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Abstract
Over the past decade, we have witnessed exponen-

tial growth in the density (petabyte-level) and breadth
(across geo-distributed datacenters) of data distribution.
It becomes increasingly challenging but imperative to
minimize the response times of data analytic queries over
multiple geo-distributed datacenters. However, existing
scheduling-based solutions have largely been motivated
by pre-established mantras (e.g., bandwidth scarcity).
Without data-driven insights into performance bottle-
necks at runtime, schedulers might blindly assign tasks
to workers that are suffering from unidentified bottle-
necks.

In this paper, we present Lube, a system framework
that minimizes query response times by detecting and
mitigating bottlenecks at runtime. Lube monitors geo-
distributed data analytic queries in real-time, detects po-
tential bottlenecks, and mitigates them with a bottleneck-
aware scheduling policy. Our preliminary experiments
on a real-world prototype across Amazon EC2 regions
have shown that Lube can detect bottlenecks with over
90% accuracy, and reduce the median query response
time by up to 33% compared to Spark’s built-in locality-
based scheduler.

1 Introduction

With large volumes of data generated and stored at ge-
ographically distributed datacenters around the world,
it has become increasingly common for large-scale
data analytics frameworks, such as Apache Spark [30]
and Hadoop [10] to span across multiple datacenters.
Petabytes of data — including user activities, trending
topics, service logs and performance traces — are pro-
duced on these geographically distributed datacenters ev-
ery day, processed by tens of thousands data analytic
queries.

Minimizing response times of geo-distributed data an-
alytic queries is crucial, but far from trivial. Results of

these analytics queries are typically used when making
real-time decisions and online predictions, all of which
depend upon the timeliness of data analytics. However,
in contrast to data analytics in a single datacenter, the
varying bandwidth on wide-area network (WAN) links
and the heterogeneity of the runtime environment across
geographically distributed datacenters impose new and
unique challenges as query response times are mini-
mized.

Known as wide-area data analytics in the literature,
tasks (or data) are optimally placed across datacenters in
order to improve data locality [15, 16, 20, 26, 27]. How-
ever, all previous works made the simplifying assump-
tion that the runtime environment of wide-area data ana-
lytics is temporally stable, and that there are no runtime
performance variations in these clusters. Naturally, this
may not accurately reflect the reality. In addition, exist-
ing works have largely been motivated by a few widely
accepted mantras, such as the scarcity of network band-
width on access links from a datacenter to the Internet.
With an extensive measurement study on analytic jobs,
Ousterhout et al. [18] have convincingly pointed out that
some of the widely held assumptions in the literature
may not be valid in the context of a single cluster.

Delving into the fluctuating runtime environment of
wide-area data analytics, this paper makes a strong case
for analyzing and detecting performance bottlenecks in
data analytics frameworks at runtime. Shifting gears
from a single cluster to the context of wide-area data
analytics, we believe that the conclusion from [18] still
holds: it may not always be the same resource — such
as bandwidth — that causes runtime performance bottle-
necks in wide-area data analytic queries. To generalize
a step further, the types of resource that cause perfor-
mance bottlenecks may even vary over time at runtime,
as analytic queries are executed across datacenters. It
becomes intuitive that, if we wish to reduce the query
response times in wide-area data analytics, these perfor-
mance bottlenecks need to be detected at runtime, and



a new resource scheduling mechanism needs to be de-
signed to mitigate them. Unfortunately, such a high-level
intuition has not yet been well explored in the literature
and remains a largely uncharted territory.

In this paper, we propose Lube, a new system that
is designed to perform data-driven runtime performance
analysis for minimizing query response times. Lube fea-
tures a closed-loop design: the results of runtime moni-
toring are used for detecting bottlenecks, and these bot-
tlenecks serve as input to the resource scheduling policy
to mitigate them, again at runtime. Our original contri-
butions in this paper are the following:

First, we propose effective and efficient techniques to
detect resource bottlenecks at runtime. We investigate
two bottleneck detection techniques, both driven by per-
formance metrics collected in real-time. We start with
a simple statistical technique, Autoregressive Integrated
Moving Average (ARIMA) [6], and then propose ma-
chine learning techniques to further explore the implicit
correlation between multiple performance metrics.1 As
one of the effective algorithms and a case study, we use
the Sliding Hidden Markov Model (SlidHMM) [7], an
unsupervised algorithm that takes time series as input
and incrementally updates model parameters for detect-
ing upcoming states.

Second, we propose a new scheduling policy that,
when assigning tasks to worker nodes, mitigates bottle-
necks by considering not only data locality (e.g., [26]),
but also the severity of bottlenecks. The upshot of our
new scheduling policy is the use of a technique similar
to late binding in Sparrow [19], that holds a task for a
short while before binding it to a worker node. This is
designed to avoid the negative implications of false pos-
itives when detecting bottlenecks.

We have implemented a prototype of Lube on a Spark
SQL cluster over Amazon EC2 with 37 instances across
nine regions. Our experiments of the Big Data Bench-
mark [23] with a 1.1 TB dataset show that Lube is able
to detect bottlenecks with an accuracy over 90% and re-
duces the median query response time by as much as
33% (1.5× faster).

2 Lube: a Bird’s-Eye View

Data analytics over geo-distributed datacenters may suf-
fer from a highly volatile runtime environment, due to the
lack of load distribution when using resources, or varying
bandwidth availability over wide-area network links [1].
As a result, resource bottlenecks are more likely to occur
at runtime, when data analytic queries are executed over
the wide area.

As a motivating example of such runtime bottlenecks,
Figure 1 presents a heat map of real-time memory uti-
lization on the Java Virtual Machine (JVM) heap, cap-

Figure 1: A potential bottleneck in memory.

tured on a 5-node Spark SQL [3] cluster running the
Big Data Benchmark [23]. As we can observe, within
a specific time window (marked by tcurrent ), memory is
heavily utilized on node_1, while other nodes are largely
idle on their memory utilization. This implies that mem-
ory becomes a bottleneck on node_1, because the Spark
SQL scheduler assigned more tasks to this node with no
knowledge that its memory may be overloaded at run-
time.

Given the existence of resource bottlenecks, our ulti-
mate objective is to reduce query response times by de-
signing new task scheduling strategies that work around
these bottlenecks. To achieve such an objective, we need
to monitor performance attributes of data analytic queries
at runtime and detect potential bottlenecks with very lit-
tle overhead. To be more specific, we will need to design
and implement the following components:

Lightweight performance monitors. A collection of
performance monitors on each worker node is needed to
capture process-level performance metrics in real-time.
In Lube, rather than intrusively using code instrumen-
tation, we choose to reuse existing lightweight system-
level performance monitors on Linux (e.g., jvmtop,
iotop, iperf and nethogs).

Online bottleneck detection. With performance metrics
collected in real-time, we will propose algorithms that
analyze dependencies between performance metrics and
detect potential bottlenecks at runtime.

Bottleneck-aware scheduling. To react to detected bot-
tlenecks, a bottleneck-aware scheduler will make task as-
signment decisions by considering both bottleneck sever-
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ities and data locality. Besides, the scheduler should be
able to tolerate inaccurate detections.

Figure 2 presents the closed-loop design architecture
of Lube. On each worker node, a Lube client periodi-
cally collects runtime performance metrics, updates the
machine learning model and reports detected bottlenecks
to the Lube master; on the master node, the task sched-
uler makes task assignment decisions based on bottle-
neck intensities at the worker nodes, as well as data lo-
cality preferences of tasks. In return, the decisions made
by the task scheduler will further influence the perfor-
mance of data analytic queries at each worker node.

3 Detecting Bottlenecks

Performance bottlenecks may emerge anytime and any-
where in wide-area data analytics. To mitigate perfor-
mance bottlenecks in time, we will first need to detect
them correctly at runtime. Lube performs online bottle-
neck detection on performance metrics collected in real-
time.

We investigate two techniques to detect bottlenecks
from the time series of performance metrics. One is
a simple statistical model — the Autoregressive Inte-
grated Moving Average (ARIMA) algorithm that ap-
proximates the future value by a linear function of past
values and past errors; the other is an unsupervised ma-
chine learning model: the Sliding Hidden Markov Model
(SlidHMM) algorithm that can autonomously learn the
implicit correlation between multiple performance met-
rics.

3.1 ARIMA
Introduced by Box and Jenkins [6], the ARIMA model
has been widely applied in time series analysis. As a
combination of autoregressive (AR) model and the mov-
ing average (MA) model, the ARIMA model is defined
by the following equation:

yt = θ0 +φ1yt−1 +φ2yt−2 + · · ·+φpyt−p

+εt −θ1εt−1−θ2εt−2−·· ·−θqεt−q, (1)
where yt and εt denote the actual value and random er-
ror at time t respectively; φi (i = 1,2, . . . , p) and θ j ( j =
1,2, . . . ,q) are the coefficients specified by the model. p
and q are integers indicating the autoregressive (AR) and
moving average (MA) polynomials respectively. A gen-
eral ARIMA model is represented as ARIMA(p, d, q),
in which d is the degree of difference transformation for
data stationarity.

We build an univariate ARIMA model for each per-
formance metric, rather than a vector ARIMA model for
all metrics, as it usually becomes “overfitting” due to too
many combinations of insignificant parameters [9]. To

support online bottleneck detection, we periodically up-
date the ARIMA model with continuously arriving per-
formance metrics.

3.2 Sliding HMM
The Hidden Markov Model (HMM) [4] infers a sequence
of hidden states that maps to the sequence of observation
states. Through feeding a time series of observed per-
formance metrics (O1 to Od) to HMM, we can infer the
possible performance metrics Ok in the future (Figure 3).
The HMM is usually defined as a three-tuple: (A,B,π)
as the following notations (t is the time stamp):
Q = {q1,q2 . . . ,qN}, hidden state sequence.
O = {O1,O2 . . . ,Ok}, observation state sequence.
A = {ai j}, ai j = Pr(q j at t +1|qi at t), transition matrix.
B = {b j(k)}, b j(k) = Pr(Ok at t|q j at t), emission matrix.
π = {πi}, πi = Pr(qi at t = 1), initial state distribution.

past
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futuret
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Figure 3: The Hidden Markov Model.
HMM learns the hidden states based on an expec-

tation maximization algorithm, the Baum-Welch Algo-
rithm [5]. This algorithm iteratively searches the model
parameters (A,B,π) that maximizes the likelihood of
Pr(O|µ) — the best explanation of the observation se-
quence. Traces of JVM heap utilization in Figure 4
presents a clear periodical pattern. By learning the hid-
den states behind this pattern, the HMM infers the future
performance metrics for bottleneck-aware scheduling.

To support bottleneck detection in runtime, HMM
must be updated online. However, such online updates
incur a heavy cost in both time and space, as the Baum-
Welch algorithm needs to re-calculate both old and new
time series input. Hence, we propose to use the Slid-
ing Hidden Markov Model (SlidHMM) [7], which is a
sliding version of the classic HMM, and is particularly
designed for online characterization of high-density time
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Figure 4: The JVM heap utilization traces of a Spark
executor process.



series. The core of SlidHMM is a sliding window that
accepts new observations and evicts outdated ones. A
moving average approximation replaces the outdated ob-
servations during SlidHMM’s training phase. Different
from the traditional HMM, SlidHMM updates incremen-
tally with the partial calculation on a fixed window of
observations. Thus, it improves the efficiency of bottle-
neck detection in both time and space.

4 Bottleneck-Aware Scheduling

To justify the imperatives of bottleneck-aware schedul-
ing, we visualized the performance metrics collected
from a Spark SQL cluster running real-world workloads
in a geographically distributed fashion on Amazon EC2.
Figure 5 reveals the necessity and feasibility of perform-
ing bottleneck-aware scheduling in wide-area data ana-
lytics: a single worker node is bottlenecked continu-
ously while all nodes are rarely bottlenecked in cho-
rus. A bottlenecked node slows down the running tasks,
and if we keep assigning tasks to the bottlenecked node,
performance will be further degraded. Meanwhile, there
usually exist available nodes to take over the tasks as-
signed to bottlenecked nodes.

Unfortunately, neither existing resource management
platforms (e.g., Mesos [13] and YARN [2]) nor schedul-
ing solutions (e.g., Iridium [20] and Sparrow [19]) sup-
port online detection of such performance bottlenecks.
The built-in schedulers of Spark and Hadoop make de-
cisions only based on data locality, with the objective of
reducing network transmission times [29].

Bottlenecked nodes consume extra time to process
tasks. To minimize the response times of data analytic
queries, we propose a simple task scheduler to coordi-
nate with our bottleneck detection algorithms and mit-
igate bottlenecks at runtime. A node will be marked
as available if no upcoming bottlenecks have been de-
tected; a task has several levels of locality preferences
in descending order. When assigning a task, this sched-
uler jointly considers data locality and bottleneck sever-
ity. Essentially, it searches for an available node that
satisfies the highest locality preference level of the task
compared to all available nodes. Considering that bot-
tlenecks may not be correctly detected, we introduce a
late-binding algorithm to our bottleneck-aware sched-
uler. Sparrow [19] applies this algorithm to work around
incorrect samplings. The intuition of late-binding is that
the worker nodes first verify the correctness of bottle-
neck detection, and then launch the assigned tasks. If
such verification fails, the task will be reassigned.

5 Implementation and Evaluation

We implement components of Lube in a decoupled fash-
ion. The pluggable performance monitors, the stand-
alone bottleneck detection module and the scheduler ex-
change messages via in-memory redis [21] servers. The
messages are negligible small key-value pairs for net-
work transmission. We modified the built-in scheduler
of Spark to enable bottleneck-aware scheduling.

We conducted a preliminary evaluation of our design
in realistic wide-area settings. The deployment includes
37 EC2 m4.2xlarge instances across 9 regions. Each
instance has an 8-core CPU, 32 GB of memory, 1000
Mbps network2 and a 100 GB SSD disk. All instances
run on Ubuntu-14.04 installed with Oracle Java-1.8.0,
Spark-1.6.1, HDFS-2.6.4 and Hive-1.2.1. The Big Data
Benchmark [23] includes four queries: Query 1-3 each
has three scale levels a, b, c, from small to large; Query 4
is a user-defined-function (UDF) running a python script
to count URLs. We run this benchmark with a 1.1 TB
dataset.

The results in Figure 6 show that with an accuracy of
over 90% in bottleneck detection, Lube speeds up median
query response times from 26.88% (1.37×) to 33.46%
(1.5×). Figure 6(a) presents the accuracies of bottle-
neck detection under different settings. The hit rate is
defined as the proportion of detected bottlenecks that are
observed by monitors among all detected bottlenecks.
We collect the time stamps and the bottleneck sequences
during the running of the Big Data Benchmark for 15
times respectively. By comparing the time sequences of
detected bottlenecks and observed bottlenecks, we cal-
culate the hit rate offline. In our experiments, the aver-
age hit rate of the SlidHMM is 92.1%, while it’s 83.57%
for ARIMA. The hit rate of ARIMA tends to decrease
with the increase of query scale. As a linear combination
of autoregression and moving average, ARIMA ignores
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Figure 5: Heat maps of performance metrics.
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Figure 6: Evaluation on a 37-node EC2 cluster running the Big Data Benchmark.
nonlinear patterns in the performance metric sequences,
which may lower the accuracy of bottleneck detection.

We show that Lube achieves a faster query response
and maintains a low overhead from the task level to query
level. At the task level, Figure 6(b) plots the task comple-
tion times CDF of pure Spark, Lube-ARIMA and Lube-
SlidHMM. For Query 1, the average (75th percentile)
task completion time of pure Spark is 150.928 seconds
(246.19 seconds). Lube-ARIMA saves 12.454 seconds
(22.075 seconds) for average seconds (75th percentile)
tasks compared to pure Spark, while Lube-SlidHMM
saves 14.783 seconds (27.469 seconds) for average (75th
percentile) tasks. Our bottleneck-aware scheduler brings
a substantial improvement to the completion times of
long tasks.

At the query level, we measure query response times
under different control groups. Pure Spark is the base-
line; Lube-ARIMA and Lube-SlidHMM show the re-
duction of query response times; and, the Spark de-
fault scheduler with Lube-ARIMA (ARIMA + Spark)
and Lube-SlidHMM (SlidHMM + Spark) are the control
group to evaluate Lube’s overhead. Figure 6(c) shows
that running Lube-ARIMA or Lube-SlidHMM with the
Spark default scheduler does not introduce much over-
head since the query response times under these three
settings are similar. In addition, for median query re-
sponse times, Lube reduces 26.88% to 33.46% (1.37×
to 1.5× faster) of time with the ARIMA algorithm, while
reduces 28.41% to 33.18% (1.4× to 1.5× faster) of time
with the SlidHMM algorithm. From these results, we can
conclude that Lube reduces the overall query response
times.

6 Related Work

There exists large volumes of existing research on op-
timizing the performance of wide-area data analytics.
Clarinet [25] pushes wide-area network awareness to the
query planner, and selects a query execution plan be-
fore the query begins. Graphene [12] presents a Di-

rected Acyclic Graph (DAG) scheduler with awareness
of DAG dependencies and task complexity. Iridium [20]
optimizes data and task placement to reduce query re-
sponse times and WAN usage. Geode [26] minimizes
WAN usage via data placement and query plan selection.
SWAG [14] adjusts the order of jobs across datacenters
to reduce job completion times. These works develop
their solutions based on a few widely-accepted mantras,
which are shown to be skeptical in a systematic analysis
on the performance of data analytics frameworks [18].
The blocked time analysis proposed in [18] calls for more
attention to temporal performance variations.

However, there is still very little existing effort on opti-
mizing the performance of data analytics with the aware-
ness of variations in the runtime environment. Hadoop
speculative task execution [28] duplicates tasks that are
slow or failed, but not knowing the exact bottlenecks may
lead to worse performance. As far as we know, Lube is
the first work that leverages machine learning techniques
to detect runtime bottlenecks and schedules tasks with
awareness of performance bottlenecks.

Machine learning techniques have been actively ap-
plied to predict and classify data analytics workloads.
NearestFit [8] establishes accurate progress predictions
of MapReduce jobs by a combination of nearest neigh-
bour regression and statistical curve fitting techniques.
Ernest [24] applies a linear regression model to predict
the performance of large-scale analytics.

7 Conclusion

In this paper, we have presented Lube, a closed-loop
framework that mitigates bottlenecks at runtime to im-
prove the performance of wide-area data analytics. Lube
monitors runtime query performance, detects bottle-
necks online and mitigates them with a bottleneck-aware
scheduling policy. Experiments across nine EC2 regions
show that Lube achieves over 90% bottleneck detection
accuracy and, compared to the default Spark scheduler,
reduces the median query response time by up to 33%.



8 Discussions and Future Work

Preliminary experiments highlight the performance of
Lube in reducing query response times achieved through
detecting bottlenecks, mitigating bottlenecks at runtime.
While this motivates the research on performing data-
driven runtime performance analysis to optimize data an-
alytics frameworks, there are a few aspects to discuss.

Selection of runtime metrics. It is the selected run-
time metrics that determine the efficacy of the runtime
performance analysis. There are enormous runtime met-
rics from multiple hierarchies of wide-area data analyt-
ics frameworks. To efficiently detect and mitigate bot-
tlenecks in low-level resources (e.g., CPU, memory, disk
I/O and network I/O etc.), we have studied several per-
formance monitors and various combinations of perfor-
mance metrics. However, the space of selecting appro-
priate metrics has still not been fully explored. We will
put more efforts in the assessment of runtime metrics se-
lection.

Bottleneck detection models. Lube achieves a sub-
stantial improvement by applying two simple models,
ARIMA and SlidHMM. The emerging data-driven tech-
niques broaden the horizon of data analytics optimization
methodologies. We would like to further explore the lat-
est data-driven techniques, such as Generative Adversary
Network (GAN) [11] and Reinforcement Learning [22].
For example, DeepRM [17] builds a deep reinforcement
learning model for strategies of cluster resource man-
agement. However, the surprising accuracy of machine
learning models makes us wonder the practical boundary
of their effectiveness, which is imperative for robust and
reproducible solutions.

WAN conditions. Most recent work mainly considers
the heterogeneity and the variance of wide-area network
bandwidths [1, 12, 14, 20, 24, 26]. A few approaches
have been applied to measure network conditions in these
work. Lube captures the local network throughput by
measuring network I/O on each node, which though
only reveals a coarse-grained awareness of network; and,
measures the pair-wise WAN bandwidths by a cron job
running iperf on each node. We plan to exploit the ca-
pabilities of Software-Defined Network (SDN) to com-
plement the global wide-area network conditions at run-
time.
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Notes
1For example, a higher network I/O will lead to higher JVM heap

swap frequencies, since network send/receive semantics will trigger
memory load/dump operations.

2EC2 only guarantees intra-region bandwidth. The inter-region traf-
fic runs on public links that are highly fluctuating and intensely com-
petitive.


