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Abstract

Latency-sensitive applications like virtualized telecom
and industrial IoT systems require a service for ultra-
fast state externalization to become cloud-native. In this
paper we propose a distributed shared memory system,
called DAL, which achieves the lowest possible latency
by transparently co-locating individual data items with
applications working on them. Upon changes in data ac-
cess patterns, the system automatically adapts data loca-
tions to keep the number of remote operations at a min-
imum. By avoiding the costs of network transport and
using shared memory communication, the system can
achieve 1 µs data access latency. We envision DAL as a
platform component which enables latency-sensitive ap-
plications to take advantage of the cloud.

1 Introduction

A key requirement for a wide range of cloud compute
domains is to process a continuous influx of input data
with ultra low latency. Virtualized telecom systems need
to handle millions of signaling events every second while
providing fluent user experience, even for delay-sensitive
applications. The emerging field of Industrial IoT and
cloud controlled collaborative systems pose even tougher
challenges with respect to latency [3]. For instance,
imagine a cloud controlled factory floor where the var-
ious fixed and mobile robots are without a precisely pre-
scribed plan for activity and movement. Instead, they
collaborate dynamically as dictated from their cloud-
based control logic to fulfill a complex production task
[4]. In order to appropriately drive these robots the cloud
has to process the various sensor readings and video
streams, and provide control feedback within strict de-
lay bounds, e.g., within 10 ms [8].

Typical cloud-ready solutions involve a backing data
store where application states are externalized. This
stateless worker programming model improves the re-

siliency and scalability of virtual functions. However, in
case of low latency & high reliability systems—such as
the ones mentioned above—it is challenging to provide a
data backend that is fast enough for state accesses to not
severely degrade the end-to-end performance.

As distributed main-memory data stores have gained
a lot of momentum in the recent years, there appeared
specialized systems that are eagerly optimized towards
latency performance, such as RAMCloud [10] and Pi-
laf [9]. These solutions concentrate on eliminating the
various sources of delay in a data access transaction, such
as buffering in protocols, context switches and blocking
induced by thread and process synchronization. Their
efforts were so successful that essentially LAN trans-
port costs became the dominant factor in overall response
times. To illustrate this, we tested RAMCloud in our lab
equipped with commodity 10 GbE networking hardware,
and found that requests spend 90% (19 µs) of their time
on transport, leaving only 10% (2.15 µs) to end-host pro-
cessing.1

In this paper we propose DAL, a distributed shared
memory system which goes beyond the known latency
optimization techniques, and tries to eliminate transport
costs by taking data sharding to the extreme. Instead
of applying traditional hash- or range-based schemes to
map keys to data servers, we handle the location of each
data element separately. Using this single-key sharding
approach it becomes possible to migrate data elements
between server instances one-by-one. We facilitate local
data access by co-locating data with client applications
whenever possible.

By exploiting local data storage and shared mem-
ory communication, we achieve the lowest possible data
access latency for applications where incoming events
can be routed consistently to stateless worker instances,
e.g., on a per subscriber basis in telecom core networks,
or per-device in collaborative robot control systems. For

1Even on high-end InfiniBand hardware, 66% of a RAMCloud re-
quest’s time is spent on network transport [10].



such stateless applications DAL can move externalized
states to the worker process’ physical location. Upon
any change in event routing, due to e.g., a session mo-
bility event or the failure or scaling of worker instances,
relevant states are seamlessly moved to the node hosting
the new worker, effectively minimizing data access costs.

In the rest of the paper we first describe the concepts
behind DAL, then evaluate our prototype implementation
through a simplified use-case, and finally discuss fault
tolerance, applicability and security aspects.

2 Concept and design

DAL is a purely RAM-based solution consisting of two
main components: a server process and a client library.
To enable local data access, each physical server that
runs client processes should also host a server instance.
The ensemble of these server processes forms a DAL
cluster. Every server instance maintains an indexed
memory area, the pool for storing data items read and
written by clients. The union of all pools comprises the
distributed memory of the service.

Separation of keys and values. One of the key de-
sign goals of DAL is to allow individual data elements
to be moved physically close to the applications access-
ing them—preferably to the same machine. To achieve
this, we apply a layered approach for addressing data. In
the lower (internal) layer data elements are addressed di-
rectly by the target server’s IP address and a pool index.
The upper layer employs key-based addressing, essen-
tially providing a key-value interface to the clients.

To establish the binding between the two layers, we
differentiate two server roles: the key-server is respon-
sible for managing key operations, such as creating
or deleting keys, and resolving key to direct location
queries. Data servers, on the other hand, process data
manipulation commands with direct addresses. A sin-
gle DAL server instance can and typically does combine
both roles to simplify the deployment.

To access a certain key, we apply a two-phase lookup
mechanism. To route key operations, DAL uses a tradi-
tional hash-based sharding scheme: the client takes the
hash of the key modulo the number of key servers, and
then queries the responsible server for the data location.
Hereafter, the client can issue direct data manipulation
commands to the designated data server. To avoid the
overhead of unnecessary key operations, the client can
store the direct address for the key in a handle, e.g., in a
variable or a cache.

Data move. For each data item, the data server keeps
track of the number and origin of accesses. When the
server detects that an item is mostly accessed from a spe-
cific remote location, it proposes a data move. Then, as

it is depicted in Fig. 1, the client initiates a data move
transaction at the responsible key server. Next, the data
is copied over to the new data server, the key-to-location
mapping is updated, and finally the original value is re-
moved. If the key server is co-located with the new data
server, the complete transaction between 1–8 takes two
remote operations, and four otherwise.

Client Key server New data
server

Old data
server

1: Data access

2: Provide data & propose move

3: Data move

4: Request item

5: Item move

6: Item data

7: Item location

8: Item location

9: OK

10: Delete

11: OK

Figure 1: The steps of the data move transaction.

As a result, data items that are dominantly used by a
single client will be accessed locally after a short tran-
sient time. When a client attempts to access an item that
has been moved, the operation fails, and the key server is
re-queried for the new location.

Access patterns. Besides locality optimization, another
design goal of DAL is to support various access patterns
according to which cloud applications can share data.
Beyond the store-retrieve functionality, DAL servers can
act as message brokers: clients can subscribe to keys and
whenever a write happens to its data, the server pushes
the new value to the subscribers. In essence, applications
can turn traditional keys into publish-subscribe channels
this way. A convenient aspect of this solution is that pro-
ducers can use the same API to write data to a key, re-
gardless of how consumers are reading it, i.e., whether
they wish to receive every update or just read the value
occasionally.

To facilitate the dynamic scaling of applications, con-
sumers of a channel may be grouped. Within each group,
messages are load-balanced among all receivers in a
round-robin fashion or consistently, based on the high-
est random weight algorithm [13].

Moreover, DAL supports request-response communi-
cation between clients. This API is also built on top of
the key-value abstraction, and as a result, the same load
balancing mechanisms can be used for request routing as
for messaging.
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Figure 2: DAL architecture.

3 Prototype

To prove the viability of our concept and measure its
performance we implemented the DAL server and client
library in around 6000 lines of C++ code running on
GNU/Linux. This section highlights critical decisions
of the implementation we took to ensure lowest possible
data access latency.

Fig. 2 shows the key elements of the architecture.
The server-allocated memory pool stores both the key-
to-location mapping and the value items, assuming that
the key and data server roles are combined. Data items
can have arbitrary sizes up to free pool capacity, and
carry metadata fields, such as the auth field and ver-
sion number. The auth field is a unique ID for the key-
value-location triplet that guards against stale accesses
via already invalidated data handles. Version numbers
are atomically incremented on write operations to facili-
tate change detection by local clients.

Local operations. A client process interacts with its
local DAL server via shared memory IPC, as shown in
Fig. 2. We make local data reads as fast as possible by
memory-mapping the storage pool of the server read-
only in all client processes. Data items are then read
from the pool directly without server involvement. The
latency of this operation is only subject to the perfor-
mance characteristics of underlying paging and schedul-
ing mechanisms. To ensure that the returned data indeed
corresponds to the intended key and that it was kept in-
tact during the read operation, we employ a form of opti-
mistic concurrency control. The client library compares
the version number and auth fields right before and af-
ter the read, and re-reads the data if either of these fields
have changed during the operation.

For local non-reads and all remote operations the
server allocates a separate control block for each local

client, in the form of another shared memory area de-
noted Ck in Fig. 2. This area is writable both by the client
and the server, and contains data structures for control-
ling concurrent access to its fields. Clients request spe-
cific data operations through their control blocks, which
the server checks periodically in a busy loop and services
requests immediately.

To eliminate extra latency costs from context switches
and inter-thread synchronization, all client requests are
handled on a single thread of execution. As a conse-
quence, this design enforces serialization of data oper-
ations, ensuring consistent access to data elements. As
the latency overhead of inter-process signaling is high
(≈ 7µs), for local operations the client library polls the
control structure until completion by default.
Remote operations. For remote data manipulation the
local DAL server serializes and proxies the requests, thus
hiding the details of network transport from its clients.
One of those details is the use of DPDK to bypass the
kernel network stack, providing low latency network ac-
cess [5].

Clients can configure an operation timeout, the time
they are willing to wait for the response. To balance be-
tween latency and CPU usage, clients can also set the
wait strategy, telling the library whether it should use
polling or the signaling functionality of the OS to get
notified when the reply arrives.

To avoid uncontrollable buffer growth, the transport
layer uses connectionless UDP transmissions. Reliabil-
ity is provided by automatic retransmissions based on
a transport timeout. Contrary to the operation timeout,
the transport timeout is not set by the application but in-
ferred from network delay statistics collected by the DAL
server, and adjusted on a per request basis.

In the absence of a local server, the client library can
still transmit via the standard kernel socket API—with
considerably higher latencies.
The data move algorithm. In order to optimize the lo-
cality of individual data items, servers continuously an-
alyze recent access histories on a per data item basis, as
described in Sec. 2. To decide when an item should be
moved, the algorithm checks if the majority of the last
N accesses came from a single remote host (N is con-
figurable at item creation). At negligible extra compute
cost, this simple algorithm achieves significant gain for
applications where data elements have a single dominant
process accessing them, such as the state externalization
model outlined in Sec. 1. A more sophisticated method
would require resiliency against ping-pong effects and
locality optimization for applications with heavy state
sharing among processes, which are topics we plan to in-
vestigate in the future. The latter would require the com-
bination of our data movement capabilities with an ad-
vanced orchestration system, so that both processes and



ELEMENTARY DATA OPERATIONS 50% 99%

Local read 0.7 1.1
Local write 1.1 1.7
Remote read or write 21.9 22.8

COMPOUND REMOTE READ/WRITE

With local key lookup (A) 22.6 26.6
With remote key lookup (B) 42.4 46.6
With move & local key server (C) 47.2 52.8
With move & remote key server (D) 87.4 94.6

Table 1: Access times for selected operations in µs. Sam-
ples for compound operations A–D are shown in Fig. 3.

data can be moved to their optimal location based on ob-
served access patterns.

4 Evaluation

In this section, we evaluate the performance of our proto-
type via a stateless worker application. For the tests we
use three physical machines equipped with Intel Xeon
E5-2670 v3 CPUs, 64 GB RAM and Intel X540-AT2
10 GbE NICs connected through a commodity 10 Gb
switch. We deploy both the DAL servers and the ap-
plication components as Docker containers. Each ma-
chine hosts a single DAL server container sharing its
IPC namespace with the application containers to enable
shared memory communication.

The upper part of Table 1 lists the performance fig-
ures for the elementary data operations. To obtain these
results, we measured 1 million randomized reads and
writes with 100 byte values. As shown in the table,
we can achieve sub-microsecond access times with lo-
cal reads, while a remote data operation costs 22 µs, of
which 19 µs is spent on network transport.

A single server instance was measured to serve 1.6 M
local writes, or 0.9 M remote read or write operations per
second. As noted earlier, local reads are executed by the
client processes without server involvement, so the total
data access rate can exceed these numbers.

A stateless application. In order to evaluate our system
in a dynamic setting, we simplified an existing DAL use
case to emulate a stateless application with geographic
partitioning. The latter is an inherent property of spa-
tially distributed applications, such as session controllers
in mobile networks, for which DAL can provide seam-
less handover of session states during mobility events. In
an edge cloud setting this means that relevant states are
spatially following the mobile entity and context transfer
is provided as a reusable service.
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Figure 3: Data access times for a randomly selected state,
with handovers between workers. Transients indicate re-
mote access regimes, repeatedly optimized by DAL.

The test application receives input events via DAL
messaging, with each event carrying a session identi-
fier. Sessions have their corresponding states stored in
DAL, and whenever the application receives a new event
it reads the matching state from DAL, updates it, and
writes it back.

The application is scaled out to run in multiple in-
stances, and we use a two-tier mechanism to route events
to instances. First, to imitate the spatial partitioning
present in many mobile systems, we organize instances
into groups, each group being responsible for a certain
area. We route events to groups based on an emulated
location for the session. Second, we use the session ID
to route messages to instances within a group in a sticky
fashion, cf. the paragraph on access patterns in Sec. 2.

DAL seamlessly adapts the location of each external-
ized session state, so that data gets co-located with the
corresponding worker instance. Changes in input event
routing may happen due to various reasons, of which
we exemplify two cases in our experiments. The first
is the scaling of applications upon changing load. Dur-
ing a scaling event, a large set of sessions is redirected
instantaneously to a different worker instance. The sec-
ond case is session mobility, i.e., when the source of in-
put events moves from one pre-defined area to another.
This induces individual state transfers between applica-
tion groups.

Tracing a single session. In this experiment, we run the
test application and emulate frequent mobility events for
each session. To examine the impact on performance, in
Fig. 3 we plot the data access times for a single randomly
chosen session state. The time-series indicates that ini-
tially the data item is remote for the worker process.
After a few accesses DAL migrates the item at t = 1s,



and subsequent accesses are executed much faster.2 As
routing changes kick in every few seconds, data access
times jump to the remote regime again, and then get re-
optimized by DAL.

The transients can be further broken down into three
stages. Right after a route change, the first data access by
the new worker requires an extra key-to-location lookup.
Depending on the location of the responsible key server,
this step may (B) or may not (A) trigger an extra network
round-trip. Then, we have a remote access regime, which
is settled by a data move transaction (detailed in Fig. 1).
This last step involves either two (C) or four (D) network
round-trips—again, depending on the location of the key
server—and appears as a spike reaching up to 47 µs or
87 µs, respectively. The lower part of Table 1 lists statis-
tics for the A–D cases. It can be seen that all categories
exhibit low variability.

Mass evaluation. In order to demonstrate the behavior
of a DAL cluster under heavy load, we repeat the pre-
vious experiment, and execute scaling events to trigger
mass state migrations.

Fig. 4 shows how the share of various data operations
from Table 1 evolves during the experiment. Initially, we
experience a high ratio of key lookups, and as the states
are distributed randomly between the three DAL servers,
most operations are remote. In the range 2s 6 t 6 10s,
states are automatically moved to their optimal location,
and the system reaches a steady state. We can observe
that the share of local accesses does not reach 1. This
is because we continuously generate session mobility
events, causing a small fraction of session states to al-
ways be dislocated.

The right side of the figure shows the effect of adding
an extra worker to one of the application groups at t =
39s. As events begin to be routed to the new instance, it
starts to access states kept in remote DAL servers. As a
result, there appears a sudden increase in the number of
key lookups, and a drop in local data operations. This is
relaxed during the period 40s 6 t 6 50s, after which the
system returns to the optimized steady state.

5 Related work

Data partitioning and placement methods in key-value
stores are typically strict, disallowing fine-grained data
relocation. Furthermore, in most cases, the storage
server cluster is physically separated from clients which
makes local data access impossible. In recent years vari-
ous competing solutions have been developed to address
ultra-low latency data access [10, 2, 6, 9, 14, 7]. All

2The test system would work even better if we auto-moved session
states on the very first remote access. For the sake of presentation we
configured the window size here to N = 8.
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Figure 4: The mixture of elementary and compound op-
erations during the mass experiment. Key lookups and
data moves also include a remote data access.

of these systems use hash-based partitioning and sepa-
rate servers and clients. FaRM [2] accepts location hints
when creating objects making co-location and single
machine transactions possible. While RAMCloud [10]
achieves impressive results with 5 µs remote read oper-
ations over InfiniBand, without the possibility of local
data access and flexible data movement, access times will
still be dominated by transport delays.

The cluster mode of Redis [11] supports local data
access and it is also possible to enforce the static co-
location of objects. However, even local communication
goes through the kernel network stack, thus its latency is
in the range of tens of microseconds.

Besides the above mentioned solutions, there are other
non latency-oriented data systems which can apply finer
control over the placement of data elements. Agarwal
et al. proposed a spring force model to optimize web
session data placement between datacenters. Their so-
lution is based on the offline analysis of access logs [1].
Swift [12] studies data placement methods for optimiz-
ing execution times of a transaction manager on top of
HBase. The method is based on clustering related items
of the data store to limit the number of nodes involved in
each transaction.

6 Conclusions

In this paper we proposed DAL, a distributed shared
memory system that achieves 1 µs data access by opti-
mizing the physical location of each individual data ele-
ment. Besides ultra-low latency, DAL provides seamless
elasticity for scaling and session mobility events, mak-
ing state externalization of latency sensitive applications
possible.



Discussion

Although the paper does not address it, replication is im-
portant for many applications to ensure resilience against
node failures. Asynchronous replication can be applied
to our design without major impact on read/write la-
tencies. Due to the weaker consistency guarantees of
asynchronous replication, in corner cases node failures
can lead to lost updates. However, some application
types can simply recover from such events. For exam-
ple, many telecom VNFs can either rebuild session states
from other (significantly slower) data sources, or can
simply drop the affected sessions, and wait for a recon-
nection. Similarly, certain robot control applications are
designed to continuously adapt their states through tight
feedback loops, thus a single lost state update does not
break the control logic. Consequently, our design can
provide low latency with fault tolerance, at the price of
possibly dropping a small fraction of state updates in the
event of a failure. We believe this is a viable trade-off for
many soft real-time cloud applications.

The two-phase lookup mechanism produces single-
key shards, making the relocation of individual data el-
ements possible. This comes with the cost of an extra
location lookup (in most cases via the network), mak-
ing the first data access slower than subsequent ones. As
a result, our concept best suits applications where it is
possible to reuse the results of location lookups. In cases
when data handles cannot be effectively cached (e.g., due
to the non-partitionable nature and excessive size of the
key-space), the performance will lag behind that of ex-
isting systems.

Due to the key-location separation, data servers can be
added to the system at any time—local clients, if any,
will trigger data item relocations through the optimiza-
tion normally. On the other hand, the scaling of key
servers needs further work, most notably the handling of
large batches of item location relocations during reshard-
ing of key ranges.

Finally, the prototype does not consider security and
privacy aspects. If an application knows a key, it can per-
form operations on the corresponding value. This issue
can be addressed with a more fine-grained access con-
trol, for instance by providing a separate memory pool
for each tenant.
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