo-distributed analytics, on the other
hand, has not focused on iterative workloads such as
distributed graph processing.

In this paper, we look at the problem of e�cient geo-
distributed graph analytics. We find that optimizing the
iterative processing style of graph-parallel systems is the
key to achieving this goal rather than extending existing
geo-distributed techniques to graph processing. Based
on this, we discuss our proposal on building M������,
the first system to our knowledge that focuses on geo-
distributed graph processing. Our preliminary evaluation
of M������ shows encouraging results.

1 Introduction
Graph analytics has seen an increasing interest in the
recent past, with several systems being proposed, both
in the research and the open source community [6, 7,
9, 12, 13, 15, 19, 22, 24, 27, 30, 31, 35–37, 41]. This
trend is due to the novel application scenarios that have
emerged as a result of the proliferation of smart devices
and sensors, and the ability of graph algorithms to derive
useful insights from such datasets [1, 2]. Most, if not
all, existing graph processing systems focus on analyzing
graphs that are aggregated to a central location.

Today, many applications that could benefit from graph
analysis are deployed on data centers across the globe and
generate data in a geo-distributed fashion. For example,
users of social networks are located around the globe.
Similarly, cellular networks collect data at base stations
that are geo-distributed across various locations [18]. This
is also true for emerging applications. Internet-of-Things
(IoT) applications, such as the much anticipated driverless
vehicles, may generate data across multiple aggregation
points. In analyzing such datasets, it may not always
be feasible to aggregate the data to a central location
due to many reasons. First, Wide Area Network (WAN)
bandwidth is expensive and transferring large amounts
of data may incur high costs. Second, more importantly,
many of these scenarios could benefit from timely, low-

latency analytics. Finally, political reasons may prevent
data from moving to a di�erent location.

The problem of analyzing datasets spanning geograph-
ical boundaries is not new; the field of Geo-distributed
Analytics (GDA), that has gained much attention recently,
focuses on precisely the same problem [34, 39, 40]. GDA
brings WAN awareness to big data analytics, thus elim-
inating the need to move all the data to one location.
Existing GDA proposals look at di�erent aspects of this
problem, ranging from low-level task placement [34] to
higher-level query optimization [39]. However, current
works on GDA have focused on simple queries and ag-
gregates, and largely ignored iterative workloads such as
machine learning and distributed graph processing, two
important and emerging workloads in many applications.

Performing graph analytics in a geo-distributed fashion
di�ers from traditional GDA in many ways. Due to
the iterative nature of graph algorithms and the complex
dependency in tasks that perform these iterations, simple
task placement techniques do not work well as there is
a need to deal with task a�nity. Further, in traditional
GDA, many datasets are amenable to clean sharding. This
is not the case in graph processing where locality plays
an important role in the performance of graph algorithms.
Because of the expensive joins that must be performed
at every iteration in a graph-parallel setting, simple join
optimizations in GDA may not be e�ective. Finally, many
graph algorithms generate large amounts of intermediate
data. Thus, geo-distributed graph analytics solutions need
to account for the iterative nature of graph processing.

In this paper, we focus on the problem of geo-distributed
graph analytics. While combining traditional GDA with
graph analytics may seem straightforward, our experience
indicates that it is far from trivial. It is tempting to see
this as a graph partitioning problem, since the goal of
graph partitioning is to improve locality and thus reduce
communication. However, due to the nature of data cre-
ation, repartitioning may not be feasible. Other similar
challenges exist which should be addressed (§2). We
observe that the key in geo-distributed graph analytics is
to optimize the iterative processing style of graph-parallel
systems. Based on this, we propose three techniques.
First, we reduce the data to be processed using sampling
strategies that leverages graph algorithms. Second, we



def Gather(u, v) = Accum
def Apply(v, Accum) = vnew

def Scatter(v, j) = jnew, Accum

Listing 1: The Gather-Apply-Scatter (GAS) composition intro-
duced in PowerGraph [13].

remove the ine�ciencies in current graph processing mod-
els by proposing a modification that reduces data exchange
using a simple incremental computation strategy. Finally,
we discuss how to bring WAN awareness into the picture
(§3). To evaluate our proposal, we are building M������,
a system that incorporates our proposed techniques. We
discuss our early experiences from the system in this paper
(§4). To the best of our knowledge, M������ is the first
system to focus on geo-distributed graph analytics.

2 Background & Challenges
We begin the paper with a brief overview of graph pro-
cessing systems, geo-distributed analytics and then list
the challenges in geo-distributed graph analytics.

2.1 Graph Processing Systems
Most existing general purpose graph processing systems
allow end-users to perform graph computations by ex-
posing a graph-parallel abstraction. The user provides
a vertex program which is run repeatedly on each of the
vertex (in parallel) by the system. Interaction between
vertices is implemented using either shared state (e.g.,
GraphLab [24]) or message passing (e.g., Pregel [28]). A
barrier is usually enforced between each iteration of the
vertex program. PowerGraph [13] introduced the Gather-
Apply-Scatter (GAS) model that captures the conceptual
phases of the vertex program as shown in listing 1. In the
GAS decomposition, a vertex program consists of three
phases: a gather phase that collects information about
adjacent vertices and edges and applies a function on them,
the apply phase that uses the function’s output to update
the vertex, and the scatter phase that uses the new ver-
tex value to update adjacent edges. The system executes
these phases sequentially. Many popular open-source
graph-processing frameworks [12, 13] have adopted the
GAS model. Since we are building M������ on a graph
processing framework that uses the GAS model, we focus
on it in this paper. However, our techniques are general
and can be applied to other models.

2.2 Geo-Distributed Analytics
A number of recent works have made the case for Geo-
Distributed Analytics (GDA) [34, 39, 40]. While tradi-
tional data analytics assumes that data resides in a single,
centralized datacenter, GDA forgoes that assumption. In
GDA, data is collected and stored at geographically dis-
tributed datacenters. Analytic tasks are run across these

datacenters without aggregating data to a central loca-
tion. The key challenge in GDA systems is to ensure low
response times for the analytic tasks being performed.

GDA systems solve this challenge by being Wide Area
Network (WAN) aware. Specifically, these systems con-
sider intermediate data movement to be the bottleneck and
thus optimize the placement of such data and tasks that op-
erate on them based on the bandwidth available between
datacenters. Some systems [17] go further by switching
between di�erent join strategies and task coordination.

2.3 Challenges
There are several challenges in building a geo-distributed
graph processing system.

First, GDA systems assume simple jobs and queries.
In contrast, graph processing systems execute graph al-
gorithms in an iterative manner, with multiple message
exchanges in every iteration. Extending this to a geo-
distributed setting means that every iteration would gener-
ate data exchange across WAN. While traditional GDA’s
task placement and scheduling can optimize where the
tasks are placed, they do not alleviate the problem with
the iterative model of graph processing.

Second, in GDA systems, data is susceptible to sharding.
Hence, there is fine grained control over data movement
that could be beneficial—for instance, a small amount of
data could be moved to a di�erent data center for a sig-
nificant improvement in task placement flexibility. While
graph partitioning has similar goals of improving locality
and reducing communication between partitions, cleanly
partitioning graphs is a hard problem [13]. Additionally,
as graph algorithms progress the partitioning may need to
be changed for the best performance. On top of this, since
partitioning graphs cannot be done at fine granularity, a
complete repartitioning may need to be done due to the
nature of data generation. Thus, a one-time partitioning
or data placement strategy is unlikely to be of help.

Finally, graph algorithms are complex, and their dis-
tributed implementations are demanding since they in-
volve expensive operations [12]. The immutability as-
sumption made by many graph-processing frameworks
make things worse in terms of bandwidth usage. For task
scheduling purposes, some GDA systems assume that in-
termediate data could be estimated and placed e�ciently.
This assumption breaks down in graph processing, where
the intermediate data size could be large. As an example,
running connected components on the openly available
Twitter data [3] results in shu�ing more than 50GB of
data during the initial iterations in GraphX [12], a popular
graph processing framework.

3 Our Proposal
We now describe our proposal for geo-distributed graph
analytics after discussing our assumptions.



3.1 Assumptions
Geo-Distributed Graph: We assume that the graph is
generated in a geo-distributed fashion. That is, a graph
G(V,E) exists across P partitions, distributed across D
data centers (P >= D). Each partition p 2 P consists of
v vertices and e edges. In this setting, it is obvious that
aggregating the graph to one data center is expensive.

PowerGraph [13] argued that many naturally occurring
graphs follow power-law distribution and hence make a
case for vertex-cuts rather than edge-cuts for entities span-
ning partitions. Following this, we choose vertex-cuts,
and mirror vertices which have edges spanning partitions.
We note that this is not fundamental to our approach, as
our approach could use edge-cuts also.

As discussed earlier, we do not assume that a complete
repartitioning (e.g., using a communication e�cient parti-
tiong scheme such as 2D partitioning [13]) could be done.
Thus, we restrict ourselves to the partitioning provided by
the data naturally. Leveraging partitioning flexibility is
something that we wish to pursue in the future.

Algorithms: While a large body of algorithms exist
for the analysis of graphs, we restrict our scope in this
work to algorithms that are implementable in a GAS de-
composition model. Most of the commonly used graph
algorithms can be expressed in GAS decomposition for-
mat; for instance, GraphX [12] provides implementations
for six such graph algorithms (connected components,
label propagation, page rank, SVD, shortest path, and
triangle count).

WAN vs LAN Bandwidth: We assume that the LAN
bandwidth is significantly higher than the WAN band-
width. We further assume that the WAN bandwidth be-
tween pairs of DCs can di�er significantly. This is true
in most cloud provider settings. For instance, [39] notes
that inter-DC bandwidth in major cloud providers is 1-2
orders of magnitude less than intra-DC bandwidth, and
that the pair-wise WAN bandwidth can vary by over 20⇥.

3.2 Approach
The overall architecture of the system we are currently
building, which we call M������, is depicted in Figure 1.
Based on our observation that optimizing iterative process-
ing style of graph-parallel algorithm is the key to e�cient
geo-distributed graph analytics, the main idea in our ap-
proach is to leverage the characteristics of graph-parallel
computation model and the algorithms they support to
reduce WAN usage. To achieve this, we propose three
simple, but powerful techniques: first, we reduce the
data itself using an accuracy preserving sampling process.
This results in less data to exchange. Second, we propose
a modification to the GAS model that removes the ine�-
ciencies with iterative processing. Finally, we bring WAN

DC 1

DC 3

DC 2

DC 4

Figure 1: M������ system architecture. Each data center
(DC) contains part of the graph. Communication between DCs
happen through border vertices (shaded vertex in the picture),
who exchange and synchronize state as described in §3.

awareness to this modified model. We explain them in
the rest of this section.

3.2.1 Sparsification without Accuracy Loss
In geo-distributed graph analytics, inter-DC data exchange
happens only if there are entities spanning multiple data
centers. Hence, our first goal is to reduce these spanning
entities and/or reduce the data flowing through them.

In M������, we call vertices that interface with other
datacenters border vertices. Since we use vertex-cut by
default, border vertices are mirrors. In the GAS model,
vertices gather (scatter) messages from (to) their neigh-
borhood (§2). Thus, by reducing the size of the graph, we
can reduce the amount of data transferred across data cen-
ters. Unfortunately, randomly eliminating graph entities
to reduce the graph size leads to incorrect results.

To solve this, we plan on using a simple technique.
We observe that in iterative graph-parallel model, many
graph algorithms generate and exchange redundant in-
termediate data. This is because the GAS model only
considers the immediate neighborhood in each iteration.
Leveraging this, we can design a sparsification strategy
that eliminates graph entities that will not contribute to
the final solution. To illustrate a simple case, consider the
connected components algorithm. By examining the con-
nectivity information of border vertices, we can eliminate
the need to mirror all but one vertex across DC pairs if
the vertices are connected. This reduces the amount of
data transferred across DCs. Further improvements can
be obtained if only partial results are required (e.g., only
required to compute components that contain particular
vertices, or only find top components), as such cases can
discard large parts of the graph and even eliminate the
need for border vertices.



While the sparsification technique is beneficial in our
setting, we note two shortcomings with it. First, not
all algorithms can leverage such sparsification strtegies.
Second, our sparsification strategy may result in a slightly
longer convergence time. This is because by dropping
entities, we may eliminate a shorter path. However, we
assume that the cost of WAN transfer is much higher than
this small sacrifice in convergence time.

3.2.2 Geo-distributed Graph Computation Model
Once the graph is sparsified, the next step is to run graph
algorithms on it in a geo-distributed manner. As discussed
in §2, GAS computations result in two data exchanges
(gather and scatter) in every iteration. In our setting,
this means that the border vertices potentially need to
exchange data twice per iteration. When the data to be
exchanged is large and/or when multiple iterations are
involved, these transfers can become the bottleneck.

To solve this problem, we propose a simple modifica-
tion to the GAS model. In this model, we restrict the
execution of the GAS model to each datacenter. We then
use a merging strategy to combine the results from each
datacenter. Our enhanced GAS model consists of the
following stages:

Bootstrap: When a graph algorithm is to be executed,
M������ first invokes the bootstrap stage. In the boot-
strap phase, M������ runs vanilla GAS on every data-
center independently. We consider the subgraph in each
data center to be a graph of its own, and compute the
algorithm result on this subgraph. At the end of this stage,
we end up with local solutions in each datacenter.

Global Sync: After the bootstrap GAS execution has
converged, we invoke a global synchronization stage. In
this stage, only border vertices participate. A gather-like
operation is invoked on them which enables the vertices
to collect the partial state from other mirrors. Then, an
algorithm specific function fa is used to combine these
partial states to generate an updated state for the border
vertices. After this stage, all the mirrors of each border
vertices have the same state. However, the global graph is
in an inconsistent state. This is because the partial results
in each DC may no longer be valid because of the updates
to the border vertices.

iGAS: A strawman approach to recompute the correct
partial results is to reset the local graph’s vertices (except
the border vertices) and restart the local GAS computation.
However, this is wasteful. Hence we propose a di�erent
approach. We observe that after the synchronization,
each subgraph is equivalent to an updated graph (with
just the border vertices updated). Thus, we can leverage
an incremental computation model to update the results on
the local graph. In M������, we design an incremental
version of the GAS model, which we call iGAS.

C A

E

B

F

D

12
3

Figure 2: In incremental GAS model, each iteration marks and
activates the neighborhood it influences. In this example, border
vertex A is updated. It marks and activates B in the first iteration,
B marks and activates C in the second iteration and C marks and
activates D in the third. By leveraging the characteristics of the
algorithm being executed, we avoid marking E and F although
they are in the immediate neighborhood of C and B.

The iGAS computation leverages both the GAS com-
putation model and algorithm properties. Specifically,
we exploit the fact that GAS computations consider only
the immediate neighborhood. In each iteration of the
iGAS, we mark the immediate neighborhood of vertices
that changed their state, and force computations on them.
Obviously, in the first iteration, we mark the neighbors
of the border vertices. We then repeat this marking and
re-computation step until the change in the border vertex
is propagated across the entire local graph. One problem
with this approach is that potentially all the vertices may
recompute if the graph is fully connected. To avoid this,
we leverage algorithm properties. We mark only neigh-
bors which might use the updated value. Figure 2 shows
our iGAS approach. At a high level, iGAS can be seen as
a backtracking and rectification process.

To summarize, our enhanced GAS model starts with a
normal execution of the GAS model, then switches to iter-
ations of global sync followed by iGAS until convergence.
Essentially, we are amortizing the cost of synchronization
after every iteration of the GAS step by batching multiple
GAS iterations. We note that there is one caveat to our
approach. The global synchronization step assumes that
the algorithm specific function, fa, is able to correctly
combine the partial results for each border vertices. While
we have derived fa for many common graph algorithms,
generalizing our technique to any graph algorithm is part
of our future work.

3.2.3 Bringing WAN Awareness
While M������ specifically optimizes for WAN band-
width, our techniques consider WAN bandwidths to be
equal. However, this is not true in practice. To tackle this
problem, we envision two approaches.

First, we plan to generalize our computation model
to support arbitrary interleaving of the global sync and
iGAS phases per datacenter. Thus, depending on the



�

���

���

���

���

���

������ �������
�
����
����
����
����
�����
�����
�����

��
��
��
��
�
�
��
�
��
�

�
��
�
�
��
��
��
��
��
��
����������� ����

���

���� ����������

Figure 3: Our proposal is able to complete the execution of
connected components when GraphX is unable to complete.
This is because it tries to transfer too much data across WAN.

current WAN bandwidth, a datacenter may decide whether
to participate in the global sync or not. In the second
approach, if the system is given some flexibility in terms
of data movement, then we plan to explore moving some
border vertices based on the amount of bandwidth they
might consume. Both are hard problems, and we are
actively exploring di�erent ways to solve them.

4 Preliminary Evaluation
We are currently building M������ on GraphX. We
present our early experiences in this section. We evaluate
the usefulness of the enhanced GAS model that includes
the local incremental computations and global syncs.

We chose the open source Twitter dataset [21], and use
16 machines on Amazon EC2 that simulates the same
setting as in [12]. We picked 4 machines in each region,
and then ran the connected components algorithm. The
results are depicted in fig. 3. We see that GraphX is
unable to complete the computation since it fails during
the shu�e stage, while the enhanced model we propose is
able to complete the computation in around 310 seconds.
While this is longer than the reported numbers in GraphX
(251s), we believe a lot of optimization opportunities are
left for us to explore. We also see that while GraphX tries
to transfer almost 10GB of data across WAN, M������
only transfers around 1 GB. In this experiment, we did
not use the sparsification process.

5 Discussion
Our proposal, M������, is a very preliminary attempt at
the problem of geo-distributed graph analytics. We would
like to improve several aspects of the system, and are
actively working on them. First, we are exploring general
graph sparsification and approximation techniques. In this
respect, we are studying the class of algorithms which
can be sparsified without loss in accuracy, or if that is
not possible then the impact of sparsification on accuracy.
For this, we plan on leveraging graph theory, such as [23],
which presents a theoretical analysis of input reduction to

some popular graph algorithms. Second, we are studying
the convergence properties of various graph algorithms
in our computation model. Finally, we wish to improve
the computation model. Specifically, we are working on
generalizing the model to all graph algorithms (e.g., fa
and incorporating WAN awareness. Towards this, we plan
on leveraging the recent advancements in dynamic graph
computations, including work on similar graph-parallel
abstractions [32]. This will also allow us to extend our
work to settings where the graph changes over time.

6 Related Work
A large number of graph processing systems exist in the
literature, of which [4–6, 8, 11–14, 22, 24–26, 33, 35–
38, 41–52] focus on iterative analytics on static graphs,
while [7, 9, 15, 18–20, 27, 29–32] focus on analytics on
evolving graphs. However, none of them support geo-
distributed processing and thus focus on a single datacen-
ter where the graph is aggregated. While our work focuses
on the GAS decomposition model, these techniques can
be incorporated into other models. [10] parallelizes se-
quential graph algorithms using partial evaluations and
algorithm specific incremental computations, but does not
consider geo-distributed settings.

On the other hand, many recent works have proposed
techniques for geo-distributed data analytics. Iridium [34]
uses WAN aware task placement and scheduling. [40]
looks at join algorithm selection strategies for WAN op-
timization. SWAG [17] coordinates tasks across DCs.
Finally, Clarinet [39] argues for WAN aware query opti-
mization. [16] looks at the problem of geo-distributed
machine learning using approximation techniques that
are specific to ML algorithms. None of these systems
consider iterative graph processing.

7 Conclusion
Graph processing and geo-distributed analytics are two
areas that have seen increasing interest in the recent past.
Yet, neither of them support the other. Geo-distributed
graph analytics could be beneficial for many applica-
tion scenarios that generate graph-structured data. In
this paper, we took the first step towards marrying geo-
distributed analytics with graph-parallel processing. We
listed the challenges in doing so, and proposed a solution
to address these challenges. We are actively building
M������, a system that incorporates our proposals, and
plan on open-sourcing the system.
Acknowledgments We would like to thank the review-
ers for their valuable feedback. In addition to NSF CISE
Expeditions Award CCF-1730628, this research is sup-
ported in part by DHS Award HSHQDC-16-3-00083, and
gifts from Alibaba, Amazon Web Services, Ant Financial,
CapitalOne, Ericsson, Facebook, Google, Huawei, Intel,
Microsoft, Scotiabank, Splunk and VMware.



References
[1] Enterprise DBMS, Q1 2014. https://www.forrester.

com/report/TechRadar+Enterprise+DBMS+Q1+2014/-/

E-RES106801.

[2] Graph DBMS increased their popularity by 500% within the last
2 years. http://db-engines.com/en/blog_post//43.

[3] Stanford large network dataset collection. https://snap.

stanford.edu/data/index.html.

[4] A�, Z., Z����, M., W�, Y., Q���, X., C���, K., ��� Z����, W.
Squeezing out all the value of loaded data: An out-of-core graph
processing system with reduced disk i/o. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17) (Santa Clara, CA, 2017),
USENIX Association, pp. 125–137.

[5] A�, Z., Z����, M., W�, Y., Q���, X., C���, K., ��� Z����, W.
Squeezing out all the value of loaded data: An out-of-core graph
processing system with reduced disk i/o. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17) (Santa Clara, CA, 2017),
USENIX Association, pp. 125–137.

[6] B����, A., ��� G������, J. R. The combinatorial BLAS: design,
implementation, and applications. IJHPCA 25, 4 (2011), 496–509.

[7] C��, Z., L���������, D., ��� S������, G. Facilitating real-
time graph mining. In Proceedings of the Fourth International
Workshop on Cloud Data Management (New York, NY, USA,
2012), CloudDB ’12, ACM, pp. 1–8.

[8] C���, R., S��, J., C���, Y., ��� C���, H. Powerlyra: Di�er-
entiated graph computation and partitioning on skewed graphs.
In Proceedings of the Tenth European Conference on Computer
Systems (New York, NY, USA, 2015), EuroSys ’15, ACM, pp. 1:1–
1:15.

[9] C����, R., H���, J., K�����, A., M���, Y., W���, X., W�, M.,
Y���, F., Z���, L., Z���, F., ��� C���, E. Kineograph: Taking
the pulse of a fast-changing and connected world. In Proceedings
of the 7th ACM European Conference on Computer Systems (New
York, NY, USA, 2012), EuroSys ’12, ACM, pp. 85–98.

[10] F��, W., X�, J., W�, Y., Y�, W., J����, J., Z����, Z., Z����, B.,
C��, Y., ��� T���, C. Parallelizing sequential graph computations.
In Proceedings of the 2017 ACM International Conference on
Management of Data (New York, NY, USA, 2017), SIGMOD ’17,
ACM, pp. 495–510.

[11] G��, P., Z����, M., C���, K., W�, Y., ��� Z����, W. High
performance graph processing with locality oriented design. IEEE
Transactions on Computers 66, 7 (July 2017), 1261–1267.

[12] G�������, J., X��, R., D���, A., C��������, D., ��� F�������,
S�����, I. Graphx: Graph processing in a distributed dataflow
framework. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14) (Broomfield, CO, Oct.
2014), USENIX Association.

[13] G�������, J. E., L��, Y., G�, H., B������, D., ��� G�������, C.
Powergraph: Distributed graph-parallel computation on natural
graphs. In Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation (Berkeley, CA, USA,
2012), OSDI’12, USENIX Association, pp. 17–30.

[14] G�������, S., L���, H., ��� K��������, C. Making pull-based
graph processing performant. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (New York, NY, USA, 2018), PPoPP ’18, ACM,
pp. 246–260.

[15] H��, W., M���, Y., L�, K., W�, M., Y���, F., Z���, L., P���-
�������, V., C���, W., ��� C���, E. Chronos: A graph engine
for temporal graph analysis. In Proceedings of the Ninth European
Conference on Computer Systems (New York, NY, USA, 2014),
EuroSys ’14, ACM, pp. 1:1–1:14.

[16] H����, K., H�����, A., V���������, N., K������, D., G�����,
G. R., G������, P. B., ��� M����, O. Gaia: Geo-distributed
machine learning approaching LAN speeds. In 14th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 17) (Boston, MA, 2017), USENIX Association, pp. 629–
647.

[17] H���, C.-C., G��������, L., ��� Y�, M. Scheduling jobs across
geo-distributed datacenters. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (New York, NY, USA, 2015),
SoCC ’15, ACM, pp. 111–124.

[18] I���, A., L�, L. E., ��� S�����, I. Celliq : Real-time cellular
network analytics at scale. In Proceedings of the 12th USENIX
conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2015), NSDI’15, USENIX Association.

[19] K������, U., ��� D��������, A. E�cient snapshot retrieval
over historical graph data. In Data Engineering (ICDE), 2013
IEEE 29th International Conference on (April 2013), pp. 997–
1008.

[20] K������, U., ��� D��������, A. Storing and analyzing histori-
cal graph data at scale. CoRR abs/1509.08960 (2015).

[21] K���, H., L��, C., P���, H., ��� M���, S. What is Twitter, a
social network or a news media? In WWW ’10: Proceedings of
the 19th international conference on World wide web (New York,
NY, USA, 2010), ACM, pp. 591–600.

[22] K�����, A., B�������, G., ��� G�������, C. Graphchi: Large-
scale graph computation on just a pc. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12) (Hollywood, CA, 2012), USENIX,
pp. 31–46.

[23] L�������, S., M������, B., S���, S., ��� V������������, S. Fil-
tering: A method for solving graph problems in mapreduce. In
Proceedings of the Twenty-third Annual ACM Symposium on Par-
allelism in Algorithms and Architectures (New York, NY, USA,
2011), SPAA ’11, ACM, pp. 85–94.

[24] L��, Y., G�������, J., K�����, A., B������, D., G�������, C.,
��� H����������, J. M. Graphlab: A new framework for parallel
machine learning. In UAI (2010), P. Grünwald and P. Spirtes, Eds.,
AUAI Press, pp. 340–349.

[25] M����, S., M��, C., K������, S., K���, W., K����, M., ���
K��, T. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26,
2017 (2017), pp. 527–543.

[26] M����, S., M��, C., K������, S., K���, W., K����, M., ���
K��, T. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the Twelfth European Conference on
Computer Systems (New York, NY, USA, 2017), EuroSys ’17,
ACM, pp. 527–543.

[27] M����, P., M������, V. J., M����, D. W., ��� S������, M. I.
Llama: E�cient graph analytics using large multiversioned arrays.
In 2015 IEEE 31st International Conference on Data Engineering
(April 2015), pp. 363–374.



[28] M�������, G., A������, M. H., B��, A. J., D������, J. C.,
H���, I., L�����, N., ��� C���������, G. Pregel: A system for
large-scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (New
York, NY, USA, 2010), SIGMOD ’10, ACM, pp. 135–146.

[29] M���, Y., H��, W., L�, K., W�, M., Y���, F., Z���, L., P���-
�������, V., C���, E., ��� C���, W. Immortalgraph: A system
for storage and analysis of temporal graphs. Trans. Storage 11, 3
(July 2015), 14:1–14:34.

[30] M�������� N���� T���. GraphLINQ: A graph library for
naiad. http://bigdataatsvc.wordpress.com/2014/05/08/

graphlinq-a-graph-library-for-naiad/, 2014.

[31] M�����, D. G., M�S�����, F., I�����, R., I����, M., B�����, P.,
��� A����, M. Naiad: A timely dataflow system. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2013), SOSP ’13, ACM, pp. 439–
455.

[32] P��������� I���, A., L�, L. E., D��, T., ��� S�����, I. Time-
evolving graph processing at scale. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences
and Systems (2016), ACM, p. 5.

[33] P����������, V., W�, M., W���, X., M�S�����, F., Z���,
L., ��� H��������, M. Managing large graphs on multi-cores
with graph awareness. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12) (Boston, MA,
2012), USENIX, pp. 41–52.

[34] P�, Q., A���������������, G., B����, P., K������, S.,
A�����, A., B���, P., ��� S�����, I. Low latency geo-distributed
data analytics. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (New York, NY,
USA, 2015), SIGCOMM ’15, ACM, pp. 421–434.

[35] Q�����, A., D��������, A., ��� L��, J. Nscale: Neighborhood-
centric large-scale graph analytics in the cloud. The VLDB Journal
25, 2 (Apr. 2016), 125–150.

[36] R��, A., B������������, L., M��������, J., ��� Z���������,
W. Chaos: Scale-out graph processing from secondary storage.
In Proceedings of the 25th Symposium on Operating Systems
Principles (New York, NY, USA, 2015), SOSP ’15, ACM, pp. 410–
424.

[37] R��, A., M���������, I., ��� Z���������, W. X-stream: Edge-
centric graph processing using streaming partitions. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2013), SOSP ’13, ACM, pp. 472–
488.

[38] T�������, C. H. C., F������, A. J., S�������, M., S������, G.,
Z���, M. J., ��� A��������, A. Arabesque: A system for dis-
tributed graph mining - extended version. CoRR abs/1510.04233
(2015).

[39] V����������, R., A���������������, G., ��� A�����, A.
Clarinet: Wan-aware optimization for analytics queries. In 12th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16) (GA, 2016), USENIX Association, pp. 435–450.

[40] V�������, A., C�����, C., G������, P. B., J�������, T., K�����-
���, K., P�����, J., ��� V�������, G. Wanalytics: Geo-
distributed analytics for a data intensive world. In Proceedings
of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data (New York, NY, USA, 2015), SIGMOD ’15, ACM,
pp. 1087–1092.

[41] W���, G., X��, W., D�����, A. J., ��� G�����, J. Asynchronous
large-scale graph processing made easy. In CIDR (2013).

[42] W���, G., X��, W., D�����, A. J., ��� G�����, J. Asyn-
chronous large-scale graph processing made easy. In CIDR (2013),
www.cidrdb.org.

[43] W�, M., ��� J��, R. A graph-based framework for relation propa-
gation and its application to multi-label learning. In Proceedings
of the 29th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (New York, NY,
USA, 2006), SIGIR ’06, ACM, pp. 717–718.

[44] W�, M., Y���, F., X��, J., X���, W., M���, Y., W��, L., L��,
H., D��, Y., ��� Z���, L. Gram: Scaling graph computation
to the trillions. In Proceedings of the Sixth ACM Symposium on
Cloud Computing (New York, NY, USA, 2015), SoCC ’15, ACM,
pp. 408–421.

[45] X���, W., X��, J., M���, Y., L�, Z., C���, C., W�, M., L�,
W., ��� Z���, L. Tux�: Distributed graph computation for
machine learning. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17) (Boston, MA,
2017), USENIX Association, pp. 669–682.

[46] X��, W., W���, G., B�����, D., D�����, A., ��� G�����, J.
Fast iterative graph computation with block updates. Proc. VLDB
Endow. 6, 14 (Sept. 2013), 2014–2025.

[47] Z����, M., W�, Y., C���, K., Q���, X., L�, X., ��� Z����,
W. Exploring the hidden dimension in graph processing. In 12th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16) (GA, 2016), USENIX Association, pp. 285–300.

[48] Z����, M., W�, Y., C���, K., Q���, X., L�, X., ��� Z����,
W. Exploring the hidden dimension in graph processing. In 12th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16) (Savannah, GA, 2016), USENIX Association,
pp. 285–300.

[49] Z����, M., W�, Y., Z���, Y., Q���, X., H���, C., ��� C���,
K. Wonderland: A novel abstraction-based out-of-core graph pro-
cessing system. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2018), ASPLOS
’18, ACM, pp. 608–621.

[50] Z����, M., Z���, Y., W���, C., G��, M., W�, Y., C���, K.,
K��������, C., ��� Q���, X. Graphp: Reducing communica-
tion for pim-based graph processing with e�cient data partition.
In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA) (Feb 2018), pp. 544–557.

[51] Z����, Y., K��������, V., M�����, C., A����������, S., ���
Z������, M. Making caches work for graph analytics. In 2017
IEEE International Conference on Big Data (Big Data) (Dec
2017), pp. 293–302.

[52] Z��, X., C���, W., Z����, W., ��� M�, X. Gemini: A
computation-centric distributed graph processing system. In 12th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16) (GA, 2016), USENIX Association, pp. 301–316.


