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Abstract

Large scale in-memory key-value stores like RAMCloud

can perform millions of operations per second per server

with a few microseconds of access latency. However,

these systems often only provide simple feature sets,

and the lack of extensibility is an obstacle for building

higher-level services. We evaluate the possibility of using

JavaScript for shipping computation to data and for ex-

tending database functionality by comparing against other

possible approaches. Microbenchmarks are promising;

the V8 JavaScript runtime provides near native perfor-

mance with reduced isolation costs when compared with

native code and hardware-based protections. We conclude

with initial thoughts on how this technology can be de-

ployed for fast procedures that operate on in-memory data,

that maximize gains from JIT, and that exploit the kernel-

bypass DMA capabilities of modern network cards.

1 Introduction

Research has led to in-memory key-value stores that

scale to hundreds of machines that each perform mil-

lions of operations per second with sub-5 µs access

times [9, 25]. These systems achieve high performance

with a combination of DRAM, RDMA, and simple fea-

ture sets. These systems are evolving high-level features

like recovery [10, 24], ordered indexes [15], and transac-

tions [10, 17], but they still lack general mechanisms to

support client-supplied logic.

Even with conventional key-value stores, the lack of ex-

tensibility has led to numerous ad-hoc and custom stores,

each designed to support a specific application. For exam-

ple, Facebook’s TAO extends memcached to support its

social graph data model [5]. Other systems incorporate

elements of SQL [28], multi-attribute accesses support

for Location Aware Services [23], application-specific

actions [12], value-based access methods [27], and con-

sistent multi-key access [7] on top of key-value stores.

In industry, even the popular Redis [1] key-value store,

internally supports several data structures and has added

loadable module support.

As we sought to use RAMCloud as a platform for

building other higher-level services, its lack of extensibil-

ity was a key limitation. Applications with inter-record

dependencies were latency-bound. For example, when

fetching one record and using the returned value to fetch

another, even RAMCloud’s 5 µs round trip time was too

high. Clients suffer waiting for responses from the storage

server. This is exacerbated by the fact that 5 µs is hard

for the client to hide with conventional multithreading; it

is long enough that spinning to wait for a response dra-

matically limits throughput, but it is short enough that

context switching to a another thread and back wastes

most of the gains [2]. Throughput-bound applications suf-

fered as well; RAMCloud’s simplistic (get/put) operations

prevented pushing down operations like projection, selec-

tion, and aggregation, which forced massive overheads to

transmit large results to apply client-side filtering.

There are many well-known models for shipping com-

putation to servers but unique properties of how RAM-

Cloud uses hardware and the types of applications it is

likely to host were a mismatch with existing approaches.

Looking at existing models for loading user code into

RAMCloud servers, we considered five key criteria.

(Near) Native Performance. RAMCloud is fast, since

all data is in DRAM; it uses kernel bypass network-

ing, and it continuously polls the network card (NIC).

Servers can dispatch an operation in 1.9 µs [25]. Any

slowdown would be immediately apparent to applica-

tions and would cut into RAMCloud’s primary value.

Roughly, two categories of operations capture our per-

formance concerns. The first are compute-bound opera-

tions, and the second are memory-bound operations that

traverse data structures or that filter or project records.

Low Invocation Overhead. In aggregate, a single

RAMCloud server might invoke millions of stored pro-

cedures per second. If invoking a procedure added a few

cache misses (about 100 ns each) to the 1.9 µs dispatch

cost, it could reduce server throughput by 10% or more.

Runtime Reconfigurable. Low-latency DRAM-based

storage is expensive. Many applications and users are

likely to share a single, large multi-tenant deployment.

Consequently, it is impossible to take the system of-

fline to install new user-provided procedures as some

distributed in-memory stores require [1, 9].

Inexpensive Isolation. A single cluster may host thou-

sands of tenants’ procedures. Not only must procedure

invocation be inexpensive, it must also allow rapid and

efficient switching between protection domains. For ex-

ample, conventional OS and hardware based isolation



Model Fast

Compile/Install

Fast Runtime

Entry/Exit

Isolation Pointers/

Data-

Dependencies

Data-intensive

Functions

Compute-

bound

Functions

SQL ✓ ✓ ✓ With ⊲⊳ ✓ DB Supplied

Native/C++ ✗ ✗ Hardware ✗ Difficult ✓

JavaScript ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Strengths and weaknesses of different approaches for hosting user-supplied logic within an in-memory database.

mechanisms are too expensive. On our hardware, a min-

imal context switch to another process and back takes

2.2 µs, which would double the time it takes for a server

to process a basic RAMCloud operation.

Low Installation Overhead. Ideally, applications

would be able to install and remove procedures with

very little overhead. Expensive procedure compilation

times limit the ability of applications to install and run

“one-shot” procedures.

We considered several approaches to hosting user-

supplied code in low-latency in-memory key-value stores,

and we characterize the tradeoffs made by each. Since

the high performance of DRAM exposes any overheads

in query execution, we initially expected that native code

execution with lightweight hardware protections would

be essential to the design. However, as we went along we

kept coming back to the question: why not JavaScript?

Just-in-time (JIT) compilation means JavaScript has

the potential to deliver near native performance. Isolation

is a concern in browsers as well, so runtimes also expose

protection domains and allow the host process to switch

between them without special instructions or expensive

traps. And, JIT makes JavaScript functions easy to in-

stall at runtime. An added bonus stems from the fact

that JavaScript is the lingua franca of web development;

pushing compute to storage via JavaScript is popular in

many low performance stores, since it unifies the frontend,

business logic, and storage programming languages [21].

JIT also provides an alternative way of running pro-

cedures written in C++ by compiling them to asm.js, a

subset of JavaScript that maximizes the efficiency of the

underlying JIT output [6]. Asm.js code loads fast, runs

fast, and it retains the isolation benefits of the JavaScript

runtime. Those who care most about performance can im-

plement procedures in C++ to achieve better performance

than vanilla JavaScript.

Can JIT bring these benefits to RAMCloud? The key

questions are whether a) JavaScript can provide near-

native speed for data-intensive loads, b) transitions be-

tween database logic and user logic are fast, and c) “con-

text switches” between isolated runtimes are fast.

In this work, we take initial steps to answer these ques-

tions. First, we describe different approaches that could

be used to push client logic into in-memory key-value

stores, and we discuss their tradeoffs. Second, we per-

form several microbenchmarks to gage the suitability of

the V8 JavaScript runtime [13] as a stored procedure run-

time for RAMCloud. We find several simple procedures

we try incur about a 2-10% slowdown versus native C++

code but that the cost of entering/exiting the runtime is

11.4-72× faster for JavaScript; compared to the cost of

invoking native code isolated at the hardware or process

level, JavaScript is a strong fit for many types of applica-

tions.

2 The Candidates

Shipping computation to data is a long-studied area,

but low-latency stores work at odds with existing ap-

proaches. A key aspect of scale-out analytics frameworks

like MapReduce [8] and Spark [30] is packaging and ship-

ping code to bulk data to minimize communication costs.

In these systems queries are massive, so latency is not a

consideration. For example, these frameworks can take

minutes before any actual data processing begins [8].

Table 1 summarizes the tradeoffs of different ap-

proaches for stored procedures; more details are given

about each approach below. The left columns character-

ize the cost of installing new procedures, entering/exiting

procedures, and context switch between procedures in dif-

ferent protection domains. The right columns characterize

the fit of each approach for different types of procedures.

The first type are procedures that “chase” data dependen-

cies. For example, user profiles in a users table might

be indexed by user-id and each profile might contain the

user-ids of friends. Given a user-id, a procedure might

return all of the profiles of the friends of that user with a

single request, avoiding extra round trips to the key-value

store. Such procedures are short and require fast runtime

entry/exit to be efficient. Other data-intensive procedures

may process many values, and compute-bound procedures

may perform expensive functions on the data before re-

turning results. These types of procedures are sensitive to

runtime overhead and compiler optimizations.

SQL. SQL is a declarative query language used with

both analytics (OLAP) and transaction processing (OLTP)

workloads that also supports use as a stored procedure

language. SQL may be the single most widely used ap-

proach to ship computation to data storage. In-memory



databases focused on combined analytic and transactional

workloads have placed tremendous pressure on high per-

formance SQL, resulting in approaches that infuse JIT and

compiler technology into conventional SQL query pro-

cessing [11, 22]. JIT blurs the line between the database

and user code; queries run fast, and calls back-and-forth

between the database and user logic are inexpensive. SQL

is type safe, so it also facilitates lightweight isolation.

Overall, the SQL’s main drawback is that it is declar-

ative. For most workloads, this is a benefit, since the

database can use runtime information for query optimiza-

tion; however, this also limits its generality. For example,

implementing new database functionality, new operators,

or complex algorithms in SQL is difficult and inefficient.

C++/Native Code. Using native code in low-latency in-

memory stores is attractive. It works well for compute-

bound tasks, and, seemingly, it should work well for data-

intensive tasks too. The challenge with native code is

preventing bugs from crashing the database and protect-

ing against malicious procedures. We considered several

approaches including running procedures in separate pro-

cesses, software fault isolation, and techniques that abuse

hardware virtualization features (§3.2). These techniques

show little slow down while running code, but they greatly

increase the cost of control transfer between user-supplied

code and database code. For example, process-based iso-

lation means procedure invocation requires an OS context

switch (thousands of nanoseconds) both on entry and

exit. In RAMCloud, many operations take less than 2 µs,

so even just invocation costs dramatically impact per-

formance. Worse, a single procedure call may access

millions or billions of records (for example, selections,

projections, or aggregations); if a procedure called into

the database for each record, it would be prohibitive.

JavaScript. JavaScript has the potential to overcome

these limitations. It is safe and sandboxed, it doesn’t re-

quire hardware protections that impede domain switches,

and JIT can make compute-bound tasks fast. To see

if JavaScript will work well, we explore its overheads

through a series of microbenchmarks.

3 Microbenchmarks

Experiments are run on an Intel Xeon E5-2630 v3

(Haswell) at 2.40 GHz with 64 GB of DDR4 running at

2133 MHz (an Emulab [26, 29] Dell D430) with Ubuntu

Linux.

3.1 Installation, Invocation & Entry/Exit Costs

Each procedure mechanism incurs three forms of invoca-

tion overhead: the cost to compile/install a procedure, the

cost to invoke the procedure, and the cost for the proce-

dure to invoke database functionality. We do not consider

garbage collection costs, since short-lived invocations

will not be interrupted, which can support an inexpen-
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Overhead: JS enter+exit 196 ns JS to Native call+ret 31 ns
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var chase = function (key) { return get(get(key)); }

Figure 1: The chase procedure requires six runtime crossings.

Context Code Context

Mechanism Creation Compilation Switch

v8::Context/JS 889 µs 427 µs 98 ns

Processes/C++ 763 µs 58,000 µs 1,121 ns

VMFUNC1/C++ - 58,000 µs 138 ns

sthreads2/C++ 2 µs 58,000 µs 150 ns

Table 2: Installation and context switch cost; 1. VMFUNC only

includes the cost of the instruction, not the full context switch;

2. sthread times are from [3].

sive, stack-like allocation strategy. To better understand

these costs, we first test a no-op JavaScript procedure

(function () {}) invoked from a C++ host processs.

Creating a new context in the V8 runtime takes 889 µs,

which takes 17% longer than forking a separate process

for isolation. This is a one time cost that has little impact

as long as tenants can reuse contexts from call to call.

Conversely, invoking the JavaScript procedure from C++

takes 196 ns; whereas, invoking a procedure in another

hardware-protected process takes 2×1,121 ns (§3.2). So,

JavaScript is 11.4× faster on this key metric.

More importantly, procedures must be able to invoke

database routines to access data; a no-op C++ function

can be called from JavaScript in just 31 ns. This is critical

for functions that touch millions or billions of records

scattered across gigabytes of RAM. Hardware protection

would be 72× slower than using JavaScript, since it re-

quires thousands of cycles per record access.

For example, Figure 1 shows a simple procedure that

fetches one value based on the contents of another. In

addition to the cost of procedure invocation, this proce-

dure must call into the database and back twice. Using

processes for isolation requires six OS context switches

(entry and exit for the procedure and two gets) at 1,121 ns

for a total of 6.7 µs. Boundary crossing overheads alone

increase the time it would take to process such a request

by 26× compared to using JavaScript, which only re-

quires 258 ns (196 ns for invocation and 31 ns for each

database routine).

3.2 Isolation

In V8, many applications can safely share a single runtime

instance; to do this, each application allocates its own con-

text, which is passed to the runtime on invocation [14].

Hosts of V8 can multiplex applications by switching be-

tween contexts, just as conventional protection is imple-

mented in the OS as process context switch. We compared
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Figure 2: C++ and JavaScript procedures running simple queries over 1 GB of 64 B records.

the cost of a V8 context switch to other approaches; the

results are shown in Table 2. The time shown is the time

taken to cross a protection domain boundary to enter a

(no-op) tenant procedure starting from the C++ host pro-

cess. A V8 context switch is just 8.7% of the cost of

conventional a process context switch.

We also explored exotic approaches to hardware pro-

tection to lower costs. One approach is sthreads [4],

which provide fork-like isolation with thread-like con-

text switch costs. Its costs were carefully minimized by

using Dune [3] to give the sandbox direct control over

kernel state via hardware virtualization support. Even

with these aggressive optimizations, V8 context switch

time is comparable to sthread context switch time. We

also tried VMFUNC, an Intel virtualization instruction that

lets VMs swap their underlying extended page tables

(physical-to-machine page mappings) without kernel or

hyper calls. Alone, it is insufficient for sandboxing, but

others have used it to isolate untrusted code [18]. On our

hardware, VMFUNC alone takes 138 ns even without the

needed functionality for isolation and correct execution,

already making it nearly as costly as sthreads.

The low context switch cost of V8 is attractive for our

target environment where we expect large numbers of

tenants to share the database system. V8 will allow more

tenants, and it will allow more of them to be active at a

time at a lower cost.

3.3 Memory and Compute-bound Procedures

Procedures suffer overheads at runtime entry/exit, but

with JavaScript they also suffer overhead as they run.

For example, the JIT compiler doesn’t optimize as ag-

gressively as a conventional C++ compiler; it includes

overheads from garbage collection; and the lack of strong

typing increases the number of branches needed, since all

member accesses must be prepared to deal with objects

of differing type. A full analysis of all of the types of pro-

cedures RAMCloud should support is challenging; here,

we illustrate with some simple examples.

Figure 2 shows the results. Each plot shows the perfor-

mance of a procedure written in both C++ and JavaScript

that operates over a relation and performs logic equivalent

to a small SQL query. Each query processes 1 GB of

records that each consist of 16 32-bit integers consecu-

tive in memory. The selectivity (x-axis) of each query is

varied by changing the number of values in the relation

that match the predicate A < x. Q1 is limited by scan

speed; it performs little compute and outputs one value.

Q2 performs little compute, but it outputs a percentage

of the values given on the x-axis. Q3 is similar to Q2 but

reads more fields from each record. Q4 performs three

floating point pow operations and is compute bound.

In Q1, Q2, and Q3 suffer most when selectivity is

50%. This is a well-known phenomenon for selection

scans [31]; at 50% branch prediction breaks down and

thwarts CPU speculation. It is reassuring that JavaScript

implementations exhibit this behavior, since it shows

they are efficient enough to exhibit performance that is

attributable low-level architectural issues. On average

JavaScript is 18%, 27%, and 39% slower for Q1, Q2, and

Q3, respectively. These functions are mostly memory-

bound with Q2 and Q3 being more so. Q4 is compute

bound and is 2.2× faster in JavaScript than the native

version which relies on glibc’s pow implementation.

Figure 2 contains a third line that represents the per-

formance of each of the queries when they are written in

C++, compiled to asm.js, and run inside V8. On average

asm.js is just 10%, 2%, 7%, and 5% slower for each query

respectively. Notice, Q4’s performance degrades to match

the original C++ performance; this is because the slower

pow from glibc is compiled in. These results suggest that

asm.js may be sufficient for applications that need the

highest performance. More exploration is needed to de-

termine how fragile these results are, especially for more

complex operations.

There are two key takeaways from our analysis:

1. Procedure invocation and interactions between

JavaScript and the host database process are 11.4×

and 72× faster than using native code and hardware-

based protections. Short and data-intensive proce-

dures will benefit from JavaScript.
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Figure 3: A core dispatches incoming requests to a worker

core that runs the requested procedure with V8. The procedure

fetches and filters a gather list of records that it passes to the

NIC, which issues zero-copy DMA requests for the records.

2. V8 with asm.js is only 2-10% slower than native

code, so compute-bound workloads are okay thanks

to aggressive compiler optimization. V8 is harder on

CPU branch prediction than native code.

4 Design for Efficiency

Our initial experiments are encouraging; careful embed-

ding of JavaScript into RAMCloud promises to accelerate

many of the applications we would like to build on top

of it. They have also clarified that how we embed the

runtime will impact its performance. Figure 3 gives an

overview of how we envision V8 can be embedded into

a low-latency request processing flow while minimizing

data copying, maximizing JIT optimization opportunities,

and using modern kernel-bypass networking. Five key

features drive its design.

Leverage JavaScript Types and JIT. Database state

must be protected. With native code it would be

impossible to provide fine-grained direct access to

database records unless tenant state were strictly

partitioned among memory pages. With JavaScript,

the database can safely return pointers to records and

rely on the runtime to enforce access boundaries. As

a result, JavaScript stored procedures can avoid extra

memcpy overhead and can work with records directly

where they live. To do this, RAMCloud will export new

scatter-gather list abstractions to JavaScript similar to

mbufs [20]. A major advantage of this approach is that

the JavaScript runtime is aware of references, so the JIT

can optimize around the underlying types of the records

and fields being exposed to it. For example, the JIT

will be able to fully exploit instruction-level parallelism

and low-level hardware features like SIMD instructions

when processing database records as a result.

Minimize Data Movement. This also leads to a second

powerful optimization: since many procedures will man-

ifest as a set of transformations on these scatter-gather

lists, JavaScript procedures will be able to pass them to

the database which can forward them directly to the net-

work card for zero-copy DMA [16]. That is, JavaScript

routines will be able to transmit results to clients that

the CPU has never touched. For example, this can re-

sult in significant savings for operations that select wide

records using a small number of subfields.

Exploit Semantics for Garbage Collection. In a low-

latency store, procedures are invoked as part of a request-

response cycle and most complete quickly. This can be

exploited to eliminate garbage collection except in the

cases where a procedure runs for long periods. Elim-

inating garbage collection improves performance and

significantly improves jitter [19].

Expose Database Abstractions. JavaScript procedures

will have access to the full capabilities of the RAM-

Cloud process in which they are embedded. Using RAM-

Cloud’s recovery logging facilities, it should be possible

to implement interesting functionalities; for example,

JavaScript procedures may be able to implement trans-

actions, indexes, triggers, and pub/sub callbacks.

Fast Protection Domain Switch. Finally, tenant run-

time state can be kept lightweight, so each server should

be able to efficiently manage tens of thousands of ten-

ants. We are also considering allowing tenant JavaScript

runtime state to be made persistent using RAMCloud’s

fast remote replication protocol.

5 Conclusions and Looking Forward

Developing new systems and applications on RAMCloud,

we have repeatedly run into the need to push computation

into storage servers. The low latency and low overhead

of in-memory storage and fast networking led us to think

native code was the right approach to extending the stor-

age nodes. However, we kept coming back to JavaScript.

After an initial analysis of its costs and overheads, it still

seems promising. Its low invocation and isolation costs

combined with safe, direct client access to fine-grained

database state make it appealing.

Our next goal is to embed V8 into the RAMCloud

server; to develop a smart API for procedures that ex-

poses rich, low-level database functionality; and to begin

experimenting with realistic and large-scale applications.
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Discussion Topics

Setting out to build a stored procedure system for RAM-

Cloud, we initially expected native code and novel hard-

ware isolation mechanisms might be needed for high per-

formance. After our initial assessment, we are no longer

convinced that is the best route. JavaScript/V8 now seems

to be a strong isolation mechanism that is ubiquitous,

well-optimized, and can still even support fast languages

like C/C++ (through asm.js).

The first key point of discussion this idea raises is

whether JavaScript is a good model for pushing compu-

tation to low-latency in-memory storage. More gener-

ally, is an extensible low-latency in-memory key-value

store a useful building block? If such system were avail-

able, what interesting applications could be built with

it and benefit from it? We have some specific applica-

tions in mind. For example, distributed concurrency con-

trol operations, relational algebra operators, materialized

view maintenance, partitioned bulk data processing as

in MapReduce, and custom data models like Facebook’s

TAO can all be implemented as extensions.

Secondly, for now we are optimistic about V8, but

JavaScript/V8 performance is likely to be more fragile

than approaches that rely on hardware protection. We saw

this ourselves in our microbenchmarks. One key question

that must be assessed for JavaScript to be successful in a

low-latency multi-tenant store is what types of procedures

are likely to perform poorly in V8? Are those cases

prohibitive?

Thirdly, a point of discussion this idea is likely to sur-

face is how much fast kernel-bypass networking and in-

memory data change the picture. JavaScript for databas-

es/stored procedures is not new, but the constants have

all changed. For example, we believe this puts pressure

on the boundaries between the host environment and the

JavaScript runtime that are less pronounced in other sys-

tems. We are eager to understand where this creates

interesting challenges and where this combination simply

results in straightforward engineering issues.

Finally, we are still seeking a better understanding of

other isolation approaches, particularly for latency sensi-

tive and short operations, to see if we have missed obvious,

promising comparisons. For example, other software fault

isolation techniques like Native Client could also make

sense, but so far V8 has been promising enough that we

have focused our exploration there.
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