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Abstract
Virtually all public clouds today are run by single
providers, and this creates near-monopolies, inefficient
markets, and hinders innovation at the infrastructure level.
There are current proposals to change this, by creating
open architectures that allow providers of computing and
storage resources to compete for tenant services at multi-
ple levels, all the way down to the bare metal. Networking,
however, is not part of this, and is viewed as a commodity
much like power or cooling. In this paper we borrow ideas
from the Internet architecture, and propose to structure
the cloud datacenter network as a marketplace where mul-
tiple service providers can offer connectivity services to
tenants. Our marketplace, NetEx, divides the network into
independently managed pods of resources, interconnected
with multiple providers through special programmable
switches that play a role analogous to that of an IXP. We
demonstrate the feasibility of such an architecture by a
prototype in Mininet, and argue that this can be a way to
provide innovation, competition, and efficiency in future
cloud datacenter networks.

1 Introduction
Cloud computing is currently dominated by a small num-
ber of cloud providers. Despite offering multiple pub-
lic services to clients, each provider is vertically inte-
grated and controls its own infrastructure. This monolithic
provider model reduces the complexity of managing an
infrastructure, but in turn limits the flexibility of using
resources available at the lowest level of a cloud stack.
For example, while it is possible for anyone to rent virtual
machines from Amazon and offer a MapReduce service
to clients, this service offering would be at a perpetual
disadvantage vis-a-vis Amazon’s own Elastic MapReduce
offering. In this case, Amazon knows the location of data
blocks, the network topology and VM allocation. It can
then place computation for its own service where it is most
advantageous. The single provider model inhibits compe-
tition at the infrastructure level, creates vendor lock-in,
and artificial non-market-based pricing for resources [1].

To address the limitations of a single provider
model, the Massachusetts Open Cloud Exchange (OCX)
project [5] is a proposal to build a truly open, multi-
provider cloud environment. The vision is to enable un-
privileged service providers to compete in a marketplace

with offerings at all levels of the system stack. The only
privileged infrastructure, beyond power, cooling, and ba-
sic connectivity, is a hardware-as-a-service allocation
layer, coupled with a set of exchanges where offers from
providers are matched with service requests from clients.
In the OCX, a provider can physically deploy machines
in a common datacenter, and advertise access to these
machines to clients. These clients can then, say, offer an
OpenStack service on top of such leased physical ma-
chines, or use them to run Spark and offer it as a service
to clients of their own. Different providers can also deploy
physical machines and compete on features or price.

While the notion of multiple competing providers ap-
plies naturally to storage and compute, it does not imme-
diately apply to networking inside the datacenter. In this
paper we examine whether it makes sense for multiple
providers to compete for networking services within an
open cloud datacenter, including at the physical layer.
The prevailing view is, rather, that the network is a utility,
a common substrate, and if it is sufficiently provisioned,
should not be a cause for concern. While it is possible
that this is the case, this view hinders innovation and dif-
ferentiation at the network level, and our goal is to have
an architecture that does not preclude this.

Adopting a multiple provider model is also a natural
response to rapid innovations in networking infrastruc-
tures. These innovations include novel transport stacks
such as DCTCP [7] and RoCE [4], in-network processing
elements such as pFabric [3] and programmable middle-
boxes [17], and emerging communication media such as
reconfigurable optical switches [9] and 60GHz wireless
[12]. Provisioning these heterogeneous fabrics in a mar-
ketplace not only allows clients to customize machine
connectivity for improved communication performance,
but also enables infrastructure providers to offer services
that perhaps not be feasible to offer for the entire datacen-
ter, or do so at differentiated prices for increased revenue.

The Internet offers a powerful analogy. Since its early
prototype in 1980s, Internet has evolved from a single-
provider environment into a successful ecosystem that
can accommodate multiple network providers to compete
in a marketplace. An organization today can physically
connect to an IXP, and from there choose services from
different transit providers that compete on capacity, re-
liability, connectivity, and cost. This open architecture



allows the coexistence of 18+ low-latency providers be-
tween the New York and Chicago exchanges [14], or the
multiple undersea cables with similar routes.

In the OCX architecture [5], multiple pools of physical
resources – compute and storage – are provisioned and
managed by different providers. These sets are called
pods, and they can be, for example, a rack-scale computer
[6], a physical container, or a storage pod [15]. Each pod
is responsible for its internal networking, and they are
inter-connected by a commodity network.

We extend this architecture by allowing multiple net-
work providers to bridge these pods and compete by of-
fering services in an open marketplace. To realize this,
we design a network marketplace called Network Ex-
change (NetEx). To register in NetEx, network providers
physically connect to a set of programmable Edge-of-Pod
(EoP) switches. Similarly to the role of Internet Exchange
Points (IXPs), these switches break a datacenter network
into an inter-pod network that has alternative physical net-
working infrastructure exchanged in NetEx, and a closed,
fast intra-pod network, e.g., a FatTree [2] network that
provides full-bisection intra-pod bandwidth.

Users interact with NetEx by submitting high-level re-
quests for connectivity. The marketplace forwards these
requests to eligible providers (i.e., those connecting the
relevant pods), which, in turn, return offers consisting
of priced path segments, along with their characteristics.
NetEx then facilitates the transfer of payment and the
provisioning of the path segments selected by users. This
high-level interface allows users to obtain service without
being aware of the complexities of the different underlays,
and providers to only expose the minimum required in-
formation for the market operation. Providers are free to
implement paths however they see fit, and to use a wide
spectrum of valuation and business strategies.

Although, as far as we know, we are the first to propose
a network marketplace extending to the physical layer for
a cloud datacenter, our design borrows liberally from the
datapath mechanisms from Pathlet routing [10], Segment
routing [8], and from some of the market aspects of the
ChoiceNet architecture [21]. In this paper, we present a
preliminary design for our network marketplace, NetEx
(§2), and describe our initial Mininet prototype of the
architecture (§3), which uses OpenFlow-directed MPLS
forwarding to provision and connect path segments ac-
cording to client requests. We conclude the paper with a
number of interesting remaining research challenges.

2 Marketplace Design

In this section we describe our goals for a datacenter net-
work that enables a marketplace where network providers
offer services to clients. We start with a motivating exam-
ple, followed by the design for our NetEx architecture.

2.1 A Motivating Example

Figure 1 presents an overview of our datacenter network
architecture. As mentioned in §1, the datacenter com-
prises independently provisioned and managed resource
pods with their own internal networking. These pods are
connected by one or more network providers via EoP
switches. Each EoP switch is bridging a pod with poten-
tially multiple network providers.

Suppose Alice wants to run a distributed machine learn-
ing task which can benefit from specific network proper-
ties. In the example, pod A has GPU compute resources,
while pod C provides high-performance SSD storage.
Suppose further that there are three network providers
between pods A and C: provider X being the standard net-
work with a regular TCP/IP over Ethernet; provider Y of-
fering high-capacity DCTCP-enabled paths; and provider
Z offering low-latency (but more expensive) RDMA over
Converged Ethernet (RoCE).

Alice is willing to pay more for improved network
performance, and queries the NetEx with requirements
for low latency and high bandwidth. NetEx identifies
providers X, Y, and Z as connecting the two pods, and
forwards the request to them. They, in turn, reply with
path segment offers and prices.

Alice knows training a model is communication inten-
sive [16]. It requires (1) transferring a large number of
training samples, and (2) frequently synchronizing model
states across parallel workers. Considering this, she se-
lects the DCTCP option for shipping samples as well as
the RoCE option for reducing I/O blocking during syn-
chronization. Her selections are passed to corresponding
network providers: Y and Z. Upon receiving a path instal-
lation request, the providers install relevant path segments
and return opaque handles for the paths. The pods in-
volved then use these labels, plus the labels selected by
the other pod, to install the proper tagging and forwarding
rules. Part of Alice’s request specifies the type of traffic to
use each path (e.g., TCP RPC flows on port 5993 should
use provider Z), and these become match rules for tagging
at the ToR switches on each pod.

2.2 Design Goals

Independence and Isolation First and foremost, the
architecture should respect network providers that are
independent, and have the right incentives to compete.
This means that they should have the freedom to deploy
their infrastructure, set prices, and policies, however they
see fit. The architecture requires providers to expose in-
formation that is necessary to offer accountable services.
Changes internal to a provider or pod should not impact
other players in the marketplace. The only changes to a
provider that should be visible to others is when the con-
nectivity between players changes, e.g., when a provider
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Figure 1: NetEx architecture overview

connects to a new pod. This means that providers and
pods should have a stable, well defined interface among
them that enables independent internal evolution.
Neutrality As a marketplace that may accommodate
a vast number of competing parties, NetEx is expected
not to make any economical decision itself in order to
avoid violating a neutrality principle. Network providers
calculate their own prices for connectivity offers. These
prices can reflect a wide spectrum of economic variables,
making it possible to enforce various business policies.
Scalability The architecture should scale with the num-
ber of providers and pods. The forwarding performance
of the architecture should be dependent on the internal ca-
pabilities of pods and providers, and the new interconnec-
tions among them should not introduce new bottlenecks.
Simplicity It should be simple for a network provider,
or a pod, to take part in the marketplace through sim-
ple, well-defined and stable interfaces. It should also be
straightforward for users to obtain marketplace services.
Hiding internal details from market participants, as well
as having the marketplace be the intermediary in provi-
sioning selected services is key to lower adoption barriers.

2.3 Architecture Overview

The marketplace has two classes of participants. On one
side, users make requests for connectivity, which the mar-
ketplace forwards to network providers. On the other side,
both pods and network providers run their own NetEx
agents, through which they interact in the marketplace.
One key design decision is what is the object of negoti-
ation. Similarly to Pathlet Routing [10], Segment Rout-
ing [8], or ChoiceNet [21], the basic unit of negotiation
in NetEx is a path segment. A path segment can have any
number of properties and capabilities, which clients ex-
press in requests to NetEx, and providers match or exceed
in offers. Properties can include different forms of band-

width or latency guarantees, as well as loss rate, reorder-
ing, dedicated queues, or disjointedness, for example. Ca-
pabilities may include the ability for clients to set param-
eters of individual switches, such as buffer sizes, queue
configuration, or ECN parameters. The NetEx agents at
pods and providers are responsible for provisioning and
tearing down path segments.

To provide independence, providers reply to path re-
quests with path segment properties; each request can
elicit multiple responses. If these are selected, the provider
provisions the path internally, and returns to NetEx an
opaque handle to this path. This handle, combined with
the ingress point in the provider’s network (which indi-
cates a particular pod), identifies a path segment for the
purposes of forwarding and accounting.

To install an end-to-end route, NetEx queries the two
end pods to gather their internal handles corresponding to
the selected path. An end-to-end route is defined by the
sequence of providers and their respective path segment
handles. In our prototype, NetEx provides the agents at
each pod with the complete set of labels for the path. In
the data plane, paths are selected by having the source pod,
perhaps in the ToR switch closest to the source, push a
stack of labels that correspond to the path onto the packet.
This is, in essence, a form of loose source routing similar
to Pathlet Routing or ChoiceNet.1

To provide neutrality, NetEx does not make any choice
or apply any policies to path negotiations.2

To achieve simplicity and scalability, the EoP switches
are designed to be easy to attach to, and stable. Although
they are programmable, they only have forwarding rules
at the provider granularity, as opposed to having per ten-
ant or per flow rules. Thus, it is only when there is a
connectivity change to the EoP that NetEx has to install
new rules at the EoPs.

Finally, the architecture allows for incremental deploy-
ment, accommodating clients which do not wish to ne-
gotiate paths, and pods which are not connected with
providers through EoPs. All pods are interconnected by a
standard network, which already exists in any datacenter,
and is “free” (as in, the fees that pods or tenants pay to
use the datacenter include a “tax” to maintain the reg-
ular network). In the absence of special configuration,
default routes go through the standard network; when
pods do deploy EoP switches, the standard network be-
comes a default, free network provider. Other providers
offer value-added services and may charge for them.

1A viable alternative is to use a form of label switching at each
provider, and have the route state distributed along the path, rather than
fully embedded in the packets.

2it may, as in ChoiceNet [21], filter offers for clients to only consider
Pareto-optimal offers.
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2.4 Path Deployment

A packet may need to go through multiple physical under-
lays, managed by different pods and network providers.
To keep their autonomy, we reduce the information they
share to opaque labels. We make packets self-contained by
encapsulating traversal-related information within their
headers. This enables packets to reach their destinations
without depending on external information.

Our current implementation relies on standard label
stacks in MPLS, which is extensively available on com-
modity hardware, implying its sufficient performance in
a production environment. At its first step along the net-
work path, a packet can match arbitrary rules on the ToR
switch, installed by the pod as a result of path provision-
ing. This rule pushes corresponding multi-level MPLS
labels onto the packet header, which can be viewed as a
series of nested tunnels, or, alternatively, as loose source
routes. We do not preclude the possibility of using other
techniques to implement the opaque handles, for example,
VLAN tags, as well as the nested tunnel, for example,
QinQ in the 802.1q standard.

2.5 Edge-of-Pod Switch Design

A key component of NetEx are the EoP switches. A
naı̈ve design for the EoP would leverage its programma-
bility to install per-flow rules to steer traffic. However, a
production datacenter could have a massive number of
flows [7]. To maintain a relatively stable and small match-
action table, we instead adopt per-provider tunnel rules.
Per-provider tunnels are much more stable than per-flow
tunnels. By using nested labels, we share the responsibil-
ity of steering the flows with the individual providers. At
an EoP switch, we aggregate all tunnel rules pointing to
the same network provider. These aggregated rules enable
routing packets into corresponding providers at a modest
space cost. As each provider is only responsible for a
subset of flows, enforcing per-flow tunnels at the provider
level becomes feasible. It is also easier to upgrade the
infrastructure of one provider than it is to change the EoP,
disrupting many providers and a pod at the same time.

EoP switches, then, need to be programmable, be able
to perform high-performance switching based on (nested)
labels, and have a modest number of high-speed ports, pro-
portional to the number of providers. Ideally they would
also be modular, to enable switching between different
network technologies.

3 Prototype
To evaluate the feasibility of the NetEx proposal, we built
a proof-of-concept prototype in Mininet [13]. For our em-
ulated switches, we use ofsoftswitch [19], which is a
user-level software switch compliant with OpenFlow 1.3.
This version of OpenFlow supports a multi-level stack
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Figure 2: Packet forwarding detail

of MPLS labels, which we use to implement the NetEx
datapath forwarding. Though preliminary, this environ-
ment allows us to examine if the proposed techniques are
workable under a practical setting.

We describe our implementation through a detailed
example, and show the results of a very simple experiment
in which we steered ICMP traffic from one congested
provider to another to avoid congested queues and reduce
the latency of our traffic.

Figure 2 illustrates in some detail our setup for the
experiment. We emulated two pods, A and B, connected
by two network providers, X and Y. We assume that the
paths have already been provisioned in the figure, some
of the client’s traffic will go through provider X, and
some through provider Y, with specific rules indicating
which traffic installed at the ToR switches (the boxes
immediately above the machine icons). For simplicity,
we will only walk through details in one direction. The
reverse direction is analogous.

When a packet sent from the source host arrives at the
ToR with the destination host IP, it will be matched on a
rule that directs the ToR to tag this packet with a stack
of labels (from outer to inner): one internal to provider
A (Aint), one with a global identifier for the provider (X
or Y), and an internal handle for the provisioned path
segment within the provider (Xint and Yint). Once this
packet arrives at the EoP, EoP removes the first label
(Aint) and checks the second label (X or Y) to identify
which network provider this packet should be directed
to. Before pushing this packet into the wire that connects
with the network provider, EoP pops out the second label.
One key aspect of this is that the EoP rules only depend on
the provider, and not on this particular path; these rules
are only changed in the event of physical connectivity
changes to the EoP.

The selected provider forwards the packet as it sees fit
using its internal label (Xint or Yint), and the the packet
finally reaches the EoP in pod B. Similarly to the EoP in
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Figure 3: RTTs of ICMP packets. After 10s we steer
ICMP packets to a new, uncongested network provider.

pod A, B’s EoP decapsulates the last label (Xint or Yint)
and forwards this packet to an internal switch based on
the destination. Of course, it is possible to have a specially
provisioned path in pod B for this traffic, which would be
represented by another nested label. The packet is then
delivered to its destination.

We tested this setup with the following experiment: we
installed a default rule steering all traffic from A to B to
go through provider X, and ran an iperf test to saturate
the path. We then started a set of ICMP ping messages
to measure the round-trip time along this provider. After
10 seconds we provisioned a new path for ICMP packets,
going through provider Y, which was idle. This involved
provisioning a path at provider Y and obtaining a handle
for that path, as well as installing a proper matching rule
at the ToR switch at A (for the forward path), and at the
ToR switch at B (for the reverse path). For simplicity, in
each provider, we allocated an even label for a path in
one direction and an odd label for the symmetrical reverse
path. As we can see in Figure 3, the RTTs drop sharply.

4 Discussion and Future Directions
Our preliminary design for NetEx leaves many questions
and challenges to be addressed, and we discuss some of
them here. We also discuss the possibility of extending
these ideas to the wide area.
Viability A common concern we have encountered with
this design is whether it makes sense at all. Is it really
viable to have multiple physical network providers in a
single datacenter? While we cannot say whether a net-
working marketplace will harbor many providers and fos-
ter innovation, our goal is to design an architecture that
allows this to happen, rather than to perpetuate the current
single-provider architectures that prevent innovation. The
Massachusetts Open Cloud (MOC) [18] project is build-
ing a multi-provider datacenter that has many industry
and academic partners, and has a multi-provider archi-
tecture for computing and storage resources. We intent
to pilot our network architecture at the MOC, to test the
feasibility of these ideas. In a single-provider cloud, while
the market component may be moot, our architecture can
offer to tenants rich networking options at different prices,
and to the provider a path to transparent deployment of

and migration to new networking technologies.
EoP Design In our current design we strived to keep the
EoP as simple as possible. While programmable, it has
modest table space requirement, as its forwarding rules
are at the granularity of providers, and not of tenants,
or of flows. The main challenge in our architecture is to
guarantee that the EoP will not be a bottleneck, which
would prevent, for example, latency guarantees by net-
work providers. One solution to this is to require traffic
shaping close to sources (a la IntServ [20]). It may be
possible to divide this responsibility, though, by using
a small number of outgoing queues per EoP port, to at
least protect one provider from another, but we are still
investigating this issue.

Another challenge relates to connecting different tech-
nologies to EoPs. For example, a provider of 60GHz
wireless links would probably need to add hardware at
the EoPs to connect to its infrastructure. Our architecture
does not preclude multiple EoP switches per pod, and in
this scenario it is possible for the provider to subsidize
specialty EoP switches that have the right interfaces.
Accountability and Transparency Since NetEx gives
providers the power to control pricing strategies, account-
ability and transparency are key requirements for the mar-
ketplace to be successful. Given the competitive struc-
ture of the market, providers should have the incentive
to honor their promised services, as customers can mea-
sure the obtained performance and choose other providers
when not satisfied. However, inferring bottlenecks from
end-to-end measurements may be hard, and we are inves-
tigating integrating transparent metering of path segments
in the architecture. This will also aid in client charging
and provide incentives for clients to behave. We are also
considering providing transparency in the market prices
of network offerings, to prevent discriminatory pricing.
Wide Area Extending the notion of a marketplace into
WANs is also a promising direction. Today it is hard,
for example, to have any control over the paths connect-
ing cloud deployments that span multiple datacenters. To
build a marketplace for WANs, we could largely reuse the
building blocks for NetEx except the EoP switches. This
gap can be filled by extending the emerging Software-
Defined Exchanges [11]. Benefiting from their similar
roles, most of our principles adopted in the EoP switch
design can be applied to the marketplace-enabled SDX
switch as well. By seamlessly extending our NetEx pro-
posal, we might be able to spawn a unified marketplace
for WANs and DCNs in the future.
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