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Abstract
We propose Bohr, a similarity aware geo-distributed data
analytics system that minimizes query completion time.
The key idea is to exploit similarity between data in dif-
ferent data centers (DCs), and transfer similar data from
the bottleneck DC to other sites with more WAN band-
width. Though these sites have more input data to pro-
cess, these data are more similar and can be more effi-
ciently aggregated by the combiner to reduce the inter-
mediate data that needs to be shuffled across the WAN.
Thus our similarity aware approach reduces the shuffle
time and in turn the query completion time (QCT).

We design and implement Bohr based on OLAP data
cubes to perform efficient similarity checking among
datasets in different sites. Evaluation across ten sites of
AWS EC2 shows that Bohr decreases the QCT by 30%
compared to state-of-the-art solutions.

1 Introduction

Cloud service providers like Google and Microsoft de-
ploy geo-distributed data centers (DCs) to serve their
users across the world. The services running on these
geo-distributed DCs constantly generate and procure
large volumes of data about users, their activities, the in-
frastructure, etc. [7] As a result, it is increasingly com-
mon to perform analytics over data dispersed across geo-
distributed sites [15, 17, 18].

A simple solution for geo-distributed data analytics is
to aggregate data to a central site and perform analyt-
ics there. This is soon deemed undesirable due to the
massive bandwidth resources it requires and the exces-
sive delay it incurs [15,18]. In some cases it is infeasible
to move data out of certain regions due to the regulatory
and privacy concerns [13].

A better solution is to rely on distributed data process-
ing frameworks such as Spark to perform geo-distributed
data analytics. Data are processed in-place. Yet, since

WAN bandwidth is scarce and highly variable across
sites, these frameworks designed for homogeneous clus-
ters do not work well out-of-the-box. Past work such as
Iridium [15] has then proposed to optimize data and task
placement in such a setting. The idea is that we strate-
gically move data out of the bottleneck sites (with low
uplink bandwidth and large datasets) and assign more re-
duce tasks to these sites. This exploits the fact that many
queries are recurring, so it is possible to know which
data the query needs, and execute the data and task place-
ment before it arrives next time. This approach balances
the transfer times among the WAN links, and has been
shown to speed up queries significantly [15].

In this work, we argue that one should carefully opti-
mize which data to be moved out of the bottleneck, in
addition to how much as studied before. In previous
work, it is assumed that all data are the same and they
are chosen randomly for data placement. This tends to
be an oversimplification. Given the high dimensionality
of data [9], if we move data that are “similar” to those in
the destination DC, the amount of intermediate data that
needs to be shuffled can be reduced even further due to
the common use of combiners [10], and latency of pro-
cessing queries can be further improved.

We use a toy example as shown in Figure 1 to motivate
our idea. Suppose we want to execute a page rank query
on our DCs in Oregon, Tokyo, and Seoul, and Tokyo is
the bottleneck site. The logs are generated and stored
in each DC. If we process these logs in-place, the inter-
mediate data contains 6 records. Now suppose we move
two records from Tokyo to the other sites. If we do not
consider data similarity, as shown in Figure 1b we may
transfer UrlA to Seoul and UrlB to Oregon, and end up
with 7 records of intermediate data which is worse than
leaving data in-place. A similarity aware approach, on
the other hand, moves similar data across the DCs. This
means that UrlA is moved to Oregon and UrlB to Seoul
as show in Figure 1c, resulting in just 4 records of inter-
mediate data.
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(b) Similarity agnostic data placement.
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(c) Similarity aware data placement.

Figure 1: Motivating example.

Towards similarity aware geo-distributed data analyt-
ics, the central challenge is how to efficiently and ac-
curately obtain similarity between datasets in different
DCs. Similarity checking should be done efficiently
without having to exchange bulks of data across sites or
excessive delay overhead. Meanwhile it also needs to be
accurate for different types of queries even for the same
dataset, in the sense that it should reflect the very data
attributes that pertain to the query of interest.

We present the preliminary design and evaluation of
Bohr,1 a novel similarity aware geo-distributed analyt-
ics system that addresses the above challenges. We rely
on OLAP data cubes [8] to perform efficient and accu-
rate similarity checking. Bohr stores data in OLAP cubes
with many attributes, and performs similarity search [6]
based on the attributes needed by the query to sort the
data. Similarity checking can then be done using sim-
ple probes. The destination DC sends a probe with a
few representative records of its dataset to the bottleneck
DC, which then uses it to identify similar data. As data
in the OLAP cube is already clustered based on similar-
ity search, Bohr simply moves the similar clusters to the
destination DC.

We evaluate Bohr on AWS EC2 using a prototype im-
plementation based on Spark. Our preliminary results
show that it reduces QCT of various queries by ∼30%
compared to state-of-the-art Iridium [15].

2 Solution Overview

We start by explaining the background of geo-distributed
analytics, as well as an overview of our solution Bohr.
Background. A geo-distributed analytics system works
over a number of WAN-connected DCs. Data is gener-
ated at each DC and originally stored where it was gen-
erated, and each DC stores part of a dataset. A geo-

1Niels Bohr is the famous Danish physicist and received the Nobel
Prize in 1922. His son, Aage Bohr, also received the Nobel Prize in
Physics in 1975.

distributed query thus needs to access many DCs, and
each dataset is accessed by multiple queries. In prac-
tice many queries are recurring as many of these batch
jobs need to be periodically executed to analyze new data
generated during the previous period [15, 18]. Thus it is
feasible to know a priori the queries that will run on a
particular dataset before it arrives, and optimize the sys-
tem for it.

Our goal is to minimize average query completion
time (QCT). In a geo-distributed setup, QCT is domi-
nated by the transfer time of intermediate data during the
shuffle stage, due to the sheer amount of data and the
WAN links with limited bandwidth (compared to band-
width inside a data center network).

A recent related work Clarinet [16] develops a query
optimizer which can derive WAN-aware query execution
plans and reduce the query response time effectively for
geo-distributed analytics. Bohr focuses on data and task
placement instead of optimizing query execution, thus is
different from and complementary to Clarinet.
Overview of Bohr. We design Bohr to reduce the QCT
of geo-distributed analytics by: (1) identifying the simi-
larity among the datasets in different DCs; and (2) mov-
ing data from a bottleneck DC to other DCs with more
bandwidth, and moving those data that are most “sim-
ilar” between the bottleneck and the receiving DC. The
data movement is executed in the lag between data gener-
ation and query arrival. The intuition is to identify bottle-
neck sites, and balance the number of tasks and amount
of data according to data similarity on these sites.

Figure 2 depicts the system overview of Bohr. Similar
to Iridium [15], a logically centralized global manager
is responsible for assigning tasks to the sites. In each
task executing site, along with data generation, Bohr also
generates OLAP cubes [8]. An OLAP cube is a multi-
dimensional array data structure which makes large vol-
ume data analytic more efficient. The map tasks retrieve
data from local OLAP cubes, apply the combiner to re-
duce the intermediate data, and shuffle the intermediate



Site1 Site2

Global Manager

OLAP Cube 
Generation

Map1
Combine 
enabled

Reduce1 Reduce2

Job Queue

OLAP Cube 
Generation

OLAP
Cube1

OLAP
Cube2

Map2
Combine 
enabled

probe

similar
dataset

query 
tasks

final
result

Figure 2: System Overview of Bohr.

data to the reducers. When the query is finished the
global manager site gathers the results from all reducers
to assemble the final result.

The data similarity checking happens in the OLAP
cubes. We perform some OLAP queries to the cube
(e.g. dice, slice, or roll-up) to retrieve only the attributes
needed for the query, and run similarity search [6] based
on these attributes to organize the data (§3). This pre-
pares the datasets for similarity-aware data placement
when the recurring query happens again.

Bohr optimizes both task placement and data place-
ment to be similarity-aware (§4), in contrast to Iridium
[15]. For data placement, Bohr utilizes probes between
the bottleneck site (Site2 in Figure 2) and the receiving
site (Site1 in Figure 2) that contains hints of data. Site1
can then quickly identify similar data in its correspond-
ing cube to be moved to Site2. For task placement, Bohr
uses a site-specific data reduction ratio which is period-
ically profiled to capture the effect of similarity-aware
data placement. The data reduction ratio is utilized in
a linear program to determine task placement that mini-
mizes the total QCT.

3 Similarity Checking

Organizations perform geo-distributed analysis for many
purposes. As a result, queries may access different at-
tributes of a record. A similarity checking mechanism
should then be able to efficiently gauge similarity of two
datasets along different attributes.

One naive solution is to sort the dataset according to
the attribute the recurring queries need. This does not
work well in practice as there are different queries even
for the same dataset. Another method is to use record-

level similarity scores for similarity checking. There are
two shortcomings with this approach. First, usually the
similarity between two records is not so high especially
given the high dimensionality of data. Second, even
when two records are similar overall, this does not neces-
sarily imply that they are indeed similar on the attributes
that the query accesses, which makes the accuracy of this
approach questionable.

We thus propose to use OLAP cubes [6] for efficient
similarity checking which we detail now.
Pre-processing. Bohr stores the generated datasets as
OLAP cubes. We embed the OLAP cube generation into
the original data generation procedure to save cost. Thus
inserting a new record into the OLAP cube only incurs
little overhead to the data generation process. We con-
sider two types of data—logs and images in this paper,
and create two types of cubes in Bohr. For logs we con-
struct a cube according to the corresponding schema of
the logs in this dataset. For images, we construct the
cube according to the feature vectors of each image. If
new data are generated during query execution, they are
buffered until the query finishes. The new data may af-
fect many dimensions and updating all of the related di-
mension cubes imposes too much overhead. Thus we can
just update the dimension cube used by the coming query
with new data first, and update the other dimension cubes
in the background offline.
Similarity Search. When a query arrives for the first
time before any optimization has been done, Bohr uses
some OLAP instructions (e.g. dice, slice, or roll-up) to
retrieve the attributes needed for this query from the cor-
responding cube. Bohr then performs similarity search
to sort the data according to their similarity on these at-
tributes. This effectively prepares the dataset for simi-
larity checking across different sites. It also facilitates
similarity-aware data movement as similar local records
have already been clustered in the cube. As an exam-
ple, imagine that we want to collect a webpage’s rank
in a monthly manner, and in the dataset we only store
the daily pagerank information. We can then apply the
roll-up operation to directly get the monthly attribute in-
stead of daily. Using OLAP cubes thus allows Bohr to
carry out targeted similarity search. The overhead is also
reduced compared to doing similarity search across all
attributes of the data. When multiple queries accessing
the same dataset, their similarity metrics can be differ-
ent. This is handled by using dimension cubes within an
OLAP cube [12]. That is, a specific query only accesses
a specific dimension cube that contains the dimensions
pertinent to the query.
Similarity Checking. We utilize simple probes to check
the similarity between data of two sites. The probe is sent
from the receiving site to the bottleneck site that moves
data out. A probe contains the top-k records that have



k most common attribute values in the receiving site for
a specific type of queries. To handle different types of
queries, the top-k records can be chosen by also consid-
ering the relative weight of each type of queries, which
is left as future work.

For logs, because every attribute is low dimensional
data like numbers or characters, we can direct compare
them; for images, the dimension of the feature vector is
relatively high. So we use locality sensitive hashing [11]
to process them efficiently. In our current design k = 15.

4 Task and Data Placement

In this section, we describe our solution for task and
data placement across the DCs. Our solution extends the
state-of-the-art Iridium [15] in a similarity aware man-
ner to further reduce the query completing time. We first
use a linear program (LP) to determine the reduce task
placement, which also indicates the bottleneck DCs. We
then heuristically refine data placement by moving simi-
lar data out of the bottleneck DCs to other DCs.

We consider a recurring map-reduce query across DCs
where Ii is the amount of input data at DC i. For reduce
task placement, we decide ri the fraction of reduce tasks
executed in DC i to minimize the total shuffle time t.
Assuming the “all-to-all” shuffle communication pattern
as in [15], the LP can then be formulated as follows:

min t (1)
s.t. (1− ri)IiRi/Ui ≤ t, ∀i, (2)

ri(
∑N

j=1 IjRj − IiRi)/Di ≤ t, ∀i, (3)∑
i ri = 1, ri ≥ 0,∀i. (4)

Constraint (2) characterizes the time to upload intermedi-
ate data from DC i to the other sites. Each DC i needs to
upload (1− ri) fraction of its intermediate data, and the
amount of intermediate data after the combiner is IiRi.
Here Ri is a site-specific data reduction ratio by the com-
biners, and Ui is the uplink bandwidth. Constraint (3)
characterizes the time to download intermediate data to i
from other DCs. Again based on the all-to-all shuffle as-
sumption, DC i needs to download ri fraction of the total
intermediate data from other sites

∑N
j=1 IjRj − IiRi.

Note that in [15], it is assumed that the data reduction
ratio is the same for all sites. However, data reduction is
clearly affected by our similarity-aware data placement.
Thus we use a method illustrated in §5 to estimate the
data reduction ratio for every site. This also makes the
task placement more accurate.

By solving the LP (1) we also identify the bottle-
neck DCs whose transfer time equals to the overall time
t∗. We then apply a heuristic algorithm to perform
similarity-aware data placement. Our heuristic follows

the one proposed in [15] that iteratively identifies bottle-
necked DCs and moves data out of them to reduce the
transfer time of the bottleneck DCs and thus the over-
all latency of the query. The key difference is that our
heuristic is similarity-aware: we use probes as explained
in §3 to identify which data to be moved from the bot-
tleneck site to other sites. More details of the heuristic
including how to identify destination DCs and how to
handle multiple datasets can be found in [15] (section 4).

5 Prototype Implementation

Our prototype implementation of Bohr is on top of
Apache Spark v2.1.0 [4]. We utilize Apache Kylin [3]
OLAP data cubes on top of Hive [2] to store datasets
across the DCs. We implement data generation with
OLAP cubes and the similarity checking mechanism in-
cluding the probes explained in §3. Our system overhead
mainly comes from the OLAP cube generation and simi-
larity checking. By utilizing the highly-optimized Kylin
OLAP cube, we can interact with a large amount of data
at sub-second latency so the overhead is small [3]. We
also show experimentally in §6.2 that Bohr outperforms
Iridium significantly despite the overhead.

We modify the Spark default scheduler to implement
our task and data placement heuristic. We do not dis-
able the default replication mechanism in HDFS, and all
our data movements hence only create additional copies
of the data, leaving data durability unaffected. As stor-
age is abundant, we believe this is an acceptable design.
User queries are submitted through a uniform interface
provided by the Spark manager. Since Bohr is built upon
Spark, it can leverage Spark SQL to parse SQL queries.

We use simple techniques to do bandwidth and data re-
duction estimation. We periodically check the available
bandwidth of each site assuming it is relatively stable in
the granularity of minutes. For data reduction ratio, it
can be estimated with recurring queries that perform the
same analytics similar to past work [15, 17, 18]. We use
the input and actual intermediate data size of the previous
query at each site to calculate the data reduction ratio to
be used for the next recurring query at this site. Note that
this takes into account the similar-aware data placement
which affects the actual intermediate data size.

6 Evaluation

We present our preliminary evaluation of Bohr here.

6.1 Experimental setup
We deploy the Bohr prototype across ten EC2 regions:
Seoul, Singapore, Sydney, Tokyo, Ireland, Frankfurt,



London, Oregon, Virginia, and Ohio. Our experiments
use c4.4xlarge instances each with 16 vCPU cores and
30GB memory.

We use two commonly used analytic workloads, the
AMPLab big data benchmark [1] and TPC-DS [5] to
drive the experiments. AMPLab big data benchmark is
derived from workloads studied in [14] with identical
schema of the data. We use three types of queries: simple
scans, aggregations, and user define functions (UDFs).
The UDF here calculates a simplified version of PageR-
ank and is implemented following [1]. TPC-DS [5] is
an industry standard benchmark. Its underlying business
model is a retail product supplier such as Amazon. The
benchmark mainly consists of OLAP SQL queries that
examine large volumes of data to extract business intelli-
gence. For each workload we run 5 different queries and
report the average results with error bars.

Each query has 400GB input and we assign 40GB data
to each site randomly as the initial data placement. We
directly use the available WAN bandwidth at our VMs in
the experiments. We find that the WAN bandwidth of our
VMs at Singapore, Tokyo and Oregon is 2.5x larger than
Virginia, Ohio, and Frankfurt, and 5x larger than the rest
of the regions.

The main performance metric we use is the query
completion time (QCT). We also compare the data re-
duction ratio of different methods.

6.2 Results

We first depict the QCT comparison in Figure 3. Observe
that across different types of queries and workloads,
Bohr is able to reduce the average QCT by 25% to 30%
compared to Iridium. Note that the overhead of similar-
ity checking has been counted in the QCT of Bohr. Thus
the result demonstrates that, (1) our similarity-aware ap-
proach has the potential to speed up geo-distributed data
analytics significantly compared to state-of-the-art, and
(2) the delay overhead of such an approach, including
similarity checking with probes as mentioned in §3, is
mild and acceptable.

We also analyze Bohr’s effectiveness in reducing the
intermediate data during the shuffle phase. Figure 4
shows the average data reduction improvements of Bohr
and Iridium over the baseline Spark. We profile the data
reduction with the AMPLab big data benchmark. For
most sites, Iridium can help mitigate the intermediate
data by 4%–10%. Yet in some sites such as Ohio, Syd-
ney, and Seoul, the data reduction is actually negative.
We believe the reason is that Iridium moves data that are
dissimilar with the original data in these sites, causing
both the input and intermediate data to increase. Bohr,
on the other hand, achieves much better data reduction:
on average it saves 29% of the intermediate data com-
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pared to the baseline Spark, and each site including those
that receive additional input data enjoys data reduction
by achieving better data locality.
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7 Conclusion

We developed Bohr, a new geo-distributed data analytics
system that minimizes the query completion time (QCT)
over geo-distributed datasets. Our key idea is to exploit
the data similarity in transferring data out of the bottle-
neck sites. By moving data that are highly similar, the
destination site enjoys a larger data reduction ratio and
produces less intermediate data after the combiner, even
though its input data size actually increases. Experiments
on AWS EC2 with an initial prototype demonstrates that
Bohr can reduce QCT by 30% compared to state-of-the-
art.
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8 Discussion Topics

Our paper presents an interesting angle of using simi-
larity to reduce the intermediate data of geo-distributed
analytics and speed up the shuffle process in WANs. Our
solution draws upon techniques from database and data
management research. Thus we believe it can gener-
ate healthy discussions in both networking and database
communities.

We seek feedback on ways to (1) generalize the basic
idea to more workloads, and (2) strengthen the system
design. A few open issues are as follows. First our de-
sign adds overhead in terms of storage and computing
by using OLAP cubes, which needs to be better quanti-
fied. Second, some datasets are not well fitted for OLAP
cubes, and we need to investigate other design possibili-
ties to perform efficient similarity checking on these data.
Third Bohr works with recurrent batch jobs. It is unclear
how one can use similarity to optimize data arrangement
for ad-hoc geo-distributed analytics jobs. Forth we only
consider single query type in the current design. It is our
future work to consider multiple types of queries access-
ing one dataset which is more practical.
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