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Abstract

Many popular Web services use CDNs to host their
content closer to users and thus improve page load times.
While this model’s success is beyond question, it has its
limits: for users with poor last-mile latency even to a
nearby CDN node, the many RTTs needed to fetch a Web
page add up to large delays. Thus, in this work, we ex-
plore a complementary model of speeding up Web page
delivery — a content gathering network (CGN), whereby
users establish their own geo-distributed presence, and
use these points of presence to proxy content for them.
We show that deploying only 14 public cloud-based CGN
nodes puts the closest node within a median RTT of
merely 4.8 ms (7.2 ms) from servers hosting the top 10k
(100k) most popular Web sites. The CGN node nearest
to a server can thus obtain content from it rapidly, and
then transmit it to the client over fewer (limited by avail-
able bandwidth) high-latency interactions using aggres-
sive transport protocols. This simple approach reduces
the median page load time across 100 popular Web sites
by as much as 53%, and can be deployed immediately
without depending on any changes to Web servers at an
estimated cost of under $1 per month per user.

1 Introduction

Response times for Web services have a significant
bearing on user experience, and hence revenue for ser-
vice providers. For Google, a few hundred milliseconds
of increase in latency translate into a significant reduc-
tion in the number of searches per user [9]. Similar fig-
ures have been reported by other providers, including
Bing [11] and Amazon [17]. There is thus significant
interest in improving latency in Web page delivery.

The predominant model for Web page delivery to-
day is the use of content distribution networks, such as
Akamai, Limelight, and Cloudflare, and in the case of
the largest Web service providers, their own globally
distributed infrastructure. By establishing an extensive
global presence, CDNs attempt to locate their customers’
content as close to their users as possible, thus reducing
latency. For instance, Akamai leverages their 216,000+
servers located in more than 1500 networks around the
World, to be able to claim [2]:

Eighty-five percent of the world’s Internet users are
within a single “network hop” of an Akamai CDN server.
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It is beyond question that this model yields signifi-
cant performance improvements across large numbers of
users. However, we observe that for clients with poor
last-mile latency, the benefit from CDNs is much more
limited — if the last mile itself adds, say, 100 millisec-
onds of latency, then the many RTTs incurred in a typical
Web page request [8] will still add up to a large page load
time. It is worth noting that such large last-mile latencies
are not atypical in many parts of the World [6]. There is,
of course, significant ongoing work both on cutting down
the number of RTTs a Web request takes, and on improv-
ing last-mile latencies. However, realizing these benefits
across the large eco-system of Web service providers and
ISPs could still take many years'. How do we improve
performance for users in these environments today?

To address this problem, we explore a starkly differ-
ent model for Web content delivery than today’s CDN
model. Instead of bringing content closer to the users,
we aim to push users closer to the content. We observe
that present public cloud infrastructure provides enough
global points of presence to be able to reach within close
proximity of most popular Web services, and thus pro-
vides a natural platform to build a “Content Gathering
Network”, which operates on behalf of users. A user
then always has a CGN point-of-presence close to any
desired Web service. Such a CGN node, due to its low-
latency connectivity to the Web service, can fetch content
quickly, even if it involves many (extremely short) RTTs,
and then ship it to the client over few (ideally, one in case
of infinite available bandwidth) high latency interactions,
using aggressive transport protocols. We show that this
approach can reduce page load times by 53% in the me-
dian for popular Web sites from a client in Lahore, Pak-
istan. Further, this approach is immediately deployable
at a surprisingly low cost — under $1 per user per month.

Beyond the objective of improving performance for
clients with poor last-mile latency, we believe this pre-
liminary work raises fundamental questions regarding
the present model of Web content delivery — can we
leverage public cloud infrastructure and the observation
that most content is hosted in (or near) this infrastruc-
ture to entirely eliminate CDNs from Web site delivery?
Note that we deliberately scope the question narrowly for
Web site delivery, where the number of bytes delivered is

1Optimizations like WebP and SPDY, which have been available for
many years, have adoption rates under 1% across popular Web sites [1].



small relative to the content volume on the Internet — for
applications like video streaming, it is clear that CDNs
also help in substantially cutting the need for wide-area
bandwidth.

2 Related work

Reducing latency in Web content delivery is a hot topic
with research efforts along many directions.

Cloud-assisted browsers: Various split-architecture
browsers have been proposed to reduce latency. Opera’s
Mini/Turbo [20, 19] aims to reduce latency by compress-
ing Web content at a proxy before delivering it to users.
Google’s Flywheel [1] is a similar proxy service for
Chrome browser. Amazon Silk [5] is a split-architecture
browser which offloads processing from thin clients to
well-provisioned servers in the cloud which analyze traf-
fic patterns, preprocess content and apply machine learn-
ing algorithms in order to reduce latency. These ef-
forts focus on either content compression, or processing-
offload to preserve bandwidth and compute resources at
clients, but their impact on latency is not consistently
positive, as Sivakumar et al. [27] show in their analysis of
a popular cloud-assisted browser. Further, benefits from
processing-offload and compression are both orthogonal
to our work, and could yield substantial further benefit
beyond what we evaluate here.

WebPro [25] maintains a database of resource lists for
popular Web sites at the proxy, proactively fetching re-
lated resources on receiving client requests and send-
ing bulk responses back to the clients. PARCEL [28]
packages several optimizations including compression,
processing-offload, and batching of data to reduce the
number of RTTs to reduce load times for mobile devices
suggesting the use of a proxy “implemented on a pow-
erful server”. Similarly, Cumulus [18], uses “a well-
provisioned cloud server” to fetch content from Web
servers and send bulk responses to the clients to reduce
the number of round trips. However, this past work does
not exploit our observation on the proximity of cloud
nodes to popular Web services to propose a distributed
content gathering network to further reduce latency.

Measurement studies: Prior work [15] evaluated the
use of cloud services by popular Web sites, finding that
4% of Alexa’s top 1 million domains use Amazon EC2
or Microsoft Azure. Our results quantify latency to the
Web servers directly via measurements, as opposed to
looking at IP prefixes etc. to identify where the servers
are hosted. It is also possible that the consolidation of
Web services in (or near) cloud infrastructure has grown
in the 44 year period between those measurements and
ours. Our finding of the 100,000 most popular Web sites
being a mere 7.2 ms away from EC2 nodes in the median,
is the key underpinning of our suggested approach.

Protocol enhancements: While a large number of
protocol and content-encoding enhancements are be-
ing fleshed out in the community, even those with the
backing of industry giants like Google (SPDY [12],
WebP [14]) have seen extremely low adoption rates of
under 1% across Web servers [1]. Our work provides
an easy vector to improve Web performance without de-
pending on Web servers. In fact, it effectively serves as a
vehicle for deploying protocol enhancements — the close
proximity of our CGN nodes to Web servers implies that
deploying certain enhancements on CGN nodes could be
almost as effective as deploying them to Web servers. We
ourselves leverage known techniques such as larger TCP
window sizes [10] and persistent connections via mech-
anisms like TCP cookies [22].

3 Cloud consolidation of Web services

The motivating observation behind this work is that
increasingly, popular Web services are hosted in, or near,
a small set of public cloud data centers. We first quantify
the extent of this “cloud consolidation”.

We deployed one node in each of Amazon’s 14 data
center regions. From each of these 14 nodes, we mea-
sured round trip times to each Web server hosting the top
100,000 Web sites in Alexa’s list of popular sites [3]. We
used hping [24] to conduct our RTT measurements, al-
lowing us to send TCP SYN packets to the Web servers
and record when the TCP SYN-ACKs were received at
our Amazon nodes. For a smaller set of Web servers (top
10,000), we also similarly measured RTTs from clients in
Lahore, Pakistan and Ziirich, Switzerland. Both of these
clients are university-hosted and “real” end-user connec-
tivity is likely to be worse. An investigation using large
scale experiments across more clients on the RIPE Atlas
platform [23] is underway.

Note that we filter out Web servers in China from our
measurements. Latencies to Chinese servers from our 14
EC2 locations are higher, but only due to bureaucratic
hurdles: Amazon does in fact provide an EC2 region in
China’s high population Beijing area, but using this re-
gion requires registering a Chinese legal entity [7].

3.1 Most servers are near an EC2 node

Fig. 1 shows the CDF of RTTs to different Web servers
from our 14 Amazon EC2 nodes, as well as our clients
in Lahore and Ziirich. The EC2 data shown is for the
EC2 node which gave the lowest RTT to the Web server.
In line with our expectations, latency is lowest from
EC2 and highest from Lahore, with the medians (90”’-
percentiles) being 4.8 ms (39.5 ms), 39.8 ms (215.8 ms),
and 275.8 ms (471.8 ms) from EC2, Ziirich, and Lahore
respectively. Thus, median RTT from EC2 is 8§ x smaller
than from Ziirich, and 57 x smaller than from Lahore.
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Figure 1: CDF of RTTs to the top 10,000 popular Web servers
from Lahore, Ziirich and our 14 EC2 nodes.

For the top 100,000 domains (Fig. 1 shows results for
the top 10,000), the median RTT from EC2 was simi-
larly small — 7.2 ms, indicating that this consolidation
in or near EC2 continues across less popular Web sites,
although to a somewhat lesser extent.

An interesting feature in Fig. 1 is the emergence of
a few significant “steps” in the measured RTTs from
Ziirich — nearly 14% of the mass is in one such step be-
tween 19.7-20 ms. We believe this corresponds to a set
of Web servers located in precisely the same data cen-
ter, which is ~20 milliseconds away from Ziirich. (For
most of these Web servers, the EC2 node in Frankfurt
is within 10 milliseconds RTT.) Several other such steps
can be seen clearly in the plot. In ongoing work, we are
investigating more thoroughly, a mapping between these
steps and different cloud data centers.

From Lahore, most Web servers are far: 94% being
more than 150 ms away. We conjecture that the step-
characteristic of the Ziirich measurements is absent here
due to greater latency variations across longer paths.

There is also a “plateau” in the plot between 50-
100 ms in the measurements from Ziirich, where there
are few measurements. This is due to the trans-Atlantic
latency from Ziirich to servers in the Americas.

These results show that most Web services are hosted
either within the same data center as their closest EC2
nodes, or some other data center in the same regions,
or in some infrastructure with good connectivity to our
EC2 nodes. It is likely that we could further decrease
the RTTs from our cloud nodes by including nodes from
other cloud providers, such as Microsoft Azure, or even
different Amazon data centers in the same regions.

3.2 Are these observations stable?

To be able to exploit the above observation, we also
need to ascertain whether these measurements stay sta-
ble — at the least, does the EC2 location which was clos-
est to a Web server show similar RTT to the Web server
across measurements separated by long time intervals?
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Figure 2: CDF of differences in RTTs to the top 10,000 popular
Web servers from their closest EC2 node after one week.

To answer this question, we created a mapping of each
Web server to its closest EC2 node in the above experi-
ments. After a period of one week from the initial mea-
surements, we used the same methodology to measure
the RTTs between Web servers and the EC2 nodes they
are mapped to. Fig. 2 shows the CDF of changes in RTT
across server-EC2-node-pairs between these measure-
ments. The change in latencies is extremely small, the
median change being 0.6 ms, with 90% of the changes
lying within a 15 ms range around zero. Thus, the EC2
nodes mapped to Web servers continue to provide low la-
tency access to them across time. Even if a mapped EC2
node is no longer the nearest one to a Web server, the
change in RTT is small.

4 A Content Gathering Network

We propose to exploit the proximity of cloud-hosted
nodes to most Web servers to build a content gathering
network (CGN), so that users are able to get Web content
faster. The intuition behind our approach is illustrated in
Fig. 3. In a typical Web request, there are a large num-
ber of round-trips between the client and the server. If
the last-mile latency at the client is poor, even round-
trips with a geographically nearby CDN node (instead of
the authoritative content server) can incur high latency.
However, if a client can identify a CGN node near the
Web server and proxy its request through it, the CGN
node can obtain content from the server over a small net-
work RTT, before delivering it to the client. The client
and the CGN node use aggressive transport protocols,
with large initial window sizes, and without the need of
an additional handshake (unlike TCP). These are stan-
dard techniques in networking [22, 10].

Our design requires CGN nodes to maintain a mapping
of Web servers to CGN nodes. Each CGN node makes
independent latency measurements and then shares mea-
surement digests (few MB even for a million popular
Web sites) with other CGN nodes, thus being able to
compute the mapping. Clients then obtain the mapping
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Figure 3: There are many long RTTs between the client and the server in the default case. These are replaced by few (ideally, one
when available bandwidth is infinite) long RTTs between the client and the CGN node, plus many short RTTs between the CGN

node and the Web server.

from CGN nodes. Given the stability of the mapping
(683.2), measurements, computations, transfers, and up-
dates of mappings are all infrequent (e.g., once a day).

A client’s browser forwards Web requests to a local
HTTP proxy service, which then forwards the URL to the
CGN node nearest to the hosting Web server. The CGN
node runs a headless browser, which starts loading the
Web page. As the content is downloaded, the CGN node
starts to forward it to the client’s local proxy in parallel
using a TCP byte stream. The local proxy, in turn, serves
the content to the browser, which starts loading the page.

Ideally, delivering the content from the CGN to the
client should be bounded only by bandwidth-based con-
straints and one RTT. Given that serving Web requests
often involves significant interaction between the CDN
front-ends and back-end or origin servers [21], some
long RTTs are often incurred even in the CDN model.
Thus, if CGN achieves 1 RTT page load times (modulo
bandwidth constraints), then perhaps the role of CDNs in
Web page delivery can be substantially reduced, or even
entirely eliminated. However, our present implementa-
tion often does not hit this goal due to the difference
in behaviors between client-side browsers and headless
browsers at the CGN. Due to this, to prevent many long
RTTs to the CGN, we still rely on traditional CDN nodes
to serve content from these secondary requests when we
can identify the use of a CDN through simple domain
name filters”. But we do not believe that the 1-RTT goal
is unreachable, and are working towards it.

5 Evaluation

We use m4.10xlarge EC2 instances (40 vC-
PUs, 160 GB memory, and 10 Gbps bandwidth) as
CGN nodes, and PhantomJS as the headless browser.

2Possib1y, we also benefit to some extent from anycast-based CDNs;
teasing out their impact on our results is left to future work.

Presently, for our experiments, we only operate 2 CGN
nodes (North California, USA and Frankfurt, Germany)
and test only those domains which would have mapped
to either of these 2 locations; an actual deployment
would use all 14 nodes (and possibly more at other cloud
providers) to serve requests at each location. At the
client, we use the Chrome browser. For automating Web
page loads and recording page load times (PLTs), we
used sitespeed.io [26].

5.1 Improvement in PLT

We loaded Web pages with and without the CGN from
a client in Lahore, reflecting our high last-mile latency
scenario. Nevertheless, as noted in §4, content requests
to CDNs directly go to the CDN servers while all other
requests are served through our CGN. Out of the Alexa
top-10k, we evaluate the top 100 and random 100 Web
pages which map to either of our two CGN nodes. For
the top-100 set, as Fig. 4 shows, the median page load
time reduces from (the default) 16.1 seconds to 7.6 sec-
onds with CGN — a reduction of 53%. For the random-
100 set (Fig. 5), median PLT is reduced by 43.2%.

5.2 Comparison with Flywheel

While a detailed comparison is left to future work, we
present results from a small comparison with Google’s
Flywheel [1]. While Flywheel is targeted at mobile de-
vices, the same functionality is also made available by
Google for the desktop browser in the form of the “Data
Saver” extension [13]. Unfortunately, our automation
and measurement framework based on sitespeed.io
does not work with Chrome extensions, and thus these
experiments could not be fully automated yet, so we test
a small set of 30 top domains with Flywheel, with CGN,
and without either. As Fig. 6 shows, CGN achieves sig-
nificant gains beyond Flywheel’s, with median PLTs of
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Figure 4: PLTs from Lahore for the top 100 domains which
map to North California or Frankfurt.
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Figure 5: PLTs from Lahore for 100 random domains which
map to North California or Frankfurt.

14.53 seconds, 12.37 seconds and 9.81 seconds when
loaded without either, with Flywheel, and with CGN
respectively. We note that Flywheel is a complex sys-
tem with numerous optimizations, including compres-
sion, caching, and prefetching at the proxies. These tech-
niques are all orthogonal to ours, and could be readily
added to our approach for even more reduction in PLTs.

5.3 Isn’t this very expensive?

At first, it may appear that operating such a globally
distributed infrastructure on behalf of users could be ex-
orbitantly expensive. However, we find that with multi-
plexing across potential users of such a service, this need
not be the case. For an average request, we find that a
CGN node uses ~300 ms CPU time and ~2 MB network
bandwidth in both directions. Suppose that the average
user requests 5,000 pages per month®. Conservatively
using the highest costs for EC2 nodes* leads to a cost es-
timate of $0.934 per user per month. Even if the system
operates at substantially lower efficiency, we believe the
costs would be reasonable — for Lahore, they amount to
~10% of the cost of typical broadband plans.

3Most users seem to browse substantially less than this [29].
4Reserved m4 . 10x1arge instances with upfront payment are prici-
est at Sao Paulo — $1.828/hour [4]. Bandwidth costs are $0.01/GB.
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Figure 6: PLTs from Lahore for the top 30 domains which map
to NC or Frankfurt, with CGN, with Flywheel, and with neither.

While we believe users stuck with poor connectiv-
ity would be willing to pay the minimal costs, this
would perhaps be undesirable, in that it shifts respon-
sibility from the content-provider and CDN eco-system
onto users. Several alternative models could work: (a)
competing cloud providers (Amazon, Azure, Rackspace)
may bear the cost to attract more Web service providers
to their infrastructure; (b) browser vendors competing
for market share could run the service; (c) Web service
providers themselves may incur the expense.

6 Conclusion

We present measurements showing the massive con-
solidation of Web servers in or near a small number of
cloud data centers — Web servers hosting the top 100k
domains are within a 7.2 ms RTT (median) from only 14
cloud nodes. Exploiting this consolidation, we propose
a design for speeding up Web page delivery, especially
for users behind a poor last-mile, showing that PLTs can
be reduced by 43 — 53% following this simple approach,
even with our preliminary implementation. We believe
there are significant opportunities for further improve-
ment, including better engineering at the CGN nodes to
speed up the headless browser, prioritizing content we
believe the client will need earlier in the page load, in-
corporating techniques like compression and caching de-
veloped for other systems like Flywheel, etc.

This work also raises interesting questions about
whether a simpler model can effectively compete with
the predominant CDN based model for Web page de-
livery. Our present implementation still uses CDNs for
some content, but we are exploring ways of obtaining
near-optimal Web page delivery in the typical case with-
out the use of CDNS.



7 Discussion topics

The CGN model we propose is a significant departure
from how Web page delivery works today. Apart from
the “who pays” question addressed above, we invite dis-
cussion and feedback on several topics:

CGN v. CDN: We believe the CGN model presents dif-
ferent trade-offs than the CDN model — instead of CDNs
operating hundreds of thousands of servers across thou-
sands of locations, perhaps similar or even better perfor-
mance can be achieved with a CGN. For entirely static
content, if CDNs were to use similarly aggressive trans-
port protocols, the latency difference would come down
to the CGN-client latency v. CDN-client latency, and the
latter would typically be smaller. However, for dynamic
content, CDNSs often need connectivity to the back-end
or content-origin servers [21], ameliorating their client
proximity advantage in this comparison. The substan-
tially higher cost and complexity of CDNs thus may not
be worth the expense (for low-traffic-volume applica-
tions like Web page delivery).

A matter of time? If Web servers and CDNs do deploy
aggressive protocol enhancements, the CGN approach
could lose its utility. However, as pointed out earlier
(§2) even the most popular Web servers are slow to adopt
enhancements, even when they are backed by industry
giants. Further, servers are often conservative in their
resource-use per user (to protect against DoS), while our
design could potentially create more accountability at the
user end, and can thus afford to be less conservative.

Security, HTTPS: We do not foresee significant chal-
lenges in supporting HTTPS, but the client browser
needs to trust the CGN instead of treating it as an eaves-
dropper, because the CGN node would need to act as a
TLS/SSL proxy. Note than CDNs already operate un-
der a similar trust model. There is also scope for us-
ing techniques like Intel SGX [16] to hide the content of
client-server interactions from the CGN nodes as a pri-
vacy enhancement, although CGN nodes will still be able
to see which servers a client connects to. CGN nodes
would also need effective sandboxing of user requests
from each other. We note that CDNs also provide secu-
rity services like DDoS protection. However, there is no
reason cloud infrastructure cannot do the same.

Fairness: The use of aggressive transport protocols
raises issues of fairness to Internet hosts not using them.
However, short flows like those for Web page delivery
are inherently disadvantaged in comparison to longer-
lived traffic for applications like video streaming. Fur-
ther, Web browsers already break flow-fairness by em-
ploying multiple parallel TCP connections. Neverthe-
less, we plan to study the fairness-performance trade-off
in greater depth in future work.
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