
Configtron: Tackling network diversity with heterogeneous configurations.

Usama Naseer and Theophilus Benson
Duke University

Abstract
The web serving protocol stack is constantly changing
and evolving to tackle technological shifts in network-
ing infrastructure and website complexity. For example,
Cubic to tackle high throughput, SPDY to tackle loss
and QUIC to tackle security issues and lower connection
setup time. Accordingly, there are a plethora of protocols
and configuration parameters that enable the web serv-
ing protocol stack to address a variety of realistic con-
ditions. Yet, despite the diversity in end-user networks
and devices, today, most content providers have adopted
a “one-size-fits-all” approach to configuring user facing
web stacks (CDN servers).

In this paper, we illustrate the drawbacks through em-
pirical evidence that this “one-size-fits-all” approach re-
sults in sub-optimal performance and argue for a novel
framework that extends existing CDN architectures to
provide programmatic control over the configuration op-
tions of the CDN serving stack.

1 Introduction

With the internet entering the zettabyte era and connect-
ing billions of users, there is a huge disparity in the net-
work conditions (bandwidth and loss rates) faced by end-
users [5]. To address this disparity and improve quality
of experience (QoE), online service providers (OSP) are
constantly developing novel protocols and configuration
standards for their content distribution network or point
of presence servers (CDN). Over the last several decades,
the networking community has developed a broad range
of protocols across various layers of the stack from New
Reno, Vegas, Compound TCP to Cubic, from HTTP1.1,
and SPDY to HTTP2.

While the community continues to develop new pro-
tocols and establish new configuration standards, there
is an erroneous assumption that the newer protocols and
configuration standards are strictly better than the older

ones. For example, Cubic and HTTP2 are wildly de-
ployed despite proven [31, 8, 25] evidence that these pro-
tocols are sub-optimal under certain conditions (§ 2.1).

The optimal choice of protocol and parameters is con-
tingent on the network infrastructure [31, 8, 20], website
complexity [4, 22], and end-user device. Furthermore,
the constant evolution of networking infrastructure, end-
user devices, and web complexity results in the invention
of new protocols and the re-evaluation of old configu-
ration parameters. Although different regions and ISPs
leverage radically different infrastructures and host radi-
cally different devices, CDNs continue to employ a “one
size fits all” which results in sub-optimal performance in
some regions [2]. Motivated by this sub-optimal perfor-
mance, online service providers are taking drastic steps
to educate and motivate their developers to explicitly
tackle underlying network and end-user heterogeneity.
For example, Facebook instituted “2G Thursday” — on
Thursday all traffic is throttled to 2G speeds forcing de-
velopers and network operators to tackle issues faced by
users on 2G networks [9].

In this paper, we eschew the notion of a “one size fits
all” approach to protocol and configuration selection for
CDN servers and instead argue for a “curated” approach
to protocol selection and configuration. In particular, we
argue that CDN servers should be configured and setup
with the optimal protocol and configuration parameters
for serving each connection. For example, a CDN server
serving high loss, low bandwidth connections may em-
ploy a lower initial window size than a server serving
low loss, high bandwidth connections.

To this end, we propose a framework for practically
improving end-user performance by introducing hetero-
geneity into the CDN server protocol configuration in a
principled manner. We argue for introducing a simple
but standard interface to the CDN server’s network stack
that exposes existing heterogeneity (e.g. TCP versions,
HTTP protocol, or Peering link) and enables remote con-
figuration. Additionally, our framework includes a learn-

1



Figure 1: Infrastructure for OSPs (e.g. Facebook [30]).

ing entity that determines the optimal configuration for
each end-user based on a combination of emulations and
passive measurements. Together our interface and the
learning entity enables a CDN to systematically intro-
duce heterogeneity into the server’s network stack in a
manner that systematically improves end-users perfor-
mance.

This paper takes the first step towards realizing our
system, Configtron, for reconfiguring CDN server net-
working stacks. Specifically, we make the following con-
tributions:

• First, we present a clear demonstration that one size
configuration, does not fit all network conditions
and web site complexities and moreover no one con-
figuration is strictly better than another, thus moti-
vating the case for heterogeneity within the CDN
infrastructure.

• Second, the design of a framework for systemat-
ically learning optimal configurations and practi-
cally reconfiguring CDN web servers without loss
of functionality.

• And lastly, a strawman implementation of our Con-
figtron, demonstrating the feasibility and practical-
ity of our approach.

Roadmap. Next, we present background (§ 2) with a
brief overview of motivating studies and related works.
§ 3 analyzes and quantifies the benefits of optimizing the
serving stack. § 4 explores the design choice we adopted
for Configtron. § 5 presents our prototype and § 6 ex-
pands on the design challenges we faced and deployment
scenario in production environment. Finally, § 7 provides
concluding remarks.

2 Background and Related Works

We broadly define the CDN servers of a online service
provider’s network (Figure 1) as the user-facing servers
that end-users interact with. Specifically, the content
provider servers in points-of-presence (PoPs) and con-
tent distribution networks (CDNs).

The CDN’s network stack, Figure 2, consists of the
TCP protocol implementations, the web server (proxy)

Figure 2: CDN server’s networking stack.

application, and content provider’s web application (e.g.
PHP or Java code). Traditional, these CDN servers em-
ploy broadly two different network stacks – one for user
facing connections and another for the data center fac-
ing connections. The data center facing connections
are often optimized to fully utilize the backhaul links.
Whereas, the user facing connections are often fine-tuned
to provide optimal performance in aggregate rather than
to provide optimal performance per-client. To account
for differences between a user’s local conditions, the
edge often deploys special web applications that infer
properties of the user’s local conditions and adjust mul-
timedia images, html, and javascript to optimize. Es-
sentially, the predominant approach is to reconfigure the
CDN stack at the content layer, e.g., upon detecting a
mobile client, many content providers redirect users to
the mobile site.

This paper explores the benefits of extending reconfig-
uration from the web application down to the server ap-
plication and the TCP/IP stack – and presents a system
for realizing reconfiguration in a principled manner. In
particular, there is a large space of potential parameters
that can be explored from the application to the TCP/IP.
To demonstrate the richness of the CDN server’s param-
eter space, in Table 1, we present a representative list of
these parameters and in § 3, we explore the impact of
reconfiguring a subset of these parameters (Table 2).

2.1 Motivating Measurement Studies

Next, we discuss measurement studies that motivate the
need for heterogeneity within the CDN’s network stack:

Heterogeneity at the congestion layer (TCP): Al-
though Cubic is used as the default congestion control
algorithm, the Linux kernel includes over 10 variants of
TCP. Moreover various measurement studies show that
different variants are optimal for different networking
conditions [27, 10]. Orthogonally, others [6, 2] have ex-
plored the impact of varying configuration parameters.

More recently, Google adopted UDP over TCP in their
design of QUIC (Quick UDP Internet Connections) [14],
thereby introducing more diversity into the stack. Exist-
ing studies of QUIC [20] show that QUIC outperforms
TCP in mobile networks with high RTTs but performs
sub-optimally (to TCP) in high bandwidth networks.

2



Layer Configuration Parameters
Network IP version, peering link.(IP)

Transport initial retransmission timeout (initRTO), autocork,
(TCP) congestion avoidance algorithm, send buffer size (wmem),

initial congestion window (initcwnd), window scaling [19],
receive buffer size(rmem), Nagle’s Algo, TCP low latency.

Session TLS version, OSCP stapling, TLS false start,
(TLS) dynamic record sizing.

Application HTTP version, push algorithm (HTTP/2),
(HTTP) pipelining configuration (HTTP/1.1).
Content video/img resolution, caching, compression algorithm.

Table 1: Representative list of configuration parameters.

Heterogeneity at the App layer (HTTP): SPDY [21],
now HTTP/2, is used uniformly by Google and others
over HTTP/1.1. However, recent studies [31, 8, 7, 20]
provide strong empirical evidence that HTTP/1.1 outper-
forms SPDY (HTTP/1) under high packet loss rates and
complex web-page dependencies, where multiple TCP
connections perform better than SPDY’s single, multi-
plexed TCP connection [31].

2.2 Related Work
Finally, we discuss related work on cross layer optimiza-
tions, creating standard interfaces for webstack, and con-
figuration management.

Cross-layer optimizations: The most closely related
work [2] explores the impact of cross layer configuration
optimization for a limited set of configuration parame-
ters, i.e., initial congestion window, HTTP pipelining,
Appropriate Byte Count, and autocorking. Configtron
explores a broader set of parameters (see Table 2) and
presents a system to systematically tune these parame-
ters in real time. While Configtron explores the trans-
port and application layers, other have examined making
changes at the content layer [26]: changing compression
algorithms. As part of future work, we intend to extend
Configtron to the content layer. Yet, others have explored
tuning lower layers of the stack [11, 18, 29, 17] for the
networking and link layers of wireless and mobile net-
works.

Configuration Management: Configtron’s configu-
ration management interface is motivated by existing at-
tempts to expose TCP parameters and standardize the
management interface for configuring TCP [13, 16].
Configtron extends on these approaches by encompass-
ing more parameters and extending the management in-
terface beyond TCP and into the HTTP and content lay-
ers. Whereas orthogonal approaches [13] directly col-
lect information from the network, Configtron passively
infers the state of the network conditions. Existing ap-
proaches to managing server configurations, focus on en-
suring correct functionality and detecting misconfigura-
tion [3, 28]. These approaches can be used to help im-
prove the manageability of Configtron and debug perfor-
mance problems that arise while using Configtron.

Takeaway While various measurement studies
demonstrate the need for heterogeneous configurations,
today’s internet employs a ”one size fits all strategy”
where one set of configurations, suitable for a subset of
the population, is used for the entirety of the internet.
We note that unlike these prior studies that explore
a single protocol or configuration parameter, in § 3
we present a more holistic exploration across multiple
protocols, parameters and layers of the protocol stack.
Furthermore, unlike prior work [2] we present a concrete
system (§ 4) to reconfigure and optimize the different
protocols and discuss design challenges (§ 6).

3 Empirical Study

To understand and quantify the benefits of reconfiguring
the networking stack, we conducted a large scale study
of the impact of selecting the optimal configurations over
the default configuration parameters across different net-
work conditions and websites.

3.1 Experiment Setup

To ensure reproducible and precise experiments across
the different configuration combinations, we leverage
MahiMahi [23], a proven network emulator for running
and re-running web page load experiments. MahiMahi
allows us to eradicate the variations in page load time
(PLT) that may arise due to unpredictability of vary-
ing network conditions. Moreover, MahiMahi includes
tools, called shells, that enable us to systematically mod-
ify and control network conditions – specifically, loss,
bandwidth, and RTTs. Each page is loaded five times
and the mean PLT is computed after filtering outliers. In
the future, we also aim to look at SpeedIndex [15].

In our experiments, we explore these dimensions:

• Network conditions: We explore the traditional
network properties: loss, latency, and bandwidth.
To control these network properties, we use the fol-
lowing linux tools: NetEM and TC. To ground our
study, we adjust the network latency, bandwidth,
and loss to reflect realistic network conditions from
various regions and networking infrastructure [1].
Network conditions tested include bandwidth of
{0.3, 1, 5}Mbps, loss rate of {0, 1, 2.5, 5}% and
delay of {50, 150, 250, 500}ms.

• Server Network stack: Table 2 presents the list
of network stack configurations explored. Col-
umn 3 represents the default configuration values
for Linux’s network stack [24]. To reconfigure the
CDN’s network stack, the Linux kernel provides a

3



Figure 3: Benefits of using optimal configurations.

variety of options that can be tuned by changing ker-
nel modules, using IOCTL socket calls, modifying
IP tables or modifying application modules.

• Website complexity: We tested a variety of web-
sites belonging to various categories; news, social
networks, sports, business, e-commerce, and enter-
tainment.

Layer Protocol Parameters Default Values Tested

tcp congestion control Cubic Reno, Cubic,
Vegas, BBR

initcwnd 10 3, 6, 9, 12, 15, 18
Transport tcp slow start after idle 1 0, 1

(TCP) tcp low latency 0 0, 1
tcp pacing 0 0, 1

tcp autocorking 1 0, 1

Table 2: CDN network stack configuration parameters.

3.2 Empirical Study on Reconfiguration
How inefficient is the “one-size-fits-all” strategy? We
begin by exploring the implications of using sub-optimal
configurations. In Figure 3 presents the difference in PLT
between the default and the best configuration. We ob-
serve that in the median case, there is a 10% improve-
ment in performance and in the tail (95th percentile) over
a 40% improve in performance. We note that the tail
conditions explored in our experiments are in fact repre-
sentative of a large fraction of realistic connections (e.g.,
2G connections in developing and emerging regions in
Africa and Asia): Specifically, 68% of tail conditions
have loss rates greater than 2.5% and bandwidth below
1Mbps. Moreover, over 40% of the gains are for content
rich websites, e.g.,msn.com, tmall.com, espn.com and
qq.com. We note that while these networks will even-
tually get updated, heterogeneity between different net-
works will always persist due to socioeconomic differ-
ences between regions.
Are some configurations strictly better than others?
Figure 4 presents a comparison of the top four config-
urations from the experiments for www.bbc.com. The

Figure 4: Comparison of top four optimal configurations.

coverage percentage (in circles) represents the percent-
age of conditions in which the given configuration works
better than others, e.g., C1 is optimal for 37.5% of the
conditions. Rectangular box show the PLT for the des-
tination configuration over the source configuration for
a specific network condition (bandwidth, loss rate, de-
lay), e.g., C1 is 2.7% better than C2 for condition (1Mb,
1% loss, 50ms). Figure 4 shows that no configuration is
strictly better than others — there is at-least one condi-
tion were each configuration is better or worst than the
other configurations. Moreover the differences are stag-
gering.
Is it easy to learn the best configuration for a spe-
cific network property? We start simple to answer the
question of learning the best configurations by building
C4.5 decision trees using the data from our experiments:
the leaves of the tree are configuration parameters in Ta-
ble 2 and the nodes are the predictive network condi-
tions. To build the decision tree, we binned the differ-
ent network conditions based on values. In Figure 5,
we present decision tree for www.youtube.com — a rep-
resentative decision tree. We summarized the decision
tree and pruned nodes for more predictable configuration
parameters: slow start after idle, low latency and auto-
corking. Our decision trees demonstrate that it is pos-
sible to learn the mapping of “optimal configuration” to
network conditions.

4 Architecture

In Figure 6, we present the architecture for Configtron,
our framework for proactively supporting the reconfig-
uration of CDN’s network stack at large scale. We il-
lustrate the functionality of the different components by

4



exploring the life cycle of a request.
When a new request arrives, the request router (our

Layer 4 load balancer) sends it to a front-end server. Un-
like traditional, Layer 4 load balancers, the request router
contains meta-data mapping IP-prefixes to pools of VMs
containing the appropriate configuration (for the specific
IP-pool). For IP addresses that the request router con-
tains no mappings of, the request router uses the default
load balancing rules that sends the request to a pool of
“default” servers — which are servers with default con-
figuration. Requests for IP addresses with known con-
figurations are directed to the appropriate pool of servers
with those conditions. This pool of servers consists of
a farm of appropriately configured VMs. In Configtron,
the VM represents the granularity of reconfiguration —
the level with which Configtron is able to configure (and
reconfigure) the CDN’s network stack. Moreover, con-
figurations are done once, at the beginning of the con-
nection.

Configuration Manager: The configuration manager
generates a mapping of IP-addresses to optimal configu-
ration parameters. To ensure scalability, the IP-addresses
are aggregated by prefixes and the configuration param-
eters are aggregated to N different templates (where N is
empirically derived using methodology described in Sec-

Figure 5: Decision tree for youtube.com.

Figure 6: System Architecture

tion 3). Aggregation along both directions minimizes the
state maintained at the configuration manager and mini-
mizes fragmentation of resources while incurring a slight
performance inefficiency.

Additionally, the configuration manager leverages a
realistic emulator to test out different configuration val-
ues with different networking conditions and use a learn-
ing function to learn the optimal configuration. The ex-
act details of the learning function are beyond the scope
of this work and we merely sketch out the functional re-
quirements. We expect that the learning function can be
implemented using a variety of machine learning tech-
niques, e.g., deep reinforcement learning or decision
trees. Abstractly, the learning function takes as input
the inferred (measured) RTT, loss rate, bandwidth, and
website structure, then explores different configuration
parameters, and selects the parameters that optimize web
page load times.

Finally, the configuration manager maintains a con-
stant pool of “free servers” each configured with the “N”-
golden templates. This pool of “free servers” ensures that
new requests do not have to be delayed waiting for a new
server to be configured.

Config Agent: This runs within the hypervisor of the
different physical servers, instantiating VMs with pre-
specified configurations. The agent provides the con-
figuration manager with a standard and a uniform inter-
face across different servers regardless of the OS (Linux,
Windows) and the web-server application (Apache, NG-
inx). Moreover, the agent collects statistics for each
connection (IP address) including the RTTs, loss, band-
width, and jitter.

5 Prototype Implementation

To explore the feasibility and viability of Configtron, we
have developed an initial prototype and are exploring the
implications of employing it on a cluster of 300 servers.
Our prototype implementation is based on the discussion
in § 4.

Prototype Implementation. We have implemented
the Config agent in Python in 890 lines of code. The
Config agent provides controls over the configuration pa-
rameters discussed in § 3. It runs locally on each back-
end VM and gets instructions from configuration man-
ager for modifying TCP and HTTP parameters. The
Configuration manager uses MahiMahi for the web em-
ulator and uses a simplicity learning function based on
a decision tree. Our current prototype provides fine-
grained control. The request router is implemented as
an SDN switch which enables both physical and virtual
deployments.

5



6 Design Challenges and Future Works

Our design and prototype explore a single point in the
design space. In this section, we discuss alternate design
points and their implications.

Inferring Network Conditions: Our current design
infers the client’s network conditions based on packets
exchanged between servers and the clients; in a similar
manner to how TCP learns a client’s network conditions.
An alternate and more direct approach is to have the
clients explicitly probe, capture and exchange network
condition information with the servers. This can be done
by modifying the client software stack [32] to actively
inform the CDN server or adding javascript or invisible
images into the webpage that enables the webserver to
collect client-side statistics [12]. As part of future work,
we plan to explore the more accepted approach: embed-
ding javascript or images for performance profiling.

Learning Configurations: Online Versus Offline
Section 3 demonstrates that we can build decision trees
and learn optimal configurations for different network
conditions, however, these requires brute force and ex-
tensive testing which may be infeasible when we explore
the broader space of configuration parameters and ex-
plore the more nuanced network conditions that appear
in practice. We plan to explore the use of online learning
techniques, e.g., A-B testing [30], and compare the ef-
fectiveness of online techniques with offline techniques.

Configuration Granularity: Our current design re-
configures the webstack at the granularity of a VM —
with each VM containing a distinct set of configura-
tion parameters. While heavy weight, VM-level con-
figurations allows us to reuse existing and mature tools
while providing full control over all configuration param-
eters. Alternatively, we could explore containers (e.g.,
LXC or Docker) as the granularity of control. However,
since containers share the same network stack, we would
need to use userspace TCP/IP protocols to provide con-
trol over certain TCP configurations, e.g., TCP version.
As part of future work, we plan to explore a fusion of
both extremes. Namely, leverage VM-level granularity
for controlling kernel-level global parameters, e.g., TCP
version, and container-level granularity for controlling
connection-level local parameters, e.g., HTTP protocol
version.

Reconfiguration Frequency: Our current design re-
configures the CDN network stack at the beginning
of each connection. This limits the flexibly of Con-
figtron and prevents us from adapting to drastic changes
in the end-user’s networking conditions. Alternatively,
we could reconfigure the stack at finer granularities,
i.e., before every packet or before every object. Al-
though reconfiguration at the finer granularity enables
us to react more finely, and ultimately to improve per-

formance, finer granularity introduces several signifi-
cant challenges, e.g., managing reconfiguration over-
heads and tackling the implications of reconfiguration on
existing state for the connection.

Reconfiguration Overheads: There are some over-
heads associated with reconfiguring the CDN network
stack, specifically, VM setup cost (e.g., image transfer
and bootup) and kernel reconfiguration (e.g., changing
the protocol version). To tackle these overheads, we
plan to explore a combination of approaches to amelio-
rate this overheads, e.g., maintaining a fleet of preconfig-
ured VMs and proactively scale-up this fleet in respond
to fluctuations in demand.

Deployment Scenario: The current design explores a
point in the design space that requires content-providers
to modify and improve their infrastructure. Yet, there
are also points in the design space; where the content-
provider and the end-user cooperate, these points in the
design space enable us to explore a broader range of
configuration options including configuration on the end-
user client and explicitly exchange of client side informa-
tion. Although this approach appears altruistic, this point
in the design space can be easily explored by large online
service providers, e.g., Facebook and Google. As part of
future work, we plan to explore the additional benefits
that arise from leveraging client (end-user) cooperation.

7 Conclusion

In this paper, we argue that content providers should
eschew the “one-size-fits-all” approach to configuring
CDN network stacks and instead embrace heterogene-
ity in CDN network stack configurations. To support our
argument, we perform an empirical evaluation of the im-
plication of configuration and find that heterogeneity can
lead to significant improvements.

This paper takes the first step towards realizing het-
erogeneity by proposing an open but simple interface for
configuring the network serving stack and introducing a
framework that enables a CDN to practically leverage
heterogeneity. Our framework learns network conditions
and enables the use of machine learning techniques to
determine the optimal configuration for the different net-
work conditions.

6



8 Discussion

In this paper, we proposed that “one-size-fits-all” ap-
proach to tuning/configuring server networking stacks
result in sub-par performance for some end-users, espe-
cially those users in emerging regions. Due to the ever-
expanding nature of internet, all end-users do not face
similar network conditions and improvement in under-
lying protocols do not uniformly benefit all users [31, 8].
This argument stands in stark contrast to the traditional
setup of server networking stacks where a single network
configuration is used for a divergent set of users.

Expected Feedback Our proposal for dynamic recon-
figuration of the CDN network stack is grounded on em-
ulations and prototype implementations. We are looking
for feedback on challenges that can arise when deployed
in large scale, production environment.
• Management Overheads: Dynamically reconfig-

uring the CDN protocol stack complicates perfor-
mance diagnosis and troubleshoot. We plan to
investigate methods for reducing this complexity,
e.g., minimizing the number of active configuration
combinations.
• QuiC: Google employs QuiC, which utilizes UDP

and not TCP. Yet, QuiC has a number of configura-
tion options thus making the underlying principles
of Configtron immediately applicable to QuiC.
• Long-lived Connections: Configtron configures

the CDN stack at the beginning of the connec-
tion and this prevents us from dealing with drastic
changes in the network which require reconfiguring
existing connections. Fortunately, TCP’s conges-
tion control algorithm is designed to explicitly han-
dle these dynamic situations. Configtron attacks an
orthogonal problem and focuses on improving TCP
(and other protocols) by tuning the configuration of
their internal algorithms.
• Broader Evaluations and QoE Metrics: As part

of ongoing work, we are planning to understand
the limits of Configtron by evaluating Configtron
across a larger parameter space; a wide range of net-
work conditions (e.g., mobile networks or buffer-
bloat) and dynamics (e.g., time of day effects); and a
broader set of web page QoE metrics (e.g. SpeedIn-
dex) and Video QoE metrics.

References

[1] Akamai. Akamai state of the internet. https:

//www.akamai.com/us/en/our-thinking/

state-of-the-internet-report.

[2] Mohammad Al-Fares, Khaled Elmeleegy, Ben-
jamin Reed, and Igor Gashinsky. Overclocking the

yahoo!: Cdn for faster web page loads. In Proceed-
ings of the 2011 ACM SIGCOMM conference on
Internet measurement conference, pages 569–584.
ACM, 2011.

[3] Mona Attariyan and Jason Flinn. Automating con-
figuration troubleshooting with dynamic informa-
tion flow analysis. In Proceedings of the 9th Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI), pages 1–11, 2010.

[4] Michael Butkiewicz, Harsha V Madhyastha, and
Vyas Sekar. Understanding website complexity:
measurements, metrics, and implications. In Pro-
ceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, pages 313–
328. ACM, 2011.

[5] Cisco. White paper: Cisco vni fore-
cast and methodology, 2015-2020. http:

//www.cisco.com/c/en/us/solutions/

collateral/service-provider/

visual-networking-index-vni/

complete-white-paper-c11-481360.html.

[6] Nandita Dukkipati, Tiziana Refice, Yuchung
Cheng, Jerry Chu, Tom Herbert, Amit Agarwal,
Arvind Jain, and Natalia Sutin. An argument for
increasing tcp’s initial congestion window. Com-
puter Communication Review, 40(3):26–33, 2010.

[7] Yehia Elkhatib, Gareth Tyson, and Michael Welzl.
Can spdy really make the web faster? In Network-
ing Conference, 2014 IFIP, pages 1–9. IEEE, 2014.

[8] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana,
and Kadangode K Ramakrishnan. Towards a
spdyier mobile web? IEEE/ACM Transactions on
Networking, 23(6):2010–2023, 2015.

[9] Facebook. Building for emerging markets: The
story behind 2g tuesdays. https://code.

facebook.com/posts/1556407321275493/

building-for-emerging-markets-the-story-behind-2g-tuesdays/.

[10] Sally Floyd. Highspeed tcp for large congestion
windows. 2003.

[11] Majid Ghaderi, Ashwin Sridharan, Hui Zang, Don
Towsley, and Rene Cruz. Tcp-aware resource al-
location in cdma networks. In Proceedings of the
12th annual international conference on Mobile
computing and networking, pages 215–226. ACM,
2006.

[12] Mojgan Ghasemi, Partha Kanuparthy, Ahmed
Mansy, Theophilus Benson, and Jennifer Rex-
ford. Performance characterization of a commer-
cial video streaming service. In Proceedings of the

7



2016 ACM on Internet Measurement Conference,
pages 499–511. ACM, 2016.

[13] Monia Ghobadi, Soheil Hassas Yeganeh, and
Yashar Ganjali. Rethinking end-to-end congestion
control in software-defined networks. In Proceed-
ings of the 11th ACM Workshop on Hot Topics in
networks, pages 61–66. ACM, 2012.

[14] Google. Quic, a multiplexed stream transport over
udp. https://www.chromium.org/quic.

[15] Google. Speed index. https://sites.

google.com/a/webpagetest.org/docs/

using-webpagetest/metrics/speed-index.

[16] Jens Heuschkel, Michael Stein, Lin Wang, and Max
Mühlhäuser. Beyond the core: Enabling software-
defined control at the network edge. In Networked
Systems (NetSys), 2017 International Conference
on, pages 1–6. IEEE, 2017.

[17] Fan Li and Guizhong Liu. Cross-layer optimiza-
tion for multiuser video streaming over wireless
networks. 2008.

[18] Xiaojun Lin, Ness B Shroff, and Rayadurgam
Srikant. A tutorial on cross-layer optimization in
wireless networks. IEEE Journal on Selected areas
in Communications, 24(8):1452–1463, 2006.

[19] Linux Programmer’s Manual. tcp - tcp pro-
tocol. http://man7.org/linux/man-pages/

man7/tcp.7.html.

[20] Péter Megyesi, Zsolt Krämer, and Sándor Molnár.
How quick is quic? In Communications (ICC),
2016 IEEE International Conference on, pages 1–
6. IEEE, 2016.

[21] Roberto Peon Mike Belshe. Spdy pro-
tocol. https://tools.ietf.org/id/

draft-mbelshe-httpbis-spdy-00.txt.

[22] Ravi Netravali, Ameesh Goyal, James Mickens,
and Hari Balakrishnan. Polaris: Faster page loads
using fine-grained dependency tracking. In 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). USENIX Associa-
tion, 2016.

[23] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens,
and Hari Balakrishnan. Mahimahi: Accurate
record-and-replay for http. In USENIX Annual
Technical Conference, pages 417–429, 2015.

[24] Linux programmer’s manual. Tcp protocol man
page. http://man7.org/linux/man-pages/

man7/tcp.7.html.

[25] Feng Qian, Alexandre Gerber, Zhuoqing Morley
Mao, Subhabrata Sen, Oliver Spatscheck, and Wal-
ter Willinger. Tcp revisited: a fresh look at tcp
in the wild. In Proceedings of the 9th ACM SIG-
COMM conference on Internet measurement con-
ference, pages 76–89. ACM, 2009.

[26] Shailendra Singh, Harsha V Madhyastha,
Srikanth V Krishnamurthy, and Ramesh Govindan.
Flexiweb: Network-aware compaction for acceler-
ating mobile web transfers. In Proceedings of the
21st Annual International Conference on Mobile
Computing and Networking, pages 604–616.
ACM, 2015.

[27] Kun Tan Jingmin Song, Q Zhang, and M Sridharan.
Compound tcp: A scalable and tcp-friendly conges-
tion control for high-speed networks. Proceedings
of PFLDnet 2006, 2006.

[28] Ya-Yunn Su, Mona Attariyan, and Jason Flinn.
Autobash: improving configuration management
with operating system causality analysis. In ACM
SIGOPS Operating Systems Review, volume 41,
pages 237–250. ACM, 2007.

[29] Srisakul Thakolsri, Wolfgang Kellerer, and Ecke-
hard Steinbach. Qoe-based rate adaptation scheme
selection for resource-constrained wireless video
transmission. In Proceedings of the 18th ACM in-
ternational conference on Multimedia, pages 783–
786. ACM, 2010.

[30] Kaushik Veeraraghavan, Justin Meza, David Chou,
Wonho Kim, Sonia Margulis, Scott Michelson, Ra-
jesh Nishtala, Daniel Obenshain, Dmitri Perelman,
and Yee Jiun Song. Kraken: leveraging live traffic
tests to identify and resolve resource utilization bot-
tlenecks in large scale web services. In Proceedings
of the 12th USENIX conference on Operating Sys-
tems Design and Implementation, pages 635–650.
USENIX Association, 2016.

[31] Xiao Sophia Wang, Aruna Balasubramanian,
Arvind Krishnamurthy, and David Wetherall. How
speedy is spdy? In NSDI, pages 387–399, 2014.

[32] Yiannis Yiakoumis, Sachin Katti, and Nick McKe-
own. Neutral net neutrality. In Proceedings of the
2016 conference on ACM SIGCOMM 2016 Confer-
ence, pages 483–496. ACM, 2016.

8


