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Abstract

Consensus protocols are used to provide consistency

guarantees over replicated data in a distributed system,

and allow a set of replicas to work together as a coher-

ent group. Raft is a consensus protocol that is designed

to be easy to understand and implement. It is equiva-

lent to Multi-Paxos in fault-tolerance and performance.

It uses a leader based approach for coordinating repli-

cation to a majority. The leader regularly informs the

followers of its existence using heartbeats. All reads

and writes go through the leader to ensure strong con-

sistency. However, read-heavy workloads increase load

on the leader since the followers in Raft are maintained

as cold standbys. Since the algorithm itself guarantees

replication to at least a majority, why not exploit this fact

to serve strongly consistent reads without a leader? We

propose mechanisms to use quorum reads in Raft to of-

fload the leader and better utilize the cluster. We inte-

grate our approach in CockroachDB, an open-source dis-

tributed SQL database which uses Raft and leader leases,

to compare our proposed changes. The evaluation re-

sults with the YCSB benchmark illustrate that quorum

reads result in an increased throughput of the system un-

der read-heavy workloads, as well as lower read/write

latencies.

1 Introduction

Fault-tolerance is an essential component of large-

scale distributed systems. Replication is one of the most

widely used techniques to achieve fault-tolerance. It is

used to increase the availability of the data in case of

failures. However maintaining consistent replicas across

different clusters, or geographically distant datacenters,

in the presence of concurrent operations, is a complex

task. Consensus protocols are used to provide consis-

tency guarantees about the data, and allow a set of repli-

cas to work together as a coherent group.

Over the last few decades several consensus algo-

rithms have been proposed [13, 16, 17]. Raft [17] is a

consensus algorithm that is designed to be easy to under-

stand and implement. It is equivalent to Multi-Paxos [13]

in fault-tolerance and performance. It has two phases

which are logically separated: leader election and log

replication. A server in a Raft cluster is either a leader,

a candidate, or a follower. A leader is elected in a clus-

ter, and is responsible for replicating log to the followers.

It also informs the followers of its existence by periodi-

cally sending heartbeat messages. Therefore, Raft does

not need to invoke a leader election for every request.

Quorum writes ensure that a majority of the cluster repli-

cates the changes before committing. All the writes are

coordinated by the leader. Since writes are not guaran-

teed to propagate to all the members in the cluster im-

mediately, a strongly consistent read is performed at the

leader. However, a snapshot read can be performed at

any of the followers.

In Raft, all consistent read and write requests are han-

dled only by the leader. Raft’s leader-based design makes

it easy to reason about the correctness of replicas, and

simplifies the recovery and configuration change pro-

cesses. However, this design can lead to under-utilization

of resources and can affect system performance. Re-

source under-utilization is exacerbated in failure-free

scenarios. Followers in Raft are cold replicas as long

as the leader is active. The whole cluster can be better

utilized if followers also can serve consistent read re-

quests. Since a majority of members in the cluster are

guaranteed to have replicated the consistent value when

writing, reading from any majority in the cluster can be

used to provide a consistent state. Thus, combining quo-

rum reads with leader-based reading can help to improve

read scalability in Raft. We explore such an architecture

in the Raft implementation of CockroachDB [1], which

is a distributed SQL database. Quorum reads help of-

fload the load of the leader node, resulting in better uti-

lization of followers under failure-free and read-heavy

workloads. Combining quorum reads with lease-holder



reads, also provides the ability to trade-off read and write

latencies, by varying the fraction of reads served using a

particular approach. We present the proposed approach

for Raft, but it can also be applied to Raft-like consensus

protocols, such as Multi-Paxos.

The remainder of the paper is organized as follows.

Section 2 provides a background on consensus algo-

rithms. We provide the implementation details of Cock-

roachDB’s Raft implementation and consistent reads in

Section 3. Section 4 discusses the design to scale reads

in Raft via quorum reads. The evaluation results are pre-

sented in Section 5 and we conclude in Section 6.

2 Background

Assume a collection of processes that can propose val-

ues. A consensus algorithm ensures that a single value

among the proposed values is chosen. If no value is pro-

posed, then no value should be chosen. If a value has

been chosen, then processes should be able to learn the

chosen value. Quorums play an important role in con-

sensus algorithms. A quorum is the minimum number

of votes that a process has to obtain in order to be al-

lowed to make the decision on behalf of the collection of

processes. Depending upon the network access strate-

gies quorums can be as complex as O(
√

n) for grid-

based [14], O(logn) for tree-based [6] or O(n) for ar-

bitrary accesses. Majority quorums assume equal relia-

bility of all members of a cohort. It requires access to

(⌊n/2⌋+ 1) members at any given time for read as well

as write operations.

El Abbadi et al. [5, 11] introduce the idea of views

and Viewstamp replication [16] builds on the work, com-

bining views with the concept of a leader (or the pri-

mary) in a given set of members (called the cohort), for

replicating a state machine and recovering on failures.

Paxos [12] is a general-purpose consensus protocol de-

signed for an asynchronous environment. In Paxos, each

process plays the role of a proposer, an acceptor, or a

learner. Every request requires a new instance of Paxos

in the system. Each request has to go through two phases

to get accepted: proposal phase and acceptance phase.

Consistent reads are performed using quorums (because

of no stable leader). Modifications like Master-leases [8]

and Multi-paxos [13] minimize electing a leader (the pro-

posal phase in Classic Paxos) for every single request to

reduce the number of rounds. This enables serving con-

sistent reads locally at the leader. Quorum leases [15]

allow any replica to acquire a lease from a majority of

grantors and serve consistent reads locally. This is made

possible by synchronously notifying every write to all

the lease holders through the lease grantors. Other read

optimizations include snapshot reads using synchronized

clocks in Spanner [10] and local reads in Megastore [7].

Raft is a consensus algorithm designed with the pri-

mary goal of understandability. It separates the two con-

cerns of leader election and log replication. Once a

leader is elected, log replication is done via the leader,

using majority quorums.

3 CockroachDB

3.1 Overview

CockroachDB [1] is a distributed SQL database built

on top of a transactional key-value store. It replicates

data over multiple nodes and guarantees consistency be-

tween replicas using Raft. Figure 1 illustrates the archi-

tecture of CockroachDB. It implements a single, mono-

lithic sorted map from key to value. The map is com-

posed of one or more ranges and each range is backed by

data stored in RocksDB [3] (a LevelDB variant). Ranges

are defined by start and end keys. They are merged and

split to maintain total byte size within a globally con-

figurable min/max size interval. Ranges are replicated

to different nodes using respective consensus groups.

This means that each node may be participating in multi-

ple consensus groups with each group having an elected

leader.

Leaders and Leases. Since CockroachDB uses Raft

to replicate ranges, there are leaders in the cluster (one

for every Raft instance). CockroachDB has an additional

abstraction called leader leases. They are Raft-agnostic

and are a sequence of database time intervals which are

guaranteed not to overlap, for which a single replica in a

Raft group has the leader lease. For this time window, the

leader is assumed to be stable, hence avoiding the need to

go through the expensive Raft read processing for consis-

tent reads (i.e. waiting to hear from majority using heart-

beats, after receiving the read request). Reads and writes

are generally addressed to the replica holding the lease; if

none does, any replica can be addressed, causing it to try

to obtain the lease synchronously. The replica holding

the lease is in charge of handling range-specific mainte-

nance tasks such as splitting, merging, and re-balancing.

The lease holder can serve consistent reads locally,

however, it needs to submit writes to Raft (i.e. go through

the leader). The lease is completely separate from Raft

leadership, and so without further efforts, Raft leader-

ship and the leader lease might not be held by the same

replica. Since it is expensive not to have these two roles

co-located (the lease holder has to forward each proposal

to the leader, adding costly RPC round-trips), each lease

renewal or transfer also attempts to co-locate them.

Processing read/write requests. As shown in Fig-

ure 1, CockroachDB provides a SQL interface for

clients. All the requests are internally treated as transac-

tions. The system creates implicit transactions for non-

transactional requests and hands them over to the Trans-

action Coordinator which keeps track of all the active



Figure 1: Architecture of CockroachDB. Shows a cluster of 3 nodes (Node 1 to Node 3), and 3 ranges (Range A to

Range C) with full replication. Every range replicates using its own Raft cluster.

and aborted transactions. Application clients can send

requests to any cockroachDB node. The node receiv-

ing the request is referred to as Gateway node. The Dis-

tributed Sender layer forwards requests to the respective

lease holder nodes using gRPC [2]. The lease holder uses

Store to retry requests in case of conflicting operations.

The Replica layer proposes Raft commands for replica-

tion. The MVCC and the RocksDB layer manage the

underlying data, as key-value pairs.

CockroachDB uses intents to identify conflicting write

operations. Any ongoing update to a key is persisted as

a write intent. It contains the proposed timestamp, value

and some meta information about the transaction. These

intents are cleared when a transaction completes.

3.2 Bottlenecks to read performance

As CockroachDB uses Raft for consensus, all client

requests for consistent reads and writes are submitted to

the lease holder. This means that irrespective of the num-

ber of replicas only the lease holder is responsible for

serving reads. This could result in the lease holder get-

ting overloaded by requests. This effect can potentially

be compounded in the case of hot-spots, where only a

few keys are being accessed most of the time. Range

splitting can be used to reduce the effect of hot-spots,

but increasing the number of ranges increases the prob-

ability of distributed transactions across multiple ranges.

Hence, serving the read requests only at the range-lease

holder adversely impacts the system performance as a

whole. On the other hand, members other than the lease

holder are just cold replicas and are not serving the client

directly during failure-free executions. If we could re-

duce the read traffic on the lease holder by distributing

the requests on other nodes then we can utilize the en-

tire cluster more efficiently in failure-free executions and

thereby sustain higher throughput.

4 Designing for Read Scalability

Raft uses write quorums before a write can be con-

sidered committed. The protocol makes sure that the

updates are propagated to a majority of servers in the

cluster. This property can be utilized to enable follower

nodes to handle read requests. If the reads are performed

on a majority of servers in the cluster, it is guaranteed that

at least one of the server will have the consistent state.

Therefore, read quorums can be used to serve strongly

consistent reads from the followers. Two variants of quo-

rum reads are proposed. A simple majority read provides

an efficient solution, but has a pathological case where

the value returned might not be the latest linearizable

read. This approach provides the advantage of an effi-

cient read, but has a low probability of returning a stale

value. The second variant of the quorum read returns the

strongly consistent value corresponding to a key, but can

be more expensive.

4.1 Quorum Read Approaches

Quorum Reads In the basic approach, the gateway

node (the node receiving the client request) sends the

read request to a majority of the servers. Every node

replies with a timestamp along with the data, correspond-

ing to the latest stable value at the node for the key read.

Since a committed value must be present in one of the

servers among any majority, the value corresponding to

the highest timestamp is the latest committed value. This

value is chosen and sent back to the client. The patholog-

ical case for this approach is that a particular value might

be in the process of committing; a majority of servers

might have responded to the leader to agree to the write

request, but might not have heard back from the leader

yet. Hence, the leader might commit ahead of the value

read using the quorum read approach. This approach also

provides a trade-off to a local read, as it is more expen-

sive than reading the local value at a replica, but has a

much higher probability of returning the latest value.

Strongly Consistent Quorum Reads To overcome

the pathological case of the simple quorum read ap-

proach, we also propose and implement a strongly con-

sistent quorum read. As described earlier, Cockroach DB

uses write intents for recording the proposed values at a



server. When a node receives a request for a strongly

consistent quorum read, in the case of conflicting write

intents for a particular key, the node replies with only

the timestamp, but no data. Sending a timestamp and

no corresponding data signals that a write intent was en-

countered for that particular key. As the read is sent to

a majority of servers, any possible ongoing write request

that could have been committed at the leader will be de-

tected. This is due to the fact that for the leader to com-

mit a value in Raft, a majority must have appended the

request to their respective copy of the log. The gateway

node then selects the data with the latest timestamp. If

the data is available, it implies that the timestamp corre-

sponds to the latest stable value. However, if there is no

data available, corresponding to the highest timestamp, it

implies that there are pending updates in the system and

the request is considered as failed. A back-off policy is

used for subsequent retries.

4.2 Combining Lease-holder and Quorum

Reads

As write requests still go through the lease-holder, the

latest value can be read from the lease-holder like before.

Our proposed approach also combines the lease-holder

based and quorum reads. If the gateway node is the lease

holder, it can retrieve consistent state locally. However

other nodes have two choices:

1. Read from the lease holder, or

2. Read from a majority (excluding lease holder)

To read from a majority, a basic approach could be

to send requests to all the servers in the cluster (except

the lease holder) and wait to hear back from a majority

before replying to the client. This approach would work

but could end up generating a significant load on all the

servers. Instead we can use a random selection approach

to send requests to only selected servers in the cluster to

form a majority. We make this choice to optimize for

failure-free executions.

A read request is executed either as a quorum read or

a lease-holder read, such that the read requests are uni-

formly distributed over all the nodes. Assuming that a

cluster of n nodes is fully replicated, every node gets

equal number of client requests, and a gateway node al-

ways includes itself for majority, the read request to the

non-lease holder nodes uses the lease-holder read for x%

of total reads and uses quorum reads for all the other re-

quests. Solving for x for distributing the read requests

uniformly in the cluster, we get,

x =
P∗ (n−2)

n+P∗ (n−2)
×100

where P is probability of a non lease-holder node be-

ing included in a majority quorum by other non-lease

holder nodes

P =











1 n = 3
(

n−3
⌊n/2⌋−1

)

(

n−2
⌊n/2⌋

) n > 3

Using the combination of lease holder reads and quo-

rum reads we can guarantee consistent reads while not

overloading the lease holder. Also, all the cluster mem-

bers would be utilized for serving read requests and the

lease holder would not be a bottleneck. The fraction of

reads being served using quorum reads can be config-

ured based on the read and write latency trade-off de-

sired. Having a higher fraction of reads served by the

non-lease holder nodes can help reduce the load on the

lease-holder and reduce write latencies, at the expense

of read latencies and increasing the load of non-leader

nodes.

5 Evaluation

YCSB [4, 9] is used to benchmark and analyze the per-

formance of the proposed approach of combining quo-

rum reads with traditional lease holder reads in Cock-

roachDB’s Raft implementation. We compare four ap-

proaches in the evaluation: Lease-holder reads (default

baseline approach of reading from the lease holder), Lo-

cal reads (read the local value at the replica), Quorum

reads (read latest value from a majority), and Strongly

consistent quorum reads (quorum reads considering on-

going write requests). Local reads may return inconsis-

tent results, but provide a measure of the upper bound

of read performance. Both the quorum read and the

strongly consistent quorum read approaches also perform

a fraction of reads at the lease holder to ensure equal dis-

tribution of read requests, as described in Section 4.2.

We use a fully replicated cluster of 5 AWS EC2 ma-

chines (m3.2xlarge instance type), with range size big

enough to avoid any range splits during the experiments.

The fraction of lease-holder reads was set to 28.57%,

based on the calculation of x (Section 4.2). Another ma-

chine was used as YCSB client to generate equal load

on all the nodes. The dataset comprises 100K records

with each record having a key and a value. Unless oth-

erwise mentioned, the workload is read-heavy, with 95%

reads and 5% writes, and is uniformly distributed over

the keys.

Scaling Up Client Threads. Figure 2 illustrates the

performance of all the approaches under varying num-

ber of client threads. We observe that both the quo-

rum read and strongly consistent quorum read achieve

higher throughout than the traditional lease holder read

approach (around 60% higher), where all the reads are
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Figure 2: Scaling-Up Clients - Uniform Distribution
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Figure 3: Varying % of reads - 70 client threads
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Figure 4: Hotspots - 70 client threads

performed at the lease holder. Figure 2c also shows that

distributing the reads is highly beneficial in mitigating

the increase in write latency, as the load on the system

increases. As both the quorum read approaches reduce

the load on the lease holder, around 4x improvement

in write latency is observed with 80 concurrent client

threads. Both the proposed approaches achieve a lower

read latency with more than 10 client threads, due to the

distribution of read requests. But as the load on the sys-

tem increases, the higher number of reads involved in the

quorum reads result in reducing the gap in read latencies.

Varying Read-Write Ratio. In Figure 3, we observe

that as the percentage of reads increases from 30 to 99,

the throughput gap between the quorum read approaches

and the traditional lease holder read approach increases.

This is due to the fact that increasing fraction of reads can

be efficiently distributed among the cluster via quorum

reads, resulting in better throughput.

HotSpots. Figure 4 illustrates the performance under

hotspots, where 80% of the requests access a restricted

fraction of the data (specified in % of the entire data on

the horizontal axis). We observe that under really high

contention (left side of the horizontal axis), the through-

put achieved by the strongly consistent quorum read ap-

proach is much lower than quorum reads, because of the
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client threads

higher probability of accessing a key within an ongo-

ing write request. While, as the contention decreases,

the throughput gap between the two proposed quorum

read approaches decreases. For other approaches, the

throughout does not vary a lot due to the low percentage

of write requests.

Read-Write Latency Trade-Off. In the proposed

quorum read approaches, the fraction of reads to be per-

formed at the lease-holder provides a way to trade-off

read and write latencies. Figure 5 illustrates this trade-

off. As we increase the fraction of reads performed at

the lease holder, the write latency increases due to the

increase in load on the lease holder. On the other hand,

we also observe that serving more reads from the lease

holder at a high load, reduces the read latency. The high-

est throughput was achieved at 20% lease holder reads,

when the load is almost uniformly distributed throughout

the cluster. Combining the quorum read approaches with

the traditional lease holder reads, provides a mechanism

to trade-off between read and write latencies.

6 Conclusion

We propose combining quorum reads, with traditional

single leader based reads in Raft-like consensus pro-

tocols. A basic quorum read, which can return non-

linearizable value in a corner case and a strongly con-

sistent quorum read approach are proposed. Results

with YCSB benchmark demonstrate that the proposed

approach results in higher throughput and improved

read/write latencies with read-heavy workloads, and bet-

ter utilization of the follower nodes in failure-free sce-

narios.



7 Discussion Topics

Leader-based consensus protocols like Raft and Multi-

Paxos rely on leaders for both read and write requests.

This simplifies operations and recovery, but generates

most of the load on leaders whereas followers only act as

cold standbys. Using read quorums can help distribute

the load from leader to its followers. This results in

higher throughput for read-heavy workloads.

An interesting topic of discussion would be about the

read and write latency trade-off of combining the lease-

holder reads, with the quorum reads. Traditional data

management systems trade-off throughput and latency.

The proposed approach allows to fine tune between read

and write latencies, and can be configured based on the

application requirements. Another topic which we feel

can spark debate is the corner case in the quorum read

approach, where a leader might have an ongoing com-

mit, while the basic quorum read approach is in progress.

Identifying applications which can or cannot tolerate

such reads, is an interesting point of discussion.

An area of future work is how to choose a majority of

nodes for quorum reads. In the current work, all the non-

lease holder nodes are chosen uniformly. In the future,

these decisions can be based on varying metrics such

as server’s resource utilization (CPU, memory and disk),

cluster’s network traffic and latency from different nodes

in the cluster. All the servers in the cluster can share such

metrics periodically using a gossip protocol. The current

choice of majority of servers is optimized for failure-free

scenarios as well. It would be interesting to look at per-

forming quorum reads during failures.

The proposed approach is more suited to read-heavy

workloads. With the increase in the ratio of writes, the

benefit of the quorum approaches decreases. Further-

more, as the data contention and the write ratio increase,

strongly consistent quorum approach might lead to more

retries, and the basic quorum read approach has a higher

probability of returning a value which is one commit

behind the leader.
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