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Abstract

Verification is often regarded as a one-time procedure un-
dertaken after a protocol is specified but before it is im-
plemented. However, in practice, protocols continually
evolve with the addition of new capabilities and perfor-
mance optimizations. Existing verification tools are ill-
suited to “tracking” protocol evolution and programmers
are too busy (or too lazy?) to simultaneously co-evolve
specifications manually. This means that the correctness
guarantees determined at verification time can erode as
protocols evolve. Existing software quality techniques
such as regression testing and root cause analysis, which
naturally support system evolution, are poorly suited to
reasoning about fault tolerance properties of a distributed
system because these properties require a search of the
execution schedule rather than merely replaying inputs.
This paper advocates that our community should explore
the intersection of testing and verification to better ensure
quality for distributed software and presents our experi-
ence evolving a data replication protocol at Elastic using
a novel bug-finding technology called Lineage Driven
Fault Injection (LDFI) as evidence.

1 Introduction

Common distributed systems wisdom warns us never to
reinvent. If we have a problem requiring consensus,
we use Paxos [38] (or Raft [47]); if we need strong
consistency data replication for availability, we use Pri-
mary/Backup [40] or Chain Replication [56]. To dissem-
inate updates, we use reliable broadcast [42]. Best prac-
tices dictate that we invariably choose a well-understood
(and, ideally, formally verified) protocol as the basis of
our implementation.

Because the protocols used to solve these problems are
mature, it might appear that protocol design is mostly a
thing of the past: modern systems designers can merely
take mechanisms “off the shelf” and enjoy the guaran-

tees of hardened subsystems while constructing other-
wise novel applications.

Any practitioner, however, will quickly identify this
as a fallacy. Even initial protocol implementations tend
to differ significantly from their specification. Further-
more, over the lifetime of a system, protocol details un-
dergo a series of optimizations in response to particular
use cases. Since such optimizations can range from the
fussy (e.g., tweaking timeout parameters) to the funda-
mental (e.g., bypassing protocol steps based on assump-
tions about the common case), it can be challenging to
know which implementation changes are tantamount to
changes in the specification (which would in principle
then need to be reverified). Such a circumstance places
implementors in the bad position of deriving false con-
fidence from assertions that their implementation is “es-
sentially Primary/Backup”.

Software engineering best practices provide us with a
variety of tools for ensuring program correctness over the
course of a development lifecycle. For example, regres-
sion testing techniques ensure future optimizations do
not re-introduce bugs previously encountered in earlier
stages of system development. When dormant bugs man-
ifest in later system versions, root cause analysis tech-
niques allow us to replay “bad inputs” over the commit
history until we identify the version in which the bug was
introduced.

Unfortunately, all of these techniques associate aber-
rant behaviors (i.e. bugs) with the inputs that trigger
them. A regression test ensures a bug triggered by a
given input is never re-introduced by making the replay
of the input part of the regression suite. Root cause anal-
ysis identifies the first version in which a bug appears,
by replaying the particular input that triggered it at all
previous commits.

Fault tolerance properties of distributed systems, by
contrast, assert the system computes a correct outcome
even in the face of a predefined class of faults, such as
machine crashes and network partitions. Consequently,



the classic software quality techniques described above
are useless. Subtle changes to protocols can fundamen-
tally affect fault tolerance characteristics; seemingly in-
nocuous modifications may trigger incorrect behaviors.
Notably, an input known to trigger a bug in a particular
version of the protocol is not guaranteed to trigger the
same bug in a different version. As a result, regression
testing, as we currently employ it, is fundamentally too
weak to prevent fault tolerance regression bugs. Root
cause analysis is similarly inadequate, because a set of
faults triggering bugs in later versions may fail to do so
in an earlier version.

In this paper, we argue that tool support for imple-
menting and evolving fault-tolerant distributed systems
needs to be rethought. We advocate exploration of the
(sparse) middle ground between existing testing tech-
niques practically inadequate for addressing fault toler-
ance concerns and traditional verification techniques ill-
suited to the continual evolution of real-world implemen-
tations. We describe our experience using a novel bug-
finding methodology called Lineage-Driven Fault Injec-
tion [11] to test a new replication protocol developed at
Elasticsearch [49]. We show how the lightweight verifi-
cation approach makes it possible to apply software engi-
neering best practices such as regression testing and root
cause analysis in the context of fault tolerance properties
and identify desiderata for future tools.

2 Motivation

Distributed systems prove an unwieldy challenge to
the mature quality methodologies we typically apply to
evolving software. In particular, issues arise because
fault tolerance properties are sensitive to a space of faults
as opposed to specific inputs. In traditional methods of
testing, bugs are characterized by inputs, whereas in dis-
tributed systems they are tied to the execution schedule.
It is this disparity that necessitates use of a different tool
for testing and verification for fault tolerance.

Consider, for instance, a distributed system that relies
on a leader election module. Version 1 of this module
implements bully leader election [26], choosing the node
with the minimum ID as leader, and Version 2 chooses
the node with the maximum ID. It’s not difficult to con-
vince ourselves that these are essentially the same proto-
col, and as a result, it might not occur to us to re-verify.
Imagine now that there is a bug in the downstream logic:
if the leader crashes, it fails to uphold its invariants.

If we first encounter this bug in Version 1, following
best practices, we might write a regression test that in-
jects a fault into node x in all future tests. However, that
input is not sufficient to trigger the aberrant behavior in
Version 2. Though we have the same bug in Version 2,
crashing x may not trigger it. Instead, crashing node y

will. For us to discover y as a trigger, we would need to
back-port the protocol changes to the specification and
re-verify.

Conversely, if we first encounter the bug in Version 2,
we might perform root cause analysis and work back-
wards through the commit history, replaying the failure
of y in earlier versions. Yet we would still fail to detect
the bug because, in Version 1, a failure in x, not y, trig-
gers the behavior. Again, we find that we must re-verify
for every commit if we hope to discover the bug.

We are left wanting something that works like verifi-
cation, but feels like testing. We need to perform a prin-
cipled search of the space of execution schedules while
retaining the efficiency, tool support, and integration pro-
vided by existing testing practices. This search has to
be run on every commit, but an exhaustive search of the
space of possible combinations of faults is intractable.
There is a need to prune the space of potential faults we
must explore for testing and verification, but a dearth of
tools available to do so.

3 Background

This paper is based on insights from a summer intern-
ship at Elastic, a distributed data store vendor whose
products focus on real-time search and analytics of
documents [27]. At the time, their engineering team
had deployed a data replication protocol based on Pri-
mary/Backup. Any Primary/Backup protocol needs a
way to sync a stale copy of the data with the current pri-
mary. The Elasticsearch protocol uses a method based
on file syncing to do so. Since file copying is inherently
slow, Elastic was looking for a faster protocol that can
work by synchronizing individual operations and avoid-
ing the overhead of copying large files. The new protocol
would work without pauses in writes and allow index-
ing to multiple documents concurrently. Since this was a
new algorithm, Elastic was looking for ways to formally
verify it. However, most verification tools require speci-
fications and it is not reasonable to think that every time a
programmer comes up with an optimization, they imple-
ment it in code and add it to the specification. Therefore,
they favored an efficient, lightweight tool designed for
easy use and incorporating strong failure scenario explo-
ration guarantees.

Elastic engaged our research team because they
wanted a technique that strikes a balance between formal
verification and testing—in particular, the strong correct-
ness guarantees of the former and the agility of the latter.
Lineage Driven Fault Injection (LDFI) is an analysis and
fault selection framework that harnesses concepts from
logic programming and database theory to construct a
representation of the underlying system model and de-
rive explanations for behaviors under different fault sce-



narios [11]. The approach builds a model based on a
good system execution and explores only fault scenarios
capable of forcing the system into a bad state. This opti-
mization greatly reduces the space of examined fault sce-
narios, making it tractable to perform a search of the fault
space each time the underlying implementation changes
(even trivially).

We implemented a sequence of versions of the repli-
cation protocol and used LDFI to incrementally verify
them as a part of continuous integration. The following
section describes our experiences using LDFI to examine
the impact of the modifications on overall correctness.

4 Modeling the replication protocol

The core Elasticsearch data replication protocol is a vari-
ation of primary backup. All client requests are routed to
the primary and are only acknowledged after they have
been replicated by the primary on all replicas. While
building the system, we defined incomplete versions of
the protocol starting with the core functionality, the last
version being as close to the real system as possible.
Each version, as a result of being incomplete, had histor-
ical bugs. Discovering these issues that were not caught
by conventional software engineering techniques gave us
confidence that the approach is effective.

Since the Elasticsearch API guarantees focus around
a single document, we modeled a single document with
concurrent accesses, rather than multiple independent
documents. For simplicity, we focused on an cluster with
one primary and two replicas. To simplify the evalua-
tion process, the specification also allows the existence
of a master oracle omniscient with respect to the state of
all other processes in the system. The master oracle ab-
stracts away the running of some correct consensus pro-
tocol internally on a group of servers.

4.1 Catching Bugs Early
There are many instances in the software development
cycle for a bug to be introduced, the first of which is
when a protocol specification is converted to an imple-
mentation. During our case study, we found a bug which
manifested precisely from such a translation scenario.
As illustrated in Figure 1, after sending two concurrent
writes to two different nodes in the system, LDFI tested
a scenario in which one of the writes is replicated suc-
cessfully while the second write is replicated on only one
of the replicas. Then, before the second write replicates
on the other node, the primary fails over. Subsequently,
the node on which the latest write request has not been
replicated becomes the new primary. The two replicas
are now (and will forever remain) inconsistent.

Discovering the bug requires primary failure after

Figure 1: Concurrent-writes bug. Process M represents
the mast oracle; Process C represents the client; and all
Process nN processes represent active replicas.

launching successful writes to only a subset of backup
replicas. Furthermore, a replica from the unlucky sub-
set must become the new primary. The main difficulty in
catching this bug using techniques such as test-driven de-
velopment or regression testing is the manual derivation
of relevant test cases. LDFI offers a better alternative by
generating such scenarios automatically. The technique
analyses the flow of data throughout the system for a sim-
ulated correct execution and iteratively examines the pro-
tocol’s responses to different message drop/process crash
combinations.

4.2 Dormant Bugs

When we discover a bug, we would like to go back in
history to determine the version at which the bug was
introduced. This is because a bug can lie dormant for
a long time before it is discovered. As an example, after
discovering the bug with concurrent writes, we were able
to reproduce the bug in the case in which there was only
a single write. Figure 2 represents this exact scenario. As
can be seen, the two bugs are similar, but do not manifest
from the same fault scenarios. This reinforces the claim
from our motivating example that techniques such as root
cause analysis as they are generally deployed would not
be effective in reasoning about the fault tolerance prop-
erties of distributed systems.

In this particular case, in a system supporting concur-
rent writes, we would have witnessed the same interac-
tions as the single write scenario with appropriate in-



Figure 2: Concurrent-writes bug occurs in the single-
write scenario as well

put data. This brings into sharp focus the fact that the
input data we start with matters in finding interesting
bugs.We discuss the problem of simultaneously search-
ing the space of faults and inputs in Section 5.

4.3 Optimizations
Once a protocol implementation exists, practitioners nat-
urally optimize for performance or carry out function-
ality extensions. However, some optimizations may
change the specification and without further verification,
we cannot (or at least shouldn’t) offer statements regard-
ing correctness.

4.3.1 Sequence Number Optimization

A seemingly minor optimization can result in a serious
fault tolerance bug. In Elasticsearch, the primary locally
chooses monotonically increasing sequence numbers to
enforce ordering on concurrent requests. Sequence num-
bers were introduced to prevent newer data from being
overwritten. To avoid extra processing, the following
rule was applied: If the sequence number associated with
a write request has been seen before, drop the payload
but acknowledge the request.

Now consider a scenario in which the primary fails
over after sending write requests from a client to a sub-
set of the backup replicas. Suppose further that a replica
ignorant of the write takes over as the primary and re-
ceives a new write request. Since sequence numbers are
locally determined by the primary, it may pick the same
sequence number as the incomplete write. It will then
send the write to all the active replicas. However, some
replicas may drop the write in adherence to the above op-
timization. Figure 3 demonstrates one instance of such
an execution. Fortunately, LDFI quickly and automati-
cally discovers such a scenario by using the initial suc-
cessful execution to test fault scenarios that may cause

Figure 3: Optimizing for sequence numbers

failures.
The above represents just one scenario in which ver-

ification can catch bugs in optimizations. Optimization
carries the risk of introducing entirely new bugs capa-
ble of breaking the end-to-end properties of the system,
which is best handled by verification-based tools.

4.3.2 Checkpoint Optimization

When a new node is promoted as primary, a re-sync is
necessary to ensure that all the active replicas in the sys-
tem are consistent with the new primary. In the initial
model, all writes were replayed to the replicas. How-
ever, this is extremely expensive and inefficient as only
operations that weren’t acknowledged to the client need
to be replayed. Therefore, we model a checkpoint opti-
mization using local and global checkpoints to ensure the
entire history of acknowledged messages is not resent to
replicas upon the election of a new primary. Each replica
maintains a local checkpoint while a global checkpoint is
the minimum of all local checkpoints. A newly elected
primary only sends update messages to replicas possess-
ing a sequence number greater than the global check-
point. This variation of the protocol introduces a fair
amount of complexity, but produces no counterexamples
when run against LDFI.

Simplicity of an optimization is not a consideration
in determining if the correctness guarantees of a system
have been violated. In this section, we demonstrated how
a seemingly simple optimization breaks system guaran-
tees while another more intricate one doesn’t.



5 Past and Future Work

Our experience at Elastic suggests approaches like LDFI
are a step towards improving the state of the art in dis-
tributed software quality. In this section, we place our
work in context between the past developments upon
which it builds and the work that we hope will follow.

The protocol described in Section 4 is a variant of Pri-
mary/Backup [5, 40, 55], a well-understood data replica-
tion technique that (when correctly implemented!) en-
sures single-copy consistency. As we argue in Section 1,
protocols such as Primary/Backup are continually rein-
terpreted and extended in practice and developers (ever-
optimistic by nature) derive false confidence from the ab-
stract connections to “correct” protocols.

Concurrency bugs: On one side of the spectrum, ma-
ture verification techniques such as model checking [24,
33,45,58,59]—particularly the software model checkers
capable of verifying real implementations [14,37,44] —
are ideally suited for reasoning about concurrency bugs
triggered by nondeterministic scheduling orders. Un-
fortunately, verifying fault tolerance properties of dis-
tributed systems with state space exploration techniques
like model checking is challenging due to the combina-
torial explosion of possible faults [29, 30, 39].

Recent work on semantic-aware software model
checkers (e.g. SAMC [39]) is particularly encourag-
ing. These tools require encoding domain knowledge
about any independence and symmetry characteristic to
the problem to dramatically reduce the state space un-
der consideration. Such a process supports the efficient
exploration of the system execution behaviors dependent
upon complex patterns of faults and orderings.

An ideal tool solution would combine the best fea-
tures of LDFI (which automatically builds models of
domain knowledge, but ignores concurrency and asyn-
chrony) with state-of-the-art combined approaches such
as SAMC, since we know from Fischer et al. [23] that
some of the most fundamental difficulties of distributed
systems exist at the intersection of partial failure and
asynchrony! LDFI’s roots in data-centric programming
languages suggest a unique approach to tackling concur-
rency bugs. The CALM Theorem [7, 12, 32], which as-
serts monotonic programs invariably produce determin-
istic outcomes for all message delivery orders, provides
an insight into how event orderings either necessitate or
avoid race conditions at runtime. We are developing a
prototype system that combines the Lineage-Driven ap-
proach (utilizing explanations of what went right to rea-
son about what could go wrong) and CALM analysis
(using static analysis to prove commutativity of message
processing logic) to simultaneously prune the space of
faults and re-orderings.

System Models: On the other side of the spectrum,

fault injection frameworks [1,2,22,25,29,30,52] are ma-
turing. Approaches such as LDFI are complementary to
fault injection techniques and can be used to automati-
cally drive such classes of debugging efforts as substan-
tiated by Alvaro et al. [6]. LDFI is just one example
of a more general technique: build models of system
redundancy from observability infrastructure (e.g. trac-
ing systems) and use those models to prune the space
of faults to inject. Given how probabilistic models are
arguably more appropriate to the domain of distributed
systems, we anticipate future work on LDFI embracing
rather than masking the inherent uncertainties in timing
endemic to distributed executions.

Input Generation: In this paper, we assume the in-
puts to the system are given a priori and focus computa-
tional resources on fault selection. However, in practice,
it can be tricky to discover the inputs required to trig-
ger a bug. A variety of approaches to input generation
and test generation [16, 19, 41, 50] are available. While
it is tempting to argue that these techniques are comple-
mentary to our approach, the reality is more nuanced. In
practice, some fault tolerance bugs in distributed systems
are triggered only by specific interleavings of inputs and
fault events; Zave’s counterexamples [61] to the correct-
ness invariants for Chord [54] provide a compelling wit-
ness. We are pursuing work that co-optimizes the search
through faults and inputs.

Debugging tools: When a testing or verification tool
identifies a possible bug, the process of debugging has
only just begun. Much like the quality assurance tech-
niques discussed in Section 2, classic software debug-
ging approaches, as referenced throughout the paper, are
ill-fitted to distributed systems. Currently, distributed de-
bugging tool support is in its infancy, so a great many
directions are possible. Our experience using LDFI at
Elastic suggests the provision of high-level explanations
of how a system achieves (or fails to achieve) good out-
comes are a good starting point for taming the complex-
ity of distributed debugging. Provenance [15, 21, 28,
36, 43, 62] is a well-established model in the database
and systems literature for providing explanations of out-
comes. Using provenance to reason about distributed
executions, however, is a young research area capable
of radical growth in tandem with future improvements in
observability infrastructure support [3, 4, 13, 18, 48, 51].

6 Conclusion

Existing bug detection and root cause analysis tools are
inadequate for assessing the correctness of distributed
protocols. The paper describes our experience seeking a
middle ground between formal verification and software
testing techniques while developing a novel distributed
protocol intended for a real-world, production environ-



ment. Given our success, we are optimistic that LDFI is
a step in the right direction. However, to be clear, we
do not believe in a one-size-fits-all solution. Our experi-
ence confirms our intuitions that the future of fault toler-
ant software development is unlikely to come in the form
of a single verification methodology. Rather, we see a
future in which tool support for distributed software im-
plementation, evolution, and debugging is improved in a
variety of directions. The state of the art is so desperately
poor that is should be easy for the research community
to make an impact!
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7 Discussion

Open Issues: Translating protocol designs into Dedalus
was, ultimately and unfortunately, a bottleneck. De-
veloping minimally weakened variations of LDFI that
shift away from the specification requirement and toward
more flexible input formats, such as system execution
traces or call-graphs, is an active area of future work that
increase general appeal of the technique.
When Does the Whole Idea Fall Apart? A number of
failure classes exist beyond the scope of the presented
LDFI approach. For example, LDFI cannot yet han-
dle complex event interleaving patterns reminiscent of
Zave’s Chord counterexamples [61], as highlighted in the
future work section. Additionally, Byzantine failures are
still far beyond the capabilities of the current technique.
Feedback Solicitation: In this paper, we identify the
need for new methods to optimally harness current soft-
ware quality best practices for debugging the fault tol-
erance properties of distributed systems. We are partic-
ularly interested in rebuttals against any of our core be-
liefs, especially:

• Classical software quality techniques such as re-
gression testing and root cause analysis do not ex-
tend to distributed systems in their current form.
• LDFI serves as a bridge between verification and

testing, as demonstrated by its successful real-world
application.

Additionally, the paper demonstrates that classical de-
bugging techniques can be effectively applied to dis-
tributed systems with the right intermediary formula-
tions. What other tools should we be building? What
potential impact could the LDFI approach have on such
tools?

Type of Discussion and Controversial Points: Apart
from the discussions generated from our assertions
above, comparison between techniques such as LDFI and
products from the ever-evolving field of model checking
would be anticipated discussion topics. As highlighted in
the related work, some existing research seeks to expand
the power of model checkers for distributed systems ap-
plicability. Are techniques in the intersection of testing
and verification valuable if such efforts succeed? Fur-
thermore, will the future landscape of distributed soft-
ware debuggers essentially manifest as a variation of a
one-size-fits-all solution or, as we believe, a rich toolset
addressing particular classes of debugging needs? We
look forward to debating these visions of the future.
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