
Heterogeneous GPU reallocation

James Gleeson, Eyal de Lara
{jgleeson,delara}@cs.toronto.edu

University of Toronto

Abstract

Emerging cloud markets like spot markets and batch
computing services scale up services at the granularity
of whole VMs. In this paper, we observe that GPU work-
loads underutilize GPU device memory, leading us to
explore the benefits of reallocating heterogeneous GPUs
within existing VMs. We outline approaches for upgrad-
ing and downgrading GPUs for OpenCL GPGPU work-
loads, and show how to minimize the chance of cloud op-
erator VM termination by maximizing the heterogeneous
environments in which applications can run.

1 Introduction

Cloud infrastructure is becoming increasingly
heterogeneous, offering new tradeoffs in energy,
performance, and total cost of ownership (TCO). Mi-
crosoft investigated a custom FPGA deployment and
its efficacy in accelerating Bing web search workloads,
and were able to obtain a 95% increase in throughput
at ranking servers for the same latency, 30% increase
in TCO, and < 10% increase in power [25]. Beyond
infrastructure, heterogeneous devices such as GPUs are
now being offered to VM instances [21, 15, 8].

In order to reduce idle resources in the data center,
Amazon has begun offering two new services to its cloud
users. As an economic alternative to hourly-pricing, spot
markets allow users to bid on resources, with machines
being allocated to the highest bidder, with the lower bid-
der being terminated. For tasks with dynamically chang-
ing resource requirements that wish to avoid paying for
resources they do not use, Amazon offers a batch com-
puting service that monitors and automatically scales
batch computation tasks by allocating/terminating VMs
as computational load changes over time [4, 5].

However, the key issue with today’s services aimed
at reducing idle resources is that resources are allocated
at the granularity of whole VMs. This leads to several

negative side effects. When scaling down through VM
termination, any progress made in the VM so far is lost
and must be recomputed. When scaling up through VM
allocation, a computationally bound workload may ben-
efit most from a more powerful GPU, so a user will not
want pay for additional VM resources (e.g. RAM); fur-
ther, any unused but allocated resources prevent a cloud
operator from achieving high user-to-machine density.

In this paper, we propose solving these issues for
heterogeneous GPUs through the reallocation of GPUs
within an existing VM. First, we observe GPU underuti-
lization for a set of OpenCL and OpenGL applications
with less than than 37% of GPU device memory used for
a 3016 MiB Quadro K4000.

We show how we can extend the OpenCL GPGPU
virtualization solution Crane [14] to support reallocation
of heterogeneous GPU models by hiding the binary for-
mat of compiled OpenCL programs and reinjecting GPU
state into a reallocated GPU of a different model. We
design two approaches to GPU reallocation. GPU over-
commit allows transparent GPU upgrade and downgrade
without application modifications, but can lead to poor
GPU reallocation choices. We propose a reconfiguration
API where applications specify minimum and preferred
GPU resource requirements needed to make correct GPU
reallocation decisions, maximizing the heterogeneous
GPUs a workload can execute with to minimize the
chance of VM termination by a cloud operator. Finally,
we show preliminary results that illustrate a hypotheti-
cal cloud scenario where a cloud operator downgrades
a video encoder workload to a sufficient capacity GPU,
ensuring performance after reallocation and freeing up
high-capacity GPU resources for other users.

2 GPU heterogeneity in the cloud

First, we establish that GPU device memory is underuti-
lized for both OpenCL and OpenGL workloads, which
gives cloud operators the opportunity to dynamically

579.0 MiB
804.0 MiB
1.1 GiB

LDS

CS: GO

Trine 3

 1 B
 16 B

256 B

 4 KiB
 64 KiB

 1 MiB
 16 MiB

256 MiB

 4 GiB

O
pe

nG
L

12.4 MiB
x264

 1 B
 16 B

256 B

 4 KiB
 64 KiB

 1 MiB
 16 MiB

Maximum GPU device memory allocated

O
pe

nC
L

Figure 1: Maximum GPU device memory allocated
by OpenCL and OpenGL programs for a Quadro K4000
with 3016 MiB. Less than 37% of GPU device memory
is used by GPU workloads.

downgrade GPU workloads to a GPU with sufficient ca-
pacity. Next, we investigate existing cloud services that
benefit from heterogeneous GPU device reallocation, for
both the cloud operator and the cloud user.

2.1 GPU device memory is underutilized

We profiled the maximum GPU device memory usage of
both OpenCL and OpenGL applications over their life-
time. For our experiments, we used a Quadro K4000
with 3016 MiB of GPU device memory. For OpenCL,
we used the VLC video player’s x264 video encoder
library to encode a 4.7 GiB, 360p video from uncom-
pressed YUV4MPEG into MKV format. For OpenGL,
we looked at selection of popular games 1. We used a
screen resolution of 1024×768, and used default graph-
ics settings; the default settings for this powerful a GPU
were the highest graphics settings.

For OpenGL, Figure 1 shows that all three games use
less than 37% of the available GPU device memory.
Given that video games are designed to run with a mini-
mum set of system requirements, the fact that the games
do not use the entire GPU comes as no surprise. For
OpenCL, x264 only requires as much GPU device mem-
ory as is required to fit the image frames that it is encod-
ing in a given batch, which is only 12.4 MiB.

Given that GPU workloads underutilize their GPU,
there is an opportunity for data center operators to down-
grade workloads to sufficient capacity GPUs. Next, we
consider how heterogeneous GPU reallocation can ben-
efit emerging cloud services like spot markets and batch
computing.

1We abbreviate Counter-Strike: Global Offensive (CS:GO) and
Lovers in a Dangerous Spacetime (LDS) in Figure 1

2.2 Improving cloud services through
heterogeneous GPU reallocation

Amazon spot markets allow users to bid on otherwise
idle resources at a reduced price to hourly-priced VMs,
but risk revocation through VM termination when the
spot price rises above their bid. In order to support re-
vocation, applications checkpoint their state as they run,
and perform recomputation when being resumed. Re-
vocation costs threaten to devalue the spot market; if a
spot server only offers 50% of the performance, then any
spot price > 50% is worse than simply purchasing a non-
revocable EC2 VM instance [27].

Amazon’s batch computing service (AWS Batch) al-
lows users to define batch computing tasks, which are a
dependency graph of computational jobs, where each job
corresponds to a script/executable/container that takes
data inputs from stages computed earlier in the graph [12,
6]. AWS Batch allows automatically managed configura-
tions that assess runtime load by monitoring queued jobs
and scales up by allocating additional VM instances on
your behalf within a predetermined maximum limit [7];
VMs are automatically terminated on your behalf as load
decreases.

The critical limitation of both of these services is that
they cannot reallocate resources to an existing VM.

In spot markets, rather than terminating VMs that are
outbid by other customers, VMs should be downgraded
by reallocating a heterogeneous GPU model to the VM;
reallocation can be arranged by migrating the VM to
a machine with a sufficient capacity GPU. Users have
more incentive to bid a higher price since it increases
the likelihood they will receive a better GPU when the
VM is initially spawned, or even an upgrade to a more
powerful GPU. Higher bid prices also benefit data center
operators, since they ensure a competitive spot market.

Batch computing scales up by allocating entire VMs,
but cannot scale up existing VMs. Rather than only mon-
itor the number of queued jobs, AWS Batch could mon-
itor the resource utilization of existing jobs. If a job is
computationally bound by the GPU, it will benefit from
upgrading to a more powerful GPU. By avoiding spin-
ning up new VMs, the data center operator gives the user
higher performance at reduced cost, and reserves CPU
and memory resources for other users needed for achiev-
ing high user-to-machine density.

3 Background

We begin by explaining why GPU reallocation is made
challenging by the OpenCL API’s assumption that avail-
able GPUs and hardware limits remain constant. Next,
we describe Crane [14] and how it enabled vendor in-
dependent migration between machines with homoge-

neous GPU models, and how we can extend Crane to be a
mechanism for GPU reallocation between heterogeneous
models.

3.1 GPU hardware limits

A GPU hardware limit is a model-specific hardware limit
queryable through the OpenCL API, and used to config-
ure an application’s execution. The most common GPU
hardware limits a user queries are the total GPU device
memory, and the amount of data-parallelism exposed by
the GPU.

GPU hardware limits complicate reallocation of
heterogeneous GPUs, since both the OpenCL API and
the applications assume that the GPU remains the same
throughout execution. There are three ways in which
each GPU hardware limits may change when moving be-
tween heterogeneous GPUs.

Downgrading a GPU hardware limit can lead to appli-
cation failure; if the application expects 4 GiB of GPU
device memory, but after reallocation can only use 1 GiB,
the application is not written to handle this failure and
will terminate. Upgrading a GPU hardware limit will
not lead to application failure, but the application will
remain unaware of additional GPU computing resources
available to it, leaving the GPU underutilized. Equiv-
alent GPU hardware limits are not negatively affected,
since they do not affect application correctness, nor do
they lead to GPU resource underutilization.

3.1.1 Data-parallelism hardware limits

While execution throughput varies between GPU mod-
els, the data-parallelism hardware limits the OpenCL
programmer interacts with when configuring a GPU ker-
nel are equivalent even between a consumer-grade GTX
480 and a high-end Tesla K80. Hence, data-parallelism
hardware limits aren’t an issue when performing GPU
reallocation. However, GPU device memory is a hard-
ware limit the programmer frequently depends on that
varies widely between GPU models, and so is the focus
of this work.

For each GPU model, NVIDIA assigns the GPU a
compute capability, which determines the hardware lim-
its the GPU has, including data-parallelism [24]. An
OpenCL programmer must explicitly decide two data-
parallelism hardware limits when running a kernel on the
GPU: (1) local work size, and (2) global work size.

Local work size affects the number of concurrent
threads that will run on a compute unit, where the com-
pute unit is capable of running 32 threads in lock-step
with the same instruction but on different data (SIMD);
this is referred to as the warp size.

Global work size determines the total number of work
groups, and should be at least the number of compute
units to ensure the GPU is fully occupied [24]. The num-
ber of work groups chosen is often a function of the to-
tal data input size which is much larger than the number
of compute units, so the GPU compute units are usually
fully occupied.

For local work size, to ensure compute units are fully
occupied and have an opportunity to hide latency if a
warp blocks on memory access or synchronization, pro-
grammers are encouraged to use local work sizes on the
order of 64, 128, or 256 [24]. The local work size limit is
the same across most GPU models; the consumer-grade
GTX 480 (compute capability 2.0) and the high-end
Tesla K80 card offered in GPU VM instances [9, 16, 22]
(compute capability 3.7) both have a local work size limit
of 1024. The global work size limit is the largest size t

available on the platform, which also does not vary be-
tween GPU models.

Hence, the data-parallel hardware limits chosen by
the OpenCL programmer are equivalent across different
GPU devices, and are not an issue for GPU reallocation.

In order to avoid the negative affects of downgrad-
ing and upgrading when hardware limits vary between
GPUs, Crane must design policies for handling differ-
ences in GPU hardware limits.

3.2 Crane

Crane [14] is technique for performing GPU virtualiza-
tion of OpenCL GPGPU applications that benefits from
Passthrough performance: allowing VMs with a pass-
through GPU to obtain within 5.25% of a passthrough
GPU, Vendor independence: virtualization is imple-
mented using only OpenCL API commands without any
OS or hypervisor modifications, VM migration: both
stop-and-copy and live migration modes.

The key technique used in Crane to achieve vendor
independence was to construct a universal GPU state
extraction/reinjection mechanism built entirely from
portable OpenCL APIs. Using this mechanism, GPU de-
vice memory could be extracted and preserved to DRAM
prior to initiating migration, and reinjected into the new
GPU after migrating to the new host.

Crane focussed on enabling migration between homo-
geneous GPU models. However, with minor modifica-
tions that ensure a binary independent extraction format,
this technique can be extended to support heterogeneous
GPU reallocation by reinjecting into a different GPU
model.

4 Design

We describe how to extend Crane [14] to support
heterogeneous GPU reallocation by hiding binary details
of compiled OpenCL programs. Next, we break the de-
sign space for GPU reallocation into two approaches.
GPU overcommit transparently allows GPU reallocation,
but may need to reallocate a GPU on-demand for appli-
cations that exceed the currently allocated GPU. Recon-
figuration is non-transparent since it notifies applications
to reconfigure their execution to fit the reallocated GPU;
this approach benefits from minimizing the chance of
VM termination by a cloud operator by maximizing the
number of heterogeneous environments in which it can
run.

4.1 Enforcing portable OpenCL binaries
in Crane

The OpenCL API provides functions for compiling an
OpenCL program into a binary. The format of the binary
is left entirely up to the GPU vendors [18, 19, 20]. This
is a barrier to GPU reallocation, since it prevents Crane
from reinjecting binary independent GPU state (Sec-
tion 3.2). To enforce portable OpenCL programs across
heterogeneous GPUs, Crane transparently prevents the
OpenCL API from returning vendor OpenCL binaries to
the application. Crane forces OpenCL APIs for querying
program binaries to return OpenCL source code instead.
Correspondingly, Crane forces OpenCL APIs for load-
ing binaries to interpret the “binary” argument as source
code, and compile it to a vendor binary. OpenCL appli-
cations that cache compiled binaries on disk to reduce
startup time can continue to use this programming pat-
tern without application modification.

4.2 GPU overcommit: transparent
reallocation

Some GPGPU applications only use a portion of the
GPU computing resources available to them (Figure 1).
For these types of applications, it is practical to provide
transparent GPU upgrade and downgrade functionality.

Since OpenCL applications configure themselves to
use a single device once at startup, the only way to pro-
vide the option of upgrading to a device with more mem-
ory is to overcommit GPU hardware resources. When the
application selects a device and queries for GPU hard-
ware limits, we return a limit larger than is currently
available on the current local GPU. For example, a lo-
cal GPU has only 1 GiB of GPU device memory, but a
remote GPU has 4 GiB, so we report 4 GiB. When the
application attempts to allocate resources beyond what
are available on the local host, we can block the OpenCL

API request temporarily as we make a decision about
how to fulfill request.

There are three options for fulfilling a blocked request
for an overcommitted GPU:

• Live migrate to a new GPU: migrate to a new host
with adequate GPU resources.

• Block-and-wait: the OpenCL API call remains
blocked while waiting for an available GPU.

• Suspend-and-wait: the VM is suspended while
waiting for a new GPU.

The best choice depends on: (1) currently available re-
mote GPUs, (2) competing demand from other remote
VMs that wish to make use of unused local machine re-
sources.

Live migration is advantageous since a VM can im-
mediately move to available GPU resources when they
become available. Block-and-wait is advantageous if a
GPU is likely to become available soon, or there are other
non-OpenCL applications in the VM that can continue
to make progress in the meantime. Suspend-and-wait is
advantageous if relinquishing the current GPU would en-
able a separate VM to make forward progress using the
freed resources (e.g. the GPU, or additional RAM).

Unfortunately, the maximum GPU resource require-
ments of an application cannot be known without execut-
ing it in its entirety. GPU reallocation must estimate re-
source requirements; incorrect guesses lead to additional
GPU reallocations.

4.3 Reconfiguration API: non-transparent
reallocation

GPU overcommit is not a practical approach for OpenCL
applications that use all GPU resources available to them,
since they will immediately trigger migration to a remote
host with the most powerful GPU. Instead, these appli-
cations must be able to reconfigure themselves to use the
maximum capacity available on the local GPU, and ad-
vertise that they would prefer a larger GPU if one is avail-
able.

In the reconfiguration API, OpenCL applications
specify minimum and preferred GPU hardware limits,
which allows the cloud service operator to make GPU
reallocation decisions on their behalf. Minimum GPU
hardware limits ensure that an application is never given
a GPU with too few resources for it to execute. Preferred
GPU hardware limits provide an upper bound on addi-
tional resources an application would benefit from hav-
ing; additional resources beyond this will go unused.

When a GPU is reallocated to a VM, it notifies the
application using callbacks. The extra burden imposed
on the developer would be:

R.1 Checkpointing progress: application-specific
logic for checkpointing progress made so far.

R.2 Cleanup: releasing existing GPU specific re-
sources.

R.3 GPU configuration: reconfigure the application
based on newly available GPUs.

R.4 Resuming execution: resume execution from the
checkpointed state.

Developers are already required to write code for
both R.2 and R.3, so the changes required will be mini-
mal.

In GPU overcommit, checkpointing OpenCL state
(R.1), releasing GPU resources (R.2), and recreating
GPU resources (R.4) are handled transparently by Crane.
However, unlike GPU overcommit, the reconfiguration
API approach maximizes GPU heterogeneity, since ap-
plications can be told to execute in a smaller GPU than
they are currently using. Since applications reconfigure
their workload to fit the currently allocated GPU, they
can always make forward progress using their current
GPU, and never block attempting to use overcommited
resources. Maximizing heterogeneity minimizes VM ter-
mination by a cloud operator, since the VM can simply
be placed elsewhere to run.

5 Evaluation

We extended Crane to support GPU reallocation by lever-
aging its universal state extraction/reinjection mecha-
nism and support for live migration (Section 3.2), and
enforced OpenCL binary compatibility by recompiling
OpenCL programs after migrating (Section 4.1). Our
prototype is still incomplete, since we must implement
GPU reallocation policies needed for cloud scenarios
(Section 4.2 and 4.3). However, the x264 GPU device
memory requirements (12.4 MiB, Figure 1) are below
both cards, making the prototype sufficient for measur-
ing performance before and after GPU reallocation.

In Figure 2, we devise a hypothetical cloud sce-
nario: a cloud service monitoring an x264 work-
load realizes that the GPU is underutilized, and de-
cides to downgrade the workload from an enterprise-
grade NVIDIA GRID K1 card (4036 MiB) to a
consumer-grade NVIDIA GTX480 card (1474 MiB)
with sufficient capacity on a separate physical machine.
After the host migrates at 60 seconds in and the lower
but sufficient capacity GTX480 is allocated, performance
does not degrade; in fact, performance increases because
the GTX480 happens to be clocked at a higher rate (1401
MHz) than the GRID K1 (849 MHz).

Each host has two Intel Xeon E5-2609 2.4 GHz quad-
core processors, 32 GiB of RAM, and are connected by a
1 Gbps Ethernet link. The hypervisor is Xen 4.7, running
CentOS 6 with Linux kernel 3.16.6 in dom0, Ubuntu
16.04 LTS with Linux kernel 4.4.0 in domU. The domU
was configured with 2 GiB of memory and ran NVIDIA
driver version 361 supporting OpenCL 1.2.

6 Related work

Existing work mentioning movement between
heterogeneous devices focusses on application trans-
parency. These works do not consider non-transparent
approaches that benefit from allowing applications to re-
configure their execution, or the benefits of reallocation
in cloud scenarios. Further, existing works either ig-
nore loss of correctness after reallocation, or only allow
movement between equivalent feature-sets which defeats
the benefit of reallocating heterogeneous hardware.

Process checkpoint/resume: CheCUDA [30] and
CheCL [29] integrate with the userspace BCLR frame-
work [13] to allow checkpoint/resume of CUDA and
OpenCL applications. The authors note that the check-
point could be resumed on a machine with a different
GPU, but fail to mention how this will affect applica-
tion correctness after resume. This paper investigates
transparent and non-transparent approaches for GPU
reallocation that preserve correctness after reallocation.

Heterogeneous operating systems: There have been
many works [10, 26, 23] that investigate redesigning ex-
isting modern monolithic OSes to better support highly
heterogeneous architectures. Helios [23] and M3 [10]
recognize that today’s OSes treat heterogeneous devices
like a high latency I/O device that lacks fine-grained co-
ordination mechanisms, leading them to a loosely cou-
pled message passing design. It remains to be seen
whether these OS designs can support the full fidelity
of today’s workloads. This paper investigates how to
support reallocation of GPUs in a heterogeneous cloud,
using OSes and the OpenCL GPGPU programming ab-
stractions of today.

Shadow drivers: Kadav et al. [17] investigate en-
abling migration through device virtualization, which
they call a shadow driver [28], that interposes a state-
tracking layer at the driver-to-kernel API interface. The
authors use this technique to virtualize NIC drivers, and
note that it is possible to migrate between heterogeneous
NICs using this approach, but limit it to migrating be-
tween identical feature-sets, or force identical feature-
sets by masking out additional features. This work inves-
tigates allowing both upgrades and downgrades between
heterogeneous devices using application transparent and
non-transparent approaches.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time (Seconds)

Fr
am

es
 e

nc
od

ed
pe

r s
ec

on
d

Crane: NVIDIA GRID K1 → NVIDIA GTX480
Passthrough: NVIDIA GRID K1

Figure 2: Downgrading the x264 workload from a NVIDIA GRID K1 (4036 MiB) to a sufficient capacity NVIDIA
GTX480 (1474 MiB) by live migrating to a new host. The cloud operator issues a live migration command 8 seconds
into running the application. Boxes denote stoppage before and after live migration [14].

7 Conclusions

In this paper, we show that GPU workloads underuti-
lize GPU device memory, and propose heterogeneous
GPU reallocation as a solution for improving idle re-
source utilization in spot markets and batch comput-
ing services. GPU reallocation avoids recomputation
costs incurred when services terminate whole VMs. The
transparent GPU overcommit approach supports existing
OpenCL applications, whereas a non-transparent recon-
figuration API minimizes VM termination by maximiz-
ing heterogeneous environments in which a VM can run.

8 Discussion topics

Here we cover controversial points and open issues that
are important avenues for future work.

GPU underutilization: Our observation that exist-
ing workloads underutilize GPUs will be controversial.
However, this is only a small sampling of GPU work-
loads, particularly for OpenCL GPGPU applications. In
our future work, we intend to measure GPU workloads
characteristic of cloud environments, such as training
neural networks for personalized recommendation sys-
tems [11].

Extending Crane to OpenGL: We measured GPU de-
vice memory usage for popular games to assess GPU
underutilization. However, Crane is currently lim-
ited to GPU reallocation for OpenCL GPGPU applica-
tions. Nevertheless, universal state extraction/reinjection
techniques applied to OpenCL can also be applied to
OpenGL, and are an important area for future work.

Measuring data centers in the wild: We outlined po-
tential benefits to cloud operators and cloud users, but we
have yet to quantify these benefits in cloud services. In
particular, we would like to investigate:

• What performance gain can a cloud user expect at a
given bidding price?

• What cost savings can a cloud user expect at a given
level of performance?

• What cluster utilization can a cloud operator
achieve with GPU reallocation?

• What types of GPU workloads use only a portion of
the GPU, and how many use the entire GPU?

• How do GPU overcommit and reconfiguration API
approaches compare across these GPU workloads?

• What is the variablity of GPU performance in
heterogeneous GPUs available in today’s Amazon
EC2 instances? 2

Heterogeneity beyond GPUs: OpenCL is a generic
data-parallel programming API, and is not tied to ex-
ecuting only on GPUs. FPGAs [25] and even custom
ASICs [1] are being used to accelerate cloud work-
loads, with FPGAs now available in Amazon EC2 in-
stances [3]. Altera FPGAs already support a OpenCL-
to-verilog compiler that can be used to run OpenCL code
originally written for a GPU on an FPGA [2]. So
long as different device types are programmed using the
OpenCL API, both reconfiguration and overcommit ap-
proaches can be used to move between devices such as
GPUs and FPGAs.

References
[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A.,

DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD,
M., ET AL. TensorFlow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Savannah, Georgia,
USA (2016).

2Currently, Amazon has NVIDIA Tesla K80, NVIDIA GRID K520,
NVIDIA Tesla M2050 available [8].

[2] ALTERA. Implementing FPGA design with the OpenCL stan-
dard. Whitepaper (2013).

[3] AMAZON. Amazon EC2 F1 Instances. https://aws.amazon.
com/ec2/instance-types/f1/.

[4] AMAZON. AWS Batch FAQs.
https://aws.amazon.com/blogs/aws/

aws-batch-run-batch-computing-jobs-on-aws/.

[5] AMAZON. AWS Batch FAQs. https://aws.amazon.com/

batch/faqs/.

[6] AMAZON. Compute Environments. http://docs.aws.

amazon.com/batch/latest/userguide/compute_

environments.html.

[7] AMAZON. Creating a Compute Environment. http:

//docs.aws.amazon.com/batch/latest/userguide/

create-compute-environment.html.

[8] AMAZON WEB SERVICES. Linux Accelerated Computing In-
stances. http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/using_cluster_computing.html.

[9] AMAZON WEB SERVICES. EC2 Instance Types, 2017. https:
//aws.amazon.com/ec2/instance-types/.

[10] ASMUSSEN, N., VÖLP, M., NÖTHEN, B., HÄRTIG, H., AND
FETTWEIS, G. M3: A hardware/operating-system co-design to
tame heterogeneous manycores. ACM SIGOPS Operating Sys-
tems Review 50, 2 (2016), 189–203.

[11] BARCLAY, CHRIS. Orchestrating GPU-
Accelerated Workloads on Amazon ECS, 2016.
https://aws.amazon.com/blogs/compute/

orchestrating-gpu-accelerated-workloads-on-amazon-ecs.

[12] BARR, JEFF. AWS Batch - Run Batch Computing
Jobs on AWS. https://aws.amazon.com/blogs/aws/

aws-batch-run-batch-computing-jobs-on-aws.

[13] DUELL, J. The design and implementation of Berkeley lab’s
Linux checkpoint/restart. Lawrence Berkeley National Labora-
tory (2005).

[14] GLEESON, J., KATS, D., MEI, C., AND DE LARA, E. Crane:
Fast and Migratable GPU Passthrough for OpenCL applications.
In Proceedings of the 10th ACM International on Systems and
Storage Conference (2017), ACM.

[15] GOOGLE CLOUD PLATFORM. Graphics Processing Units (GPU)
— Google Cloud Platform. https://cloud.google.com/

gpu/.

[16] GOOGLE CLOUD PLATFORM. GPUs on Compute Engine, 2017.
https://cloud.google.com/compute/docs/gpus.

[17] KADAV, A., AND SWIFT, M. M. Live migration of direct-access
devices. SIGOPS Oper. Syst. Rev. 43, 3 (July 2009), 95–104.

[18] KHRONOS GROUP AND OTHERS. The OpenCL specification–
version 1.0, revision 48. Khronos OpenCL Working Group.
(2010).

[19] KHRONOS GROUP AND OTHERS. The OpenCL specification–
version 1.2, revision 19. Khronos OpenCL Working Group.
(2010).

[20] KHRONOS GROUP AND OTHERS. The OpenCL specification–
version 2.2, revision 06. Khronos OpenCL Working Group.
(2016).

[21] MICROSOFT AZURE. N-Series GPU enabled Virtual Ma-
chines. https://azure.microsoft.com/en-us/pricing/

details/virtual-machines/series/#n-series.

[22] MICROSOFT AZURE. Pricing - Linux Virtual Machines,
2017. https://azure.microsoft.com/en-ca/pricing/

details/virtual-machines/.

[23] NIGHTINGALE, E. B., HODSON, O., MCILROY, R., HAW-
BLITZEL, C., AND HUNT, G. Helios: heterogeneous mul-
tiprocessing with satellite kernels. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles
(2009), ACM, pp. 221–234.

[24] NVIDIA. OpenCL Programming Guide for the CUDA Architec-
ture, Version 3.2. CUDA SDK 3 (2010).

[25] PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S., CHIOU,
D., CONSTANTINIDES, K., DEMME, J., ESMAEILZADEH, H.,
FOWERS, J., GOPAL, G. P., GRAY, J., ET AL. A reconfigurable
fabric for accelerating large-scale datacenter services. In Com-
puter Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on (2014), IEEE, pp. 13–24.

[26] SCHÜPBACH, A., PETER, S., BAUMANN, A., ROSCOE, T.,
BARHAM, P., HARRIS, T., AND ISAACS, R. Embracing diver-
sity in the barrelfish manycore operating system. In Proceedings
of the Workshop on Managed Many-Core Systems (2008), p. 27.

[27] SUBRAMANYA, S., RIZK, A., AND IRWIN, D. Cloud spot mar-
kets are not sustainable: the case for transient guarantees. In
8th USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 16) (2016), USENIX Association.

[28] SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N., AND
LEVY, H. M. Recovering device drivers. ACM Transactions
on Computer Systems (TOCS) 24, 4 (2006), 333–360.

[29] TAKIZAWA, H., KOYAMA, K., SATO, K., KOMATSU, K., AND
KOBAYASHI, H. CheCL: Transparent checkpointing and process
migration of OpenCL applications. In Parallel & Distributed Pro-
cessing Symposium (IPDPS), 2011 IEEE International (2011),
IEEE, pp. 864–876.

[30] TAKIZAWA, H., SATO, K., KOMATSU, K., AND KOBAYASHI,
H. CheCUDA: A checkpoint/restart tool for cuda applications. In
2009 International Conference on Parallel and Distributed Com-
puting, Applications and Technologies (Dec 2009), pp. 408–413.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/blogs/aws/aws-batch-run-batch-computing-jobs-on-aws/
https://aws.amazon.com/blogs/aws/aws-batch-run-batch-computing-jobs-on-aws/
https://aws.amazon.com/batch/faqs/
https://aws.amazon.com/batch/faqs/
http://docs.aws.amazon.com/batch/latest/userguide/compute_environments.html
http://docs.aws.amazon.com/batch/latest/userguide/compute_environments.html
http://docs.aws.amazon.com/batch/latest/userguide/compute_environments.html
http://docs.aws.amazon.com/batch/latest/userguide/create-compute-environment.html
http://docs.aws.amazon.com/batch/latest/userguide/create-compute-environment.html
http://docs.aws.amazon.com/batch/latest/userguide/create-compute-environment.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/blogs/compute/orchestrating-gpu-accelerated-workloads-on-amazon-ecs
https://aws.amazon.com/blogs/compute/orchestrating-gpu-accelerated-workloads-on-amazon-ecs
https://aws.amazon.com/blogs/aws/aws-batch-run-batch-computing-jobs-on-aws
https://aws.amazon.com/blogs/aws/aws-batch-run-batch-computing-jobs-on-aws
https://cloud.google.com/gpu/
https://cloud.google.com/gpu/
https://cloud.google.com/compute/docs/gpus
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/#n-series
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/#n-series
https://azure.microsoft.com/en-ca/pricing/details/virtual-machines/
https://azure.microsoft.com/en-ca/pricing/details/virtual-machines/

	Introduction
	GPU heterogeneity in the cloud
	GPU device memory is underutilized
	Improving cloud services through heterogeneous GPU reallocation

	Background
	GPU hardware limits
	Data-parallelism hardware limits

	Crane

	Design
	Enforcing portable OpenCL binaries in Crane
	GPU overcommit: transparent reallocation
	Reconfiguration API: non-transparent reallocation

	Evaluation
	Related work
	Conclusions
	Discussion topics

