Performance Annotations for Cloud Computing

Daniele Rogom>l<

Universita della Svizzera italiana

Abstract

Web services and applications are complex systems.
Layers of abstraction and virtualization allow flexible
and scalable deployment. But they also introduce com-
plications if one wants predictable performance and easy
trouble-shooting. We propose to support the designers,
testers, and maintainers of such systems by annotating
system components with performance models. Our goal
is to formulate annotations that can be used as oracles
in performance testing, that can provide valuable guid-
ance for debugging, and that can also inform designers
by predicting the performance profile of an assembly of
annotated components. We present an initial formulation
of such annotations together with their concrete deriva-
tion from the execution of a complex web service.

1 Introduction

Understanding and predicting system behavior is cru-
cial for cloud-service providers. An operations manager
might want to know how to respond to a growth of re-
quests (e.g., “should I invest in more compute or storage
nodes?”). A developer might want to know which up-
dated component has slowed down parts of the Web ap-
plication, and how that affects operations (e.g., “is a par-
ticular method allocating too much memory?”). A de-
signer might want to predict the performance of a service
that relies on other services, both internal and external
(e.g., “assuming the authentication and storage lookup
service run in under 50 milliseconds, would a delete op-
eration terminate in less than 100 milliseconds?”).
Unfortunately, operations managers, developers, and
designers have very few tools at their disposal that allow
them to answer such questions. Currently, they mostly
rely on profilers and performance monitors [5, 13]. How-
ever, profilers are inherently limited, in that they report
aggregate resource usage of one or more functions un-
der a specific input workload. Profilers do not relate the
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performance of a function to its input. Furthermore, de-
spite recent research advances [19], profilers provide lit-
tle information about the system behavior under various
workloads, and offer no predictive capabilities.

In this paper, we propose an alternative approach, in
which APIs are explicitly annotated with information
about their expected performance. We envision three
main uses of performance annotations. First, they can
serve as assertions and therefore as failure detectors in
both testing and production systems. Second, annota-
tions can provide diagnostic information beyond a bi-
nary pass/fail test. For example, the annotation can be
checked by monitoring the run-time behavior (as an as-
sertion) and the result could be a distance or fitness value
(or a sort of p-value) that expresses how far the behav-
ior deviates from the prescribed distribution. This infor-
mation computed for a series of components can in turn
be useful to inform both on-line operational management
and off-line performance engineering for the whole sys-
tem. Third, perhaps the most ambitious goal, is to use
annotations in a compositional analysis, together with
code, to predict aggregate behaviors of a system from
the behavior of individual components.

There are at least two major challenges in develop-
ing performance annotations: (i) providing meaningful
information that is useful in practical deployments, and
(i1) determining how to derive annotations in a complex
system stack. To address these challenges, we argue that
performance annotations should assert expected perfor-
mance and should be automatically derived using statis-
tical techniques.

By expected performance, we mean concrete perfor-
mance in the average case, as opposed to worst-case
and/or asymptotic performance. Although worst-case
analysis is useful in many scenarios, it is often imprac-
tical to reason about only the worst case in real-world
deployments. For example, not every lookup will result
in a cache miss; not every allocation causes a TLB miss,
etc. Moreover, if we consider only the worst case, and



then try to reason compositionally about services in a
distributed system, we will quickly conclude that every-
thing can be slow and expensive. Finally, it is often easy
to detect and deal with worst-case or extreme behaviors.
For example, a rogue process that continually consumes
resources can be sandboxed and separated from the rest
of the system. In contrast, a process whose performance
varies slightly from its nominal behavior is harder to sin-
gle out and to understand.

By automatically derived, we mean that developers
should not have to annotate code themselves. Cloud-
based, web applications are complex systems, involving
a number of interconnected components that interact in
intricate ways. There is typically (at least) a storage com-
ponent, a database component for meta-data, and a web
front-end with user-facing functionality. The storage
component is usually replicated for fault-tolerance, and
accessed through a distributed file system; the database,
which is also replicated, must handle all sorts of internal
calls, from user authentication and user sessions services,
as well as store all the necessary state for the web appli-
cation. And the whole system is typically deployed on
a set of virtual machines interconnected with a number
of virtual networks, perhaps hosted on multiple data cen-
ters. Given this complexity, one can not expect program-
mers to accurately predict system performance. Instead,
we argue that system behavior must be learned.

In this paper, we first present a general notion of per-
formance annotation (§2), and how they are automati-
cally derived (§3). We then apply them in the study of a
system that implements a complex cloud storage service,
and categorize a wide variety of behaviors we observe in
such a system (§4). Finally, we show that the annotations
can be used to reveal anomalous behaviors (§5).

2 Performance Annotations

A performance annotation formulates a probabilistic
model of the behavior of a sub-system or component
in a distributed system. Performance annotations dif-
fer from profilers [19] in that they correlate measured
performance metrics with semantically meaningful input
or system state, allowing operators greater understand-
ing into the behavior of the system. Importantly, perfor-
mance annotations model the average-case, rather than
worst-case behavior [9, 10]. The average-case gives the
expected behavior given a typical usage scenario.

A natural way to describe the expected performance of
a service is as a probability distribution for a set of mea-
sured values (i.e., the dependent variable) that change in
response to some system input or feature (i.e., the inde-
pendent variable) of the input or the system state. The
annotations we propose take this form.

As an example, consider the following annotated code:

1 @Time~Norm(2ms * path_length(path), 1ms)
> void delete(String path) {

4}

In this example, the delete method, declared on Line 2,
deletes the file specified in the parameter path. The an-
notation, on Line 1, asserts that the running time of the
method follows a normal distribution with a mean of
2ms times the number of path components, and variance
Ims. In this example, time is the measured value, and
path_length(path) is the related feature.

3 Deriving Annotations

Deriving an annotation involves three steps: (i) choosing
and measuring a specific target metric y, (ii) determining
a feature, x, and measuring its values, and (iii) learning a
model or hypothesis, 4, such that y ~ h(x) (or y ~ h(x),
if A(x) is a distribution). Below, we briefly discuss each
of these three steps.

Target metrics. We assume that code is (or can be)
instrumented to measure the desired values. This is
common practice in many web-scale companies, such as
Google for Facebook. Instrumentation necessarily incurs
an overhead that may result in a performance penalty.
However, this subject has been researched extensively
and many techniques exist to minimize the impact of in-
strumentation. In principle, annotations could be used to
characterize the behavior in terms of any measured value.
As a first step, we focus on running time, as well as other
widely used performance indicators, including heap al-
location, lock holding time, and number and duration of
remote procedure calls. Other useful measurements that
we have not yet collected might include latency or con-
gestion for network communication.

Feature discovery. Our features are derived from the
input parameters by using a set of basic heuristics: for
scalar numeric parameters, we record their value; for
collections, we record the size; for strings, we check if
the string points to a file. If it does, we record the file
size and the depth of the path. Otherwise, we record the
length of the string. In our initial experiments, we have
found that although these heuristics often work, our sys-
tem will ultimately depend on the knowledge of a devel-
oper to guide the choice. Although our prototype uses a
single feature, it should be possible to combine features.
Formulating annotations. Given a set of target mea-
surements (e.g., time), each with a corresponding set of
features, we formulate an annotation as a relation be-
tween one feature and the target metric. In essence, we
try to find a simple-enough model that predicts the target



data from a feature with reasonable accuracy.

We proceed by first selecting a feature, and then by
modeling the way the feature affects the target metric.
We select a feature by computing the Pearson correlation
coefficient (PCC), which measures the linear correlation
between the feature and the target metric, and we choose
the feature with the highest PCC value greater than some
threshold. We then model the relation between the cho-
sen feature and the target metric with a regression, using
polynomials of increasing degree, from degree 1 (linear)
to degree 3 (cubic). For each degree, we compute the
mean squared error for the measured data. If the rela-
tive error is greater than a threshold value, then we try a
larger degree. We refer to annotations derived using this
method as correlated annotations.

If we are unable to find a feature with a PCC value
greater than the minimum threshold, or if no regression
has a relative error less than the threshold, then we con-
clude that the chosen features set is not informative, and
therefore formulate an annotation based exclusively on
the measured metric. In particular, we sort the data, and
run a k-means clustering algorithm. To determine an ap-
propriate value for k, we use the standard iterative ap-
proach: we start with one cluster, and compute the mean
square error. We increase the number of clusters until
the ratio between the errors in subsequent runs is below
a threshold (i.e., we “reach the elbow”). We refer to an-
notations derived using this method as clustered annota-
tions. A clustered annotation consists of a set of clusters,
each described by a centroid and a standard deviation.
With this notation we imply that clusters contain nor-
mally distributed values, which is not necessarily true.
Ideally, our model makes no assumptions on the actual
distribution of the target metric, so in the future we may
extend this form of annotations to account for different
distributions.

Note that our current implementation focuses on an-
notations based on a single feature, which are easy to in-
terpret. The approach can be extended to more complex
models that use several features.

4 SWITCHdrive Case Study

In order to explore the space of behaviors of complex
cloud systems, to gain an understanding of their specific
behaviors, and ultimately to validate our assertion model,
we performed a case study on a scaled-down replica of a
real-world cloud application called SWITCHdrive. Be-
low, we report on some results from our experience.
Experimental Configurations. SWITCHdrive is a file
hosting service offered by SWITCH, the national ISP
for academic institutions in Switzerland. SWITCHdrive
provides the same functionality as DropBox, allowing
users access to cloud storage and file synchronization.

SWITCHdrive requires a complex software stack that
includes the virtualization framework OpenStack [14],
the storage platform Ceph [2], and a server-side web ap-
plication written in PHP called ownCloud [15] running
within an NGINX web server. The production SWITCH-
drive cluster consists of 41 powerful machines.

For our experimentation, we faithfully recreated the

same deployment on a smaller scale. In particular, we
used the Puppet and Ansible scripts written by SWITCH
to install and configure the required software on a small
cluster of 12 servers. The servers were placed in a lo-
cal network provided by two top-of-the-rack switches.
Of the 12 servers, 5 are dedicated storage nodes, 5 are
compute nodes, and 1 machine runs the OpenStack con-
trollers. The last machine is used as a client to gener-
ate workload. All servers have the same hardware con-
figuration: a Xeon x3360 processor with 4 cores, 8GB
of RAM, two 1GB/s Ethernet interfaces, and a single
750GB hard disk storage unit. On the bare hardware,
we installed Ubuntu 14.04 server images.
Instrumentation. To gather target metrics, we instru-
mented ownCloud, the PHP web server application. To
instrument the code, we used the runkit library [18],
which dynamically augments existing code using the
decorator design pattern. Every method was dynami-
cally replaced with a wrapper that records time-stamps
and heap-allocated memory before and after the method
execution. All of the information is then logged to the
tmp filesystem of the machine running ownCloud.
Workload generation. To interact with the SWITCH-
drive software, we relied on the WebDAV interface pro-
vided by ownCloud. This allowed us to mount the folder
of a specific user on a remote machine, using the davfs
filesystem. To generate workload for our experiments,
we initiated an rsync operation for a complete Linux ker-
nel source tree to the WebDAV directory. The entire
workload consists of more than 200k WebDAYV requests.
To improve the clarity of the visualization, we present a
subset consisting of about 1.5k requests.
Observed behavior. Figure 1 shows some interesting
behaviors that we observed. The x-axis indicates the fea-
ture used in the derived annotation, and the y-axis indi-
cates the target measured metric.

The first two graphs show two different correlations
for the generateMultiStatus method, which takes a single
parameter, fileProperties, which is an array of properties
about a file. The method iterates over the objects in the
fileProperties array and computes some data about each
one of them.

Figure 1a clearly shows that the the memory usage of
the method is linearly correlated to the size of array that
the method takes as parameter. This is an example of a
data set that is characterized by a good Pearson correla-
tion coefficient.
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(a) Example of linearly correlated data,
generated from the generateMultiStatus method.
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(c) Example of constant data,
generated from the getOwner method.
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(b) Example of superlinearly correlated data,
generated from the generateMultiStatus method.
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(d) Example data showing no strong correlation,
generated from the createCollection method.

Figure 1: Examples of data collected for different methods.

Figure 1b, shows the runtime of the same method for
the same input set. Again, a regression produces a fitting
performance model for this method, which in this case
corresponds to a quadratic function of the input feature.

Figure lc shows results for a different method,
getOwner, which takes a single string parameter, path.
This method returns a string representing the owner of a
file specified by path. This case is interesting, because
the memory usage remains constant as the length of the
input string varies. One way to interpret this data is that
it is a polynomial where the coefficients are all O (or very
small). However, it is not clear if such an interpretation is
semantically meaningful for program analysis. Instead,
we believe that it is better to explicitly annotate the func-
tion so as to indicate a constant behavior.

Finally, Figure 1d shows a method that does not
fall into either the correlated or constant categories.
This plot shows results for the createCollection method,
which creates a new directory with a given path and set
of properties. The figure shows the running time plotted
against the length of the string specified by the path pa-
rameter. In this case, we are unable to formulate a regres-
sion with a good Pearson correlation coefficient. Conse-
quently, we resort to clustering to formulate a model of
performance that does not depend on the input feature.

The four cases we present here are characteristic of
many other behaviors observed for many methods of

the ownCloud component of the SWITCHdrive system.
Overall, the case study reveals a number of interesting
behaviors that can be meaningfully described by rela-
tively simple, high-level relations between input features
and measured metrics. Moreover, these annotations are
expressed in a human readable form that can also serve
as documentation for the system.

5 Using Annotations

Having derived several performance annotations, we ask
whether these annotations would indeed provide good in-
formation for developers and system operators. We start
by using annotations as assertions and therefore as failure
or anomaly detectors. We then want to verify that such
detectors are sensitive to real anomalies at the same time
as they are robust with respect to different workloads.
We proceed as follows: we first derive annotations us-
ing the workload described in Section 4. We then run
the same workload in a special setting in which we artifi-
cially introduce an anomaly in the system. In this setting,
we use the annotations as assertions. We implement the
assertions as standard one-sample statistical tests, com-
paring measured metrics to the idealized model given by
the annotation. We record an assertion violation when-
ever the test indicates that the measurements do not con-
form to the annotation. For each run, we then count the
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Figure 2: Cumulative Distribution Function of annota-
tions robustness for the extra-delay experiments.

number of assertion passed (or failed) for all the instru-
mented methods.

As an anomaly, we introduce an artificial network la-
tency between the virtual machine hosting the database
server and the rest of the cluster, varying the delay from
0 to 10 milliseconds. The case of Oms serves as a robust-
ness check of the assertions generated during training.

Figure 2 shows the cumulative distribution function of
the number of passed assertions (as a proportion of the
overall number of assertions). The results indicate that
assertion failures clearly expose a change in the perfor-
mance behavior of the system, suggesting that there must
be a performance problem somewhere.

One thing to notice is that the overall difference may
appear small. Indeed, we only tweak the behavior of the
database component, leaving all the other components
in their original configurations. This means that only a
fraction of the 138 methods analyzed were affected by
the slow database. In fact, we also observed that the
methods whose annotations are violated more often in
the different experiments are those that directly or indi-
rectly involve some database operations.

These experiments demonstrate the feasibility of using
performance annotations to diagnose performance bugs,
and how annotations allow us to reason about the impact
of environment changes on a large code base.

6 Related Work

Understanding the performance of distributed systems is
a topic of interest to several research communities. To a
first approximation, existing work can be classified into
two categories: (i) approaches based on profiling, with
a focus on average-case behavior; and (ii) approaches
based on static analysis, with a focus on worst-case be-
havior. Our work falls into the former category.

Profiling Based. PSpec [16] is a language that allows
users to write performance assertions, and a set of tools
for testing the assertions at runtime. Our assertions dif-
fer from PSpec in that they are probabilistic, and they are

discovered, as opposed to provided by programmers ex-
plicitly. Pip [17] is similar to PSpec. While it supports
automatic generation of assertions, this generation works
only for qualitative correctness assertions, rather than for
quantitative performance assertions as in our work. Both
Pip and PSpec are limited to bounding aggregate metrics
(such as average, maximum, or standard deviation) of
performance measures by constants; in contrast, our sys-
tem can express and automatically generate performance
expectations as functions of the input size.

Our work builds on ideas from algorithmic profil-

ing [19], which repeatedly runs a program on different
inputs to relate input size to cost. Our work differs in that
it applies statistical techniques to learn the cost function,
and relates concrete cost measures, such as running time,
as opposed to abstract “algorithmic steps”. Jin et al. [11]
automatically detect performance bugs using rules that
are synthesized from bugfixes. Coppa and Finocchi [3]
apply curve fitting to analyze the progress of MapReduce
applications. Their analysis is simpler than ours, in that
it is restricted to a single feature (i.e., input size).
Static Analysis Based. Hofmann et al. [10] use type-
systems backed by LP solvers to infer resource bounds
for functional programs. The approach has been ex-
tended to handle higher-order programs, amortized anal-
ysis [12], and multinomial polynomials in the sizes of
the inputs to bound resources [8]. Hoffman et al. [9] ex-
tend this approach to OCaml. The work by Gulwani et
al. [7, 6] is similar in spirit, but they use symbolic tech-
niques and focus on imperative programs. Cicek et al. [1]
propose a relational cost analysis to reason about the dif-
ference in execution cost of two programs.

7 Outlook

This paper presents performance annotations, which for-
mulate a probabilistic model of the expected, average-
case performance of sub-systems and services. These
models correlate measured metrics with semantically
meaningful input or system state, allowing operators
greater understanding into the behavior of the system.
As an initial evaluation, we conducted a case study on
a scaled-down replica of a real-world cloud applica-
tion, SWITCHdrive, and identified several interesting
observed behaviors. Overall, performance annotations
are a first step towards a more general goal of providing
operators and developers useful tools for analyzing and
understanding the behavior of cloud applications.
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166132 and 200021-157164) and a Google Faculty Re-
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8 Discussion

This paper describes initial results from our research on
performance annotations. In on-going work, we are ex-
tending the system in a number of ways. Below, we dis-
cuss some of these efforts.

First, we are exploring an increased feature space. Our
current prototype derives performance annotations based
a single (scalar) feature. However, in practice, system
performance is often dependent on a number of issues.
Therefore, a natural extension is to add annotations that
relate target metrics with two or more features (or a
multi-dimensional feature).

Second, we are investigating alternative, potentially
more effective, machine-learning techniques to deduce
relations between features and target performance met-
rics. In particular, machine-learning techniques are typ-
ically tunable with several parameters, which can be ad-
justed to better fit the chosen application domain. To
evaluate these techniques, we will need to extend our ex-
perimental analysis both for our SWITCHDrive deploy-
ment, and other distributed systems.

Third, we plan to adopt more formalized statistical
methods to deduce and validate annotations. This will
allow us to provide guarantees about the “quality” of our
annotations, i.e., how well they predict performance.

Beyond these efforts towards the automatic derivation
of performance annotations, we are also developing tech-
niques to use the annotations to predict systems perfor-
mance, and to support the design of complex systems.
At a minimum, we plan to support “what-if” analysis
and simulation. Pushing even further, we plan to use an-
notations together with code in building bottom-up ab-
stractions. More concretely, one of our plans is to reason
about the combination of different performance annota-
tions using related concepts from probabilistic program-
ming languages [4]. One approach used in this area that
might also prove effective in our case is to use sampling
techniques such as Monte Carlo simulation.

This research plan is ambitious, and and as with any
project, caries with it a certain amount of uncertainty.
We have identified a number of threats for the validity
and success of this work. The main problem we face is
the lack of information about a subject system. Up to
now, we have assumed that, with a rich-enough set of
heuristics and perhaps with the help of the designers and
developers, we can identify significant features. The va-
lidity and usefulness of our annotations depend crucially
on such features. To compensate for a possible lack of
knowledge on meaningful features, we have developed
the notion of clustered annotations. However, we plan to
further explore ways to discover meaningful features and
other other forms of auto-correlation of target metrics.
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