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Abstract
We present FRAPpuccino (or FRAP), a provenance-
based fault detection mechanism for Platform as a Ser-
vice (PaaS) users, who run many instances of an appli-
cation on a large cluster of machines. FRAP models,
records, and analyzes the behavior of an application and
its impact on the system as a directed acyclic provenance
graph. It assumes that most instances behave normally
and uses their behavior to construct a model of legitimate
behavior. Given a model of legitimate behavior, FRAP
uses a dynamic sliding window algorithm to compare a
new instance’s execution to that of the model. Any in-
stance that does not conform to the model is identified
as an anomaly. We present the FRAP prototype and ex-
perimental results showing that it can accurately detect
application anomalies.

1 Introduction
Platform as a service (PaaS) clouds have become increas-
ingly popular for their efficient use of computational re-
sources, providing users with an abstracted environment
on which to easily deploy customized applications. Var-
ious market research companies estimate the growth of
the PaaS market at about 30% annually for the next few
years [28, 36]. However, PaaS cloud applications face
two major challenges: 1) As an increasing number of
businesses, enterprises, and organizations adopt cloud
computing, cloud applications inevitably become a ma-
jor target of cyber-attacks. For example, a recent DDoS
attack against a top security blogger delivered by hi-
jacked botnet was so aggressive that Akamai had to can-
cel the account [19]. According to the RightScale 2017
State of the Cloud Report [38], cloud security remains
one of the top 5 challenges among cloud users; 2) PaaS
clouds make it possible to build large-scale applications
that can serve millions of users. A run-time fault intro-
duced in an application can potentially render it useless.
For example, a simple bug can repeatedly crash a server,
making the service appear unavailable ( § 4).

We introduce FRAPpuccino (Fault-detection through
Runtime Analysis of Provenance or FRAP for short),
a fault/intrusion detection framework. FRAP detects
anomalous behavior of cloud applications by using run-
time provenance data to model correct program execu-
tion and detecting deviations from the model to identify
potentially malicious behavior. Provenance describes
system behavior as a labelled directed acyclic graph
(DAG) representing interactions between system-level
entities (e.g., file, sockets, pipes), activities (i.e., pro-
cesses) and agents (i.e., users, groups). Provenance data
can be abundant, so FRAP implements a streaming algo-
rithm, using a dynamic sliding window, to avoid storing
this data. From each running instance, the algorithm ex-
tracts a feature vector, which is a projection of the graph
as a point into an n-dimensional space. We assume that
most instances exhibit legitimate behavior so that cluster-
ing on these features will clearly divide the instances into
good and bad sets. Thus, our application model includes
two parts: the extracted features and the parameters of
the clusters. Once FRAP has constructed such a model,
it monitors program executions, extracts features from
them, and reports any instances whose features deviate
significantly from good behavior.

Unlike most behavioral-based intrusion/fault detection
systems [29] that rely on system-call usage [14, 16, 41,
43, 47] to profile legitimate application behavior, FRAP
uses provenance data that provides a more comprehen-
sive view of program activities, including their effects on
the underlying system. Prior research has shown that un-
derstanding the context of a program’s execution, which
the provenance DAG provides, leads to greater accuracy
in detecting program anomalies [15, 40, 47]. Moreover,
the provenance records provide data that can be ana-
lyzed to assist in root cause analysis, ideally providing
actionable information. Our use of end-to-end prove-
nance capture to detect intrusions or faults differs from
other end-to-end tracing approaches in two major ways:
1) by using runtime graphical and statistical analysis on



provenance DAGs of normal instances of an application,
FRAP requires no application instrumentation or anno-
tation, while systems such as Pip [37] need developer-
provided specifications of expected behavior; 2) FRAP
analyzes interactions between potentially all executing
applications and the system as naturally presented by
provenance DAGs, while systems such as Magpie [6]
and SpectroScope [39] use event logs, which represent a
carefully curated subset of system activity, which may or
may not capture the key actions. Our goal is to show an
alternative approach and evidence of its efficacy in tack-
ling a long-standing problem of intrusion/fault detection.

The contributions of this work are: 1) a novel approach
that combines provenance and graphical and statistical
analysis to model the behavior of cloud applications; 2)
a dynamic sliding window algorithm that allows efficient
processing of large provenance data to achieve online de-
tection; and 3) an implementation of our framework with
demonstrated accuracy.

2 Background
We build FRAP using two existing open-source tools: 1)
CamFlow [33, 34], a state-of-the-art provenance capture
system; and 2) GraphChi [2, 26], a highly-efficient graph
processing framework. However, the concepts are not
tied to either implementation.
CamFlow [34]: Provenance records the chronology of
ownership, change, and movement of an object or a re-
source. We use provenance data to understand the inter-
actions between the monitored application, other appli-
cations, and the underlying operating system. There are
many provenance capture systems available, including
PASS [31], Hi-Fi [35], Linux Provenance Module [7],
and CamFlow [34]. We chose to use CamFlow, because
it tracks multiple applications, their interactions with the
system, and their interactions with each other. More-
over, it both limits the amount of information captured
(i.e., you can specify which applications to trace) and
ensures completeness by propagating capture to any pro-
grams that a traced application invokes. The capture is
built upon Linux Security Module (LSM) hooks that pro-
vide completeness guarantees [13, 17, 22]. CamFlow
also provides a facility to conveniently stream the prove-
nance data captured through messaging middleware such
as MQTT[3], RabbitMQ[4], or Apache Flume[1].
GraphChi [26]: Provenance data is naturally repre-
sented as a DAG in which each node represents an entity,
an activity, or an agent, and each directed edge repre-
sents an interaction between two nodes. For example,
a file was generated by a process, or a process used a
packet. Our framework uses type information in a prove-
nance record as labels to construct a labeled DAG. DAGs
can be efficiently processed by graph processing engines.
We chose GraphChi, a vertex-centric graph processing

model, to generate program models and to detect anoma-
lies. GraphChi uses a parallel sliding window method to
achieve efficient computation of vertices.

3 The FRAPpuccino Framework
The FRAP framework consists of three stages: 1) the
learning stage determines the size of the dynamic sliding
window and creates a model of correct program behavior;
2) the detection stage periodically compares instances of
a program’s execution with the model, notifying the user
upon detection of unusual program behavior; and 3) the
revision stage improves the model by incorporating ad-
ditional information when we encounter a false positive.

FRAP starts with the learning stage, iterates through
the detection stage until it needs to revise the model, and
transitions back to the detection stage after the revision.

3.1 Learning Stage
The learning stage analyzes the provenance DAG of each
instance of a program, creating a model to describe its
legitimate behavior. Provenance data can grow infinitely
large, making it impossible to analyze them as a whole.
However, past research [16, 21] has shown that a pro-
gram usually has a limited set of interactions with the
system (e.g., writing to a file, sending a packet), repeat-
ing them in different orders as it executes. Therefore, we
claim that one can learn most of a program’s behavior
from a subset of its provenance data. We begin with an
overview of our approach, followed by a more detailed
discussion of each step. FRAP uses a simple but effective
algorithm to determine the number of consecutive prove-
nance records it needs to examine to create a program
model, which is the dynamic sliding window size (used in
the detection stage). Using this subset of records, FRAP
transforms the provenance DAG into a multidimensional
numerical feature vector. We construct this feature vec-
tor in three steps: First, we run a label propagation al-
gorithm that constructs a label for each node, represent-
ing the structure of the graph around the node. Second,
we count the number of instances of each unique label.
Third, we construct a feature vector consisting of all the
label counts. A feature vector is therefore the result of di-
mensionality reduction, abstracting a program’s behavior
into numerical values. Finally, FRAP clusters the fea-
ture vectors with the goal of grouping all well-behaved
instances together and leaving badly behaved instances
in different clusters. Thus, our model consists of the fea-
ture vectors of well behaved instances and the parameters
(centroid and radius) of the clusters in which they reside.
Determining the Dynamic Sliding Window Size: The
goal of finding a dynamically sized window is to mini-
mize the number of provenance records needed to char-
acterize an application. We determine the size during
capture by maintaining two counts. The first counts ev-
ery edge examined until we declare a window size. We
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Figure 1: (a) Before the first iteration, we label each node with its own
label, its neighboring nodes’ labels, and its incident edges’ labels. (b)
Each node inserts its sorted in-edge neighbor label list and its sorted
out-edge neighbor label list into the relabeling map, and gets a new
label based on these two label lists. In-edge node relabeling is shown
in red, out-edge node relabeling is shown in blue, and final relabeling
is shown in black. (c) After relabeling, nodes have both new identities
and new labels while edge labels are unchanged.

calculate the second by the following process: We exam-
ine each edge and assign it a triple consisting of the orig-
inal edge type and the types of each vertex. We count the
number of edges processed until we encounter a triple
we have never seen before, at which point we reset the
count to 0. If the first counter reaches an implementation-
defined threshold (§ 4), or if the second counter reaches a
user-defined threshold, we set the dynamic window size
to be the value of the first counter.
Generating a Program Model: To generate a model,
FRAP computes a feature vector for each instance, clus-
ters those vectors, and discards the vectors in isolated

clusters. FRAP generates a feature vector, using the
following iterative algorithm: relabel each vertex in the
DAG using the current vertex label and the labels of its
incoming and outgoing neighbors. During the first iter-
ation, we also incorporate the labels of a vertex’s inci-
dent edges ( Fig. 1), but need not include these in later
iterations, because that information is already encoded
in the labels of the neighboring vertices. After each it-
eration, new labels encode longer sequences of interac-
tions between the program and the system. FRAP gener-
ates a vector containing counts of all seen labels, includ-
ing the ones from previous iterations, and then clusters
the vectors from all instances. We empirically determine
that four iterations produces the best results. To cluster,
FRAP uses symmetric Kullback-Leibler divergence [25]
or Kullback-Leibler Distance (KLD) with back-off prob-
ability [30] as the distance metric to measure the similar-
ity between two feature vectors. KLD has been used, for
example, in statistical language modeling [12] and text
categorization [8]. We use two applications of K-means
clustering: first we cluster on distances between feature
vectors, which helps us select K for the second K-means
clustering, which computes the actual model.

We assume that clusters containing many vectors rep-
resent legitimate behavior and want to discard feature
vectors in clusters isolated from these good clusters.
Wagstaff et al. [45] have shown that cluster accuracy
improves when additional information is available to the
problem domain. We use our assumption that most in-
stances are well-behaved as this additional information.
Specifically, we hypothesize that there exists an observ-
able difference between inter-cluster and intra-cluster
distances. First we set K equal to the total number of in-
stances we are analyzing and run K-means clustering on
the pairwise KL distance between each pair of instances.
We then set K to the number of populated clusters and
run a second K-means clustering on the feature vectors
themselves. This produces our model consisting of the
set of feature vectors in clusters containing more than
one instance and the parameters of those clusters (e.g.,
centroid and radius).

3.2 Detection Stage
FRAP monitors an instance by taking its provenance data
from a window of execution, generating a feature vector
as in § 3.1, and checking whether this vector fits into
any clusters by comparing the distance between the fea-
ture vector and the centroids of the clusters. An instance
is considered abnormal if it does not fit into any of the
model’s clusters.
Dynamic Sliding Window: FRAP uses a dynamic
sliding window approach to continuously monitor an in-
stance while it runs uninterrupted. FRAP only stores and
analyzes the provenance DAG within this window. Once
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Figure 2: Black rectangles represent the provenance records in the win-
dow. White ones to the left of the arrow are captured but not yet pro-
cessed, and to the right will be generated in the future.

it determines that the DAG is part of a normal program
execution, FRAP can safely discard the data. The size of
the window is determined in the learning stage (§ 3.1).
As shown in Fig. 2, records 0,1,2,3 in 2a are used to
generate a model while new provenance data (records
4 and 5) are streaming in. The window slides each
time FRAP finishes running the detection algorithm (de-
scribed in the next paragraph), to include new records for
the next round of analysis ( 2b and 2c). Since the win-
dow slides incrementally, each record appears in many
different windows, maintaining a holistic view of pro-
gram execution. New records may contain vertices re-
lated to ones processed in previous windows. This over-
lapping preserves a vertex’s n-hop neighbors in which n
becomes larger as the overlap increases. This means that
a larger number of iterations becomes more meaningful,
since longer sequences of program-system interactions
can be preserved.
Detection Algorithm: Given a feature vector of a win-
dow of execution, FRAP uses the same distance metrics
(i.e., KLD) to see if the instance lies in an existing cluster
(i.e., the distance between it and the centroid is smaller
than the cluster’s radius). If it does not lie in an existing
cluster, FRAP re-runs (the second) K-means clustering,
and only then reports the instance as an anomaly if it
still does not lie within a cluster of legitimate executions.
Since the detection algorithm is entirely local between an
instance and the model, the computation is parallelizable
and scalable.

3.3 Revision Stage
FRAP identifies and collects false-positive instances and
re-clusters, including them in the model. This reclus-
tering is fast, which is important, because instances are
running concurrently. A fast transition from the revision

stage to the detection stage ensures maximal overlap be-
tween the windows before and after revision (§ 3.2).

Our current false-positive identification is somewhat
crude. We assume that most instances are correct and
revise the model only when detecting a large number
of abnormal instances. However, this assumption does
not always hold. For example, a corrupted database may
cause many client requests to fail. FRAP should not learn
such behavior and include it in the model. Another prob-
lematic scenario is when a program has normal behavior
(A, B, C), and the model contains only one behavior (A).
When many instances are displaying behavior B and one
instance is displaying C, then only B will be included
in the model while that one instance will be considered
unusual. Developing a more principled approach to this
problem is left for future work.

4 Implementation and Results
We describe our implementation [20], experimental re-
sults and future work.
Implementation-specific Window Size: When we
constantly receive unique provenance records, our
implementation-defined threshold determines the win-
dow size (§ 3.1). GraphChi uses a parallel sliding win-
dow method to perform computation on the vertices in-
side the window in memory, write the results to disk, and
move the window to load the next set of vertices to mem-
ory. To avoid high-latency I/O operations, the learning
stage takes the provenance data of the maximum size of
the memory for each instance and allows GraphChi to
perform computation on all vertices in-memory.
Program Models and Feature Vectors: GraphChi
performs vertex relabeling to generate a feature vector
for each instance. Our implementation uses a global
map to achieve consistent relabeling. We need to han-
dle GraphChi’s asynchronous model of computation, in
which an update of a vertex label is immediately visi-
ble to its neighbors in the same iteration. This means if
a vertex runs its computation after one of its neighbors
updates itself, it will take that neighbor’s updated label,
which should be used in the next iteration. We solve this
problem by alternating the computation with an update
phase and a swap phase. In the update phase (which
consists of one iteration), each vertex computes its new
label without broadcasting it to its neighbors. Therefore,
within the same iteration, all vertices take their neighbor-
ing vertices’ labels from the previous update phase. The
next iteration is the swap phase, where all vertices broad-
cast their new labels to their neighbors so that in the next
update phase, they can all read the latest labels.
Preliminary Results: We conducted a number of exper-
iments to see if FRAP is able to capture instances with
unusual behavior in a pool of well-behaved instances.
We used both Hellinger distance [32] and Euclidian dis-



Metrics Captured Bad
Instance
(Learning)

Captured Bad
Instance
(Detection)

KLD Yes Yes
Hellinger No No
Euclidean Yes Yes

Table 1: This experiment runs 10 clients sending requests to the server,
one of which causes the server to behave abnormally during learning.
The same bad behavior occurs again during detection.

tance, in addition to KLD, to see how different similarity
metrics affect FRAP’s performance. Table 1 shows the
results of one of these experiments. In this experiment,
we set up a Ruby server in a simulated cloud environ-
ment. The server handles requests from multiple clients,
and causes an out-of-memory server crash[18] – a known
system level Ruby vulnerability – for certain URLs.

We see that all but Hellinger distance are able to iden-
tify the badly behaved Ruby instance. Hellinger distance
does not work well, because it always produces values
between 0 and 1, which make it difficult for K-means
clustering to create meaningful clusters. Hellinger con-
sistently placed all instances in a single cluster. Af-
ter manual inspection, we also discovered that while
Euclidean distance successfully identified the badly be-
haved instance, it mistakenly considered two normal in-
stances as abnormal during the learning stage (i.e., false
negatives), resulting in a slightly less accurate model
than KLD. Appendix A provides a reference to the cur-
rent prototype and other experimental datasets.

Future Work: We plan to develop more sophisticated
ways to identify false-positives as outlined in § 3. We
also want to further optimize our current implementa-
tion and identify situations in which more sophisticated
learning algorithms will improve accuracy. One impor-
tant area of optimization is our global relabeling map.
Since GraphChi processes vertices in parallel, we need to
maintain map consistency and avoid race conditions. Our
current implementation is a single-point of contention
and can easily be a performance bottleneck. We also
have to garbage collect the map to keep its size manage-
able. We also want to experiment other algorithms to im-
prove our clustering. For example, Principle Component
Analysis [23] might help us further reduce dimensional-
ity of feature vectors and discard misleading features.

Our current prototype does not have all the pieces in-
tegrated, so we used manual intervention to achieve the
end to end pipeline. In particular, we do not directly
stream the provenance to the analyzer. Instead, we cap-
ture the provenance and then run the analyzer over the
provenance stream. Additionally, we have not yet inte-
grated the revision stage. These will both be available in
the next release of the software.

5 Related Work
A number of systems use sequences of system calls to de-
tect program/system anomalies. pH [43] uses temporally
proximate system call sequences to model the behavior
of a program. More recent systems have proposed more
advanced analyses. For example, MaMaDroid [27] uses
static program analysis to obtain a program’s call graph
and dynamically builds a Markov-chain [24] model of
the graph during runtime. The feature vector of their
program model consists of the probabilities of each state
transition in the Markov chain. CMarkov [47] includes
calling context of system calls when performing static
program analysis, which further refines their Markov
model. FRAP uses provenance to build a program model
without the help of static program analysis. Its rela-
belling mechanism concisely encodes system call se-
quences and their contexts. Moreover, FRAP can detect
anomalies in complex applications composed of multiple
processes including distributed ones by capturing, aggre-
gating, and analyzing provenance data from multiple ma-
chines. It is not restrained by per-process system call se-
quences. We leave comparing FRAP performance with
that of other detection systems for future work.

Similar to FRAP, systems such as Magpie [6], Pin-
point [11], Pip [37] and SpectroScope [39] use end-to-
end tracing to detect anomalies that could indicate bugs.
However, unlike FRAP, they all capture request flows
within distributed systems and analyze event logs ei-
ther on a per-event basis or on whole paths. More im-
portantly, although these systems are able to infer bugs,
they are mainly designed to diagnose performance prob-
lems, not intrusions, in distributed systems. Moreover,
Pinpoint and Pip require manually annotating applica-
tions, an error-prone and significant burden on develop-
ers, while FRAP can analyze all applications as long as
the underlying system captures provenance.

For systems that do not have detailed end-to-end trac-
ing capabilities, some black-box diagnosis techniques
have been proposed, e.g., using message send/receive
events to deploy black-box performance debugging [5].

Our graph analysis is related to work on graph kernels
[44]. They are widely used in studying relationships be-
tween structured graphs [44]. In particular, our relabel-
ing algorithm is based on the subtree Weisfeiler-Lehman
graph kernel [42] and is a variation of the Weisfeiler-
Lehman test of isomorphism [46].

6 Conclusion
We present a novel approach to detecting unusual behav-
ior in programs running on PaaS clouds and demonstrate
its usability via our implementation. We believe cur-
rent advances in provenance capture systems open a new
landscape for research in cloud computing and computer
systems.



Discussion Topics
We assume that the provenance data we capture are trust-
worthy and that attackers cannot modify provenance data
to mask the application’s execution trail. What should we
do if this assumption does not hold in practice? Our sys-
tem requires mitigation techniques to guard against non-
trustworthy provenance data or detect provenance data
tampering as a different form of intrusion. This problem
has been explored in the literature [7, 9], and Zhou et al.
[48] presented a solution to secure network provenance.
Can we simply “plug-and-play” those mechanisms in our
system? How do we comprehensively secure various
sources of provenance used in our system?

We propose that user involvement can help build a bet-
ter model by allowing users to identify false-positives.
What should we do to provide users with meaningful
provenance information to assist their judgement? One
possible solution is to apply differential provenance [10]
to explain the sources of anomalies. However, differen-
tial provenance has only been applied to network prove-
nance. How do we apply this technique to other do-
mains?

There are a variety of intrusion detection systems
(IDS) for the cloud environment. Modi et al. [29] cat-
egorized them into eight different techniques, identify-
ing both their strengths and weaknesses. FRAP is a
behavioral-based detection system, but unlike other sys-
tems in this category, it uses provenance to model the be-
havior of an application. From what aspects does FRAP
work better than other behavioral-based detection sys-
tems and than other cloud IDS’s at large? What kinds of
intrusions are intrinsically hard for FRAP to detect but
easy for other IDS’s?
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