
HyperOptics: A High Throughput and Low Latency Multicast Architecture
for Datacenters

Dingming Wu, Xiaoye Sun, Yiting Xia, Xin Huang, T. S. Eugene Ng
Department of Computer Science, Rice University

Abstract
Multicast has long been a performance bottleneck for
data centers. Traditional solutions relying on IP mul-
ticast suffer from poor congestion control and loss re-
covery on the data plane, as well as slow and complex
group membership and multicast tree management on
the control plane. Some recent proposals have employed
alternate optical circuit switched paths to enable loss-
less multicast and a centralized control architecture to
quickly configure multicast trees. However, the high cir-
cuit reconfiguration delay of optical switches has sub-
stantially limited multicast performance.

In this paper, we propose to eliminate this reconfigu-
ration delay by an unconventional optical multicast ar-
chitecture called HyperOptics that directly interconnects
top of rack switches by low cost optical splitters, thereby
eliminating the need for optical switches. The ToRs are
organized to form the connectivity of a regular graph. We
analytically show that this architecture is scalable and ef-
ficient for multicasts. Preliminary simulations show that
running multicasts on HyperOptics can on average be
2.1× faster than on an optical circuit switched network.

1 Introduction

As datacenters scale up, online services and data in-
tensive computation jobs running on them have an in-
creasing need for fast data replication from one source
machine to multiple destination machines, or the mul-
ticast service. Apart from traditional multicast applica-
tions such as simultaneous server OS installation and
upgrade [9], data chunks replication in distributed file
systems [4, 13, 29] and cache consistency check on a
large number of nodes [14], recent distributed machine
learning models also see a huge demand for multicast
services. The explosion of data allows the learning of
powerful and complex models with 109 to 1012 param-
eters [11, 18], in which broadcasting the model parame-
ters alone poses a challenge for the underlying network.
Some learning algorithms require the processed interme-
diate data to be duplicated across different nodes. For
example, the Latent Dirichlet Allocation algorithm for

text mining needs to multicast the word distribution data
in every iteration [10]. A few thousand iterations of LDA
with 1 GB of data for each iteration would easily cause
over 1 TB of multicast data transfer in today’s datacen-
ters. Reducing the multicast delay would significantly
accelerate the machine learning jobs.

However, multicast services are still not natively sup-
ported by current datacenters. The most established
solution is IP multicast which is originally designed
for the Internet. Even though some efforts have been
made to improve its scalability in the datacenter con-
text [17, 19, 26], the complex dynamic multicast tree
building and maintenance, the potentially high packet
loss rate and costly loss recovery, and the lacking of sat-
isfactory congestion control have caused most network
operators to eschew its use.

On the other hand, as data size continues to grow, there
is an increasing trend towards deploying a high band-
width (40/100 Gbps) network core for datacenters [1].
However, high data rate transmissions are not feasible for
even modest-length electrical links. For example, data
transmissions on traditional twinax copper cable propa-
gate at most 7 m at 40 Gbps due to power limitation [5].
Optical communication technologies are well suited to
such high bandwidth networks. The advantages of op-
tical devices and links, such as data rate transparency,
lower power consumption, less heat dissipation, lower
bit-error rate and lower cost have been noted or already
exploited by the industry [3]. As datacenters gradually
evolve from electrical to optical, we believe a system de-
sign that fully leverages the key physical features of op-
tical technologies is necessary for future datacenters.

In this paper, we propose HyperOptics, a novel optical
multicast architecture for datacenters. HyperOptics fol-
lows the recent efforts such as [12, 20, 23, 24, 27, 28] that
augment the traditional electrical network with a high
speed optical network, but HyperOptics dedicates the op-
tical network to multicast transmissions. The existing
optical network proposals usually employ an Optical Cir-
cuit Switch (OCS) to provide configurable connectivity
for ToRs. The switching speed in today’s large port-
count OCSes is, however, orders of magnitude slower

1

(about tens of millisecond) than packet switches. In [23],
the authors propose a specific implementation of OCS
that is capable of switching in microseconds, but it is
unscalable to support a large port-count due to the lim-
ited number of available optical wavelengths. Also, OC-
Ses are high cost devices. According to our recent quote
from a vendor, a 192-port OCS would cost 365 K USD.
All these problems of OCSes motivate us to design an op-
tical network that gets rid of its use and directly intercon-
nect the racks by low cost optical splitters. The design
of HyperOptics is inspired by Chord’s [25] way of orga-
nizing peer nodes in traditional overlay networks. Each
ToR in HyperOptics can talk to multiple neighbor ToRs
simultaneously via passive optical splitters, by which the
ToRs form the connectivity of a regular graph.

We identify two main advantages of HyperOptics over
the OCS architecture. First, HyperOptics can provide
high bandwidth even at the packet granularity because
the slow circuit switching delay is completely elimi-
nated. Second, unlike the existing OCS architecture, Hy-
perOptics scales well in the number of ToRs because the
constraint of the OCS port-count no longer exists in Hy-
perOptics. We show that HyperOptics is well suited for
high throughput and low latency multicast transmissions.
Data from one ToR could be physically duplicated via an
optical splitter to multiple ToRs at line speed. For mul-
ticasts with large group sizes, data is relayed by some
intermediate ToRs. Due to the path flexibility of regular
graphs, we show that the maximum path length for any
multicast is bounded by logn, where n is the number of
ToRs. Another distinguishing property of HyperOptics
is that it can support 2 simultaneously active multicasts
with maximal group size. To take full advantage of the
underlying optical technologies, we propose a central-
ized control plane that manages the routing policy and
multicast scheduling. Preliminary simulations show that
HyperOptics can on average be 2.1× faster than the OCS
architecture for multicast services.

2 HyperOptics Architecture

We first introduce the connectivity structure of ToRs and
then discuss the routing strategy under the given network
architecture. Next, we analyze the multicast performance
and the wiring complexity of HyperOptics. And finally,
we present an overview of the system.

2.1 ToR Connectivity Design

We assume that all splitters have the same fanout k and
the number of ToRs is n = 2k. In our model, optical sig-
nals can only pass through the splitters in one direction,
i.e., from the input port to the output ports. The ToRs are
interconnected as a special k regular graph. The only dif-
ference of HyperOptics from the general k regular graph

ToR 0
…

ToR 1
…

ToR 2
…

ToR 3
…

ToR 4
…

ToR 5
…

ToR 6
…

ToR 7
…

splitter
…

splitter
…

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

2 3 4 5 6 7 0 1

4 5 6 7 0 1 2 3

Source ToR

Neighbors

splitter splitter

Figure 1: An example of HyperOptics connectivity with splitter fanout
k = 3. The connectivity of t0, t3, t4 and t6 are shown in the figure. All
other ToRs are interconnected to their neighbors in a similar way. The
table on the bottom demonstrates the connectivity of all ToRs.

is that a node (ToR) can only send the same data to its
k neighbors simultaneously. This limitation comes from
the fact that the splitter just passively duplicates the input
signal on its output ports.

Assume that the ToRs are denoted as t0, t1,..., tn−1.
All ToRs are logically organized on a circle modulo 2k.
Each ToR ti is connected to the input port of splitter si.
The k output ports of si are connected to ti+20 , ti+21 ,...,
ti+2k−1 , respectively. Note that the gap between ti’s two
consecutive neighbors increases exponentially, which is
very similar to Chord [25] in organizing peer nodes in
overlay networks. Since all ToRs are on a logical circle,
the operations above are all modulo 2k. For example, if
k = 3 and n = 8, the third neighbor of t4 is t4+22 = t0.
An example of HyperOptics with k = 3 is given in Fig.1.
We only show the connectivity of t0, t3, t4 and t6 in the
figure. The other ToRs are connected in a similar way,
e.g., t1 is connected to t2, t3, t5. The full connectivity of
the architecture is shown in the table on the bottom.

2.2 Routing and Relay Set Computation

Routing traffic to indirect destinations needs relays. For
example, in Fig 1, a possible path shown as dashed lines
from t0 to t7 is t0 − t4 − t6 − t7 where t4 and t6 are re-
lays. There may exist multiple paths between each ToR
pair. The relay set of a multicast is mainly determined
by the routing strategy of HyperOptics. For simplicity,
we propose a best-effort based routing strategy for Hy-
perOptics. We note that our routing strategy might not
be optimal and there is room for improvement. But it
already provides satisfactory gains as we will show in
Sec. 3.

For a single source-destination pair, best-effort routing
will always designate the neighbor that is nearest to the
destination as the next relay. Also, we ensure that the in-
dex of the next relay is logically smaller than the destina-
tion. Mathematically, given a destination t j, a relay ToR
ti will specify ti+2blog(j−i)c as the next relay. The routing
algorithm will recursively compute the remaining relays
as if the next relay is the source. For example, consider
the traffic from t0 to t7 in Fig 1, the next relay for t0 is
t4 because t4 is one of t0’s neighbor that is nearest to t7.

And the next relay for t4 is t6. Hence, the relay set for the
path from t0 to t7 is {t4, t6}. Note that the next relay of
t4 is not t0 because t0 has logically passed the destination
t7. For multicasts, best-effort routing will compute the
relay set for each individual destination and then return
the union of all relay sets.

2.3 Analysis

We now analyze the multicast performance under the de-
sign of HyperOptics and compare the cost of HyperOp-
tics with the traditional OCS networks.
Multicast hop-count: The hop-count of a multicast
characterizes the minimum latency of a packet travers-
ing from the source to the destination. The following
theorem gives the worst case and average hop-count of a
multicast in our architecture.

Lemma 1. The maximum hop-count of a multicast un-
der best-effort routing is upper-bounded by logn and the
average hop-count is logn

2 .

Proof. All ToRs in HyperOptics are logically equal.
Without loss of generality, we consider a multicast orig-
inating from t0. The k direct neighbors of t0 is ToR
20,...,2k−1, these IDs differ from 0 by only one bit. Sim-
ilarly, the IDs of ToRs that are two hops away from
t0 differ by two bits. The farthest ToR differs by k
bits. In best-effort routing, traversing a hop is equiv-
alent to flipping the most significant bit of the source
ToR’s ID that is different with the corresponding bit of
the destination’s ID. Therefore, the largest hop-count is
k = logn. The number of ToRs that are j hops away
from t0 is

(k
j

)
, (1 ≤ j ≤ k). The average hop-count is

∑
k
j=1 j(k

j)
∑

k
j=1 (

k
j)

= k2k−1

2k = k
2 = logn

2 .

For one hop, the signal decoding and packet process-
ing can be done in sub-nanosecond [15]. Therefore, for a
datacenter with 1 K racks, the average latency for a mul-
ticast is less than 0.5 ∗ log1000 ∗ 1ns ≈ 5.0ns. In the
following, we simply assume that the multicast latency
is negligible.
Simultaneously active multicasts: Each ToR in Hyper-
Optics has k direct neighbors. In an extreme case where
all group members of a multicast are the source’s direct
neighbors, HyperOptics could support n active multicasts
simultaneously. In another extreme case where multi-
casts’ group sizes are maximal and need the most number
of relays, the number of simultaneous active multicasts
would be much smaller. However, the following theorem
shows that HyperOptics still has the capability of servic-
ing multiple multicasts simultaneously in the worst case.

Lemma 2. HyperOptics can simultaneously service two
one-to-all multicasts.

i

i+1 i+2"
…

i+2#$"

…
i+2 i+2%+2" i+2%+2&$"

…

…
i+2#$"-1 i+2#$" i+2&$"+2#$"-2 = i-2

…
i+2#$" i+2#$"+1 i+2&$"+2#$"-1= i-1

i+2&-"

i+ 2#$"+1 i+2#$"+2"
…

i+2#$"+2#$"= i

…
i+2#$"+2 i+2#$"+2" i+2#$"+2&$"+1 = i+1

…

…
i-1 i i+2&$"-2

…
i i+1 i+2&$"-1

Figure 2: Two broadcast trees originating from ti and ti+2k−1 . Solid
circles are relays. The union of the relays and the last neighbor of each
relay, shown by squares, form a complete set of all ToRs. The two
broadcasts have disjoint relay sets.

Proof. We consider two broadcast sources ToR i and
ToR i+2k−1. Under best-effort routing, we draw the two
broadcast trees in Fig 2 where solid circles are relays,
and squares are the last neighbor of each relay. As can
be seen, the relay set and the last neighbor of each relay
form a complete set of all ToRs for each broadcast. ToR
i’s relay set is {i, i+ 1, i+ 2, ...i+ 2k−1− 1}, while ToR
i+ 2k−1’s relay set is {i+ 2k−1, i+ 2k−1 + 1, i+ 2k−1 +
2, ..., i−1}. The two relay sets are disjoint and therefore,
both broadcasts can be active simultaneously.

ToR port-count: In HyperOptics, each ToR is connected
to the input port of a 1× k splitter. One splitter would
take up k+1 ports across the ToRs. The average number
of of occupied ports on each ToR would be n∗(k+1)

n =
1+ logn.
Cost: Even though HyperOptics does not use the OCS,
it occupies more ToR ports than the OCS network. The
per-port OCS cost is 1.5K USD, derived from our re-
cent vendor quote (365K USD for a 192-port switch)
but factors in a 20% discount. The per port cost of ToR
and transceiver are 100 USD and 200 USD respectively,
from [6, 8]. Splitters are very inexpensive at 5 USD per
port [7]. For a medium size datacenter with 128 ToRs
where each ToR is connected to other ToRs via 40 Gbps
links, the total networking cost for HyperOptics is ap-
proximately 0.31 M USD. The total cost of the OCS net-
work using a commercially available 192-port OCS is
comparable at 0.33 M USD. For a datacenter with 256
racks, the total costs for HyperOptics and the OCS net-
work using a 320-port OCS become 0.69 M and 0.56 M,
respectively. HyperOptics is thus cost comparable with
the OCS architecture under the current price of different
network elements.
Wiring complexity: While the total number of fibers
needed to interconnect the ToRs is n logn. Many of them
are short fibers that only go across a few racks. In a dat-
acenter with 2k racks, the k fibers from each ToR will go
across 20, 21,..., 2k−1 racks, respectively. For instance, in
a datacenter with 256 racks, only 2 fibers will go across
over 50 racks for each ToR. The total number of long

HyperOptics
Manager

ToR i
Requests: (id, s, D, f), finish cmd

List of Multicast IDs require ToR i as a relay

…
start cmd

Figure 3: An overview of the HyperOptics system.

fibers that go across over 50 racks is 2 ∗ 256 = 512. For
large datacenters with thousands of racks, we envisage
that the ToRs are packaged into Pods. Pods can be wired
in the same way as if one Pod is a single virtual ToR. This
hierarchical organization of ToRs would significantly re-
duce the number of global fibers. A systematic study of
this hierarchical design is our future work.

2.4 System Overview

Fig. 3 shows an overview of the HyperOptics architec-
ture. Our current design of HyperOptics assumes that
the network core bandwidth can be fully utilized. This
assumption holds when the link bandwidth between a
server and its ToR is the same as the inter-rack band-
width. Or when a server’s bandwidth is lower than
the inter-rack bandwidth, multiple sources within a rack
have the same destination set. The work-flow of Hyper-
Optics is as follows. The manager first receives multi-
cast requests from source servers. A multicast request
contains the request ID, the source server, the destina-
tion servers and the flow size. The manager then com-
putes the relay set for each request and send to each ToR
i a list of IDs of multicasts that require ToR i as a re-
lay. All multicast data packets contain a multicast ID in
their headers. During the service period, when ToR i re-
ceives a packet, it will read the packet header and check
whether it is a relay for the packet and relay the packet if
it is. Note that this rule installation process is conducted
only once before each scheduling cycle. Since relays are
non-sharable resources for a multicast, multicasts that re-
quire common relays must be serviced sequentially. The
HyperOptics manager will compute a schedule for all re-
quests, which we will discuss in the next section. Every
time a server finishes sending its multicast traffic, it will
send a finish message to the manager, the manager then
checks whether it is time to schedule the next batch of
multicasts. If yes, then the manager will send a start
message to the source servers of the next batch. Rules
for the current scheduling cycle will be deleted on ToRs
before the next cycle begins.

2.5 Multicast Scheduling

Given the input of n multicast requests, we now consider
how to schedule these multicasts such that the overall
delay is minimized. We formulate this problem as a max
vertex coloring problem [22] where a vertex corresponds
to a multicast, the edges correspond to the conflict rela-

tions among multicasts, i.e., if two multicasts have com-
mon relays, there’s an edge between them. The weight
of a vertex corresponds to the flow size of the multicast.
Max vertex coloring has been shown to be strongly NP-
hard [16]. We therefore focus on efficient heuristics. Hy-
perOptics adopts a heuristic called Weight based First Fit
(WFF) in which the vertices are first sorted in a non-
increasing order of their weights. WFF then scans the
vertices and assign each vertex a least-index color that
is consistent with its already colored neighbors. The
WFF heuristic is a specific version of the online color-
ing method for general graph coloring problems whose
approximation ratio is analyzed in [21]. The time com-
plexity of WFF is Θ(|V |2).

3 Preliminary Evaluation

3.1 Experiment Set Up

In HyperOptics, the inter-rack link bandwidth is
40 Gbps. We also simulate the following two networks
to compare with HyperOptics.
OCS network: Each ToR is connected to an OCS via
a 40 Gbps link. The OCS has 320 ports, among which
some are occupied by the ToRs, and the remaining ports
are reserved for optical splitters. The number of split-
ters varies with the fanout of each splitter. The maxi-
mum group size achieved by cascading m 1× k splitters
is k+(m−1)∗(k−1). We assume the OCS reconfigura-
tion delay is 25 ms according to commercially available
products [2]. As is discussed in Sec. 2.3, the total cost of
this network is comparable to HyperOptics.
Conceptual OCS network: We assume the Conceptual
OCS has zero reconfiguration delay and sufficient port-
count to support arbitrary multicast group size. The other
configurations are the same as the OCS network. This
network is not feasible in practice; it only serves as a
comparison baseline to isolate the effect of different de-
sign components of HyperOptics.

The control plane delay consists of the scheduling
algorithm computation time, the rule installation time
and the control message transmission time between the
manager and the servers. The computation time (mea-
sured at run-time) and the rule installation time (about
8.7 ms [28]) are one-time overheads for each scheduling
cycle. The control messages between the manager and
the servers can be implemented using any existing RPC
solutions and its delay has been shown to be less than
2 ms [24, 28]. We assume in a scheduling cycle every
rack has exactly one server that generates a multicast re-
quest (id, i,D, f) with itself being the source, D being a
random subset of servers in other racks as receivers (each
rack has a 50% chance of having some receivers for each
source), and f being a random flow size between 10 MB
and 1 GB. The number of requests is equal to the number

Number of ToRs or number of multicast requests

Av
er

ag
e

To
ta

l F
C

T
(s

)

16 32 64 128 256
0

5

10

15

OCS Switching or Control Message Overhead
OCS Service Delay
Conceptual OCS Service Delay
HyperOptics Service Delay

2.01×

2.10×

1.95×

2.14×

2.40×

Figure 4: Comparison of the average total FCT of all three networks.
The speedups of HyperOptics over the OCS network are labeled in the
figure.

Fanout 2 4 6 8
FCT(s) 17.5 17.8 17.7 17.8

Table 1: Average FCT of 256 random multicasts on the OCS network
under ToR size 256. The OCS uses splitters with fanout varying from
2 to 8.

of ToRs. We repeat the experiment 500 times and report
the average result. This traffic pattern helps us evaluate
the network core capacity of the HyperOptics architec-
ture. Note that the group size of a multicast is constrained
in the OCS networks due to the limited number of ports
available for splitters. For better evaluations, we make
sure that all multicast group sizes are no larger than the
largest group size that the OCS network can support.

3.2 Simulation Results

We apply the WFF scheduling algorithm on both Hy-
perOptics and the OCS network and compare the total
flow completion time (FCT) of multicasts. The conflict
relations of multicasts are only slightly different in the
OCS network than in HyperOptics. In the OCS network,
multicasts conflict when they share some destinations or
there are not enough splitter resources to service them
simultaneously, or one multicast’s source is another mul-
ticast’s destination.

3.2.1 Effect of Splitter Fanout Used in OCS

The overall multicast delay for the OCS network might
vary as the splitter fanout changes. Table 1 shows the
average FCT of 256 random multicasts on the OCS net-
work with varying splitter fanout. It can be seen that the
FCT remains quite constant. Intuitively, smaller/larger
splitter fanout would yield better result when the multi-
cast group size is small/large. In the following experi-
ments, we always report the best result of the OCS net-
work using various splitters.

3.2.2 Performance Comparison

Fig. 4 shows the average FCT for the three networks. We
see that the speedup of HyperOptics is on average 2.13×
over the OCS network. The speedup also increases with

100 200 300 400 500 600
0

20

40

60

80

Number of requests

C
om

pu
ta

tio
n

tim
e

(m
s)

Figure 5: Computation time of HyperOptics’ control plane under dif-
ferent number of multicast requests.

an increasing number of ToRs. We identify two reasons
for HyperOptics’ advantages. First, HyperOptics does
not use the OCS, the high reconfiguration delay (occur-
ring every time the circuits need to change) is completely
eliminated. As can be seen, the overhead of OCS, mainly
the OCS reconfiguration delay, is on average 24× larger
than the overhead of HyperOptics, which contains only
the 2 ms control message delay between the manager and
the servers. Second, in the OCS network, a ToR can only
receive traffic from one other ToR at a time. As a result,
multicast requests that share some common destinations
must be serviced sequentially. However, ToRs are inter-
connected in a logn regular graph in HyperOptics, each
ToR can receive traffic from logn other ToRs simultane-
ously. We observe that the Conceptual OCS network is
still 1.8× slower than HyperOptics. This fact shows that
the unique connectivity structure of HyperOptics alone
can lead to a significant FCT improvement.

3.2.3 Computation Time of Control Algorithm

We run our C++ implementation of WFF scheduling on
a 3.4 GHz, 4 GB RAM Linux machine. As is shown in
Fig. 5, the time cost is less than 80 ms with 600 requests
and less than 18 ms with 256 requests. In addition, this
time cost is a one-time overhead for a scheduling cycle.
The manager does not need to recompute the schedule in
the service period. Results in Fig. 5 demonstrates that the
HyperOptics manager is responsive in handling a large
number of requests.

4 Conclusion

We have presented HyperOptics, a multicast architecture
for datacenters. A key contribution of HyperOptics is
its novel connectivity design for the ToRs that leverages
the physical layer optical splitting technology. Hyper-
Optics achieves high throughput and overcomes the high
switching delay of the OCS. We show that the overall
cost of HyperOptics is comparable with the OCS net-
work, but it is on average 2.1× faster than the OCS net-
work for multicast services. Our current routing and
scheduling techniques in HyperOptics are quite basic and
have much room for improvements. Our next step is to
explore alternate routing and scheduling techniques to
fully exploit the HyperOptics architecture.

Acknowledgement

We would like to thank the anonymous reviewers for
their thoughtful feedback. This research was sponsored
by the NSF under CNS-1422925, CNS-1305379 and
CNS-1162270, an IBM Faculty Award, and by Microsoft
Corp.

References

[1] 100 gbps for the data center. http://www.
networkcomputing.com/data-centers/
100-gbps-headed-data-center/407619707.

[2] Calient. http://www.calient.net/products/
s-journal-photonic-switch/.

[3] Calient application note. http://www.calient.
net/resources/application-notes/.

[4] Hadoop. https://hadoop.apache.org.

[5] Ieee802.3ba-2010 standard. http://www.ieee802.
org/3/ba/. Accessed: 2016-02-01.

[6] Mellanox sx6536. http://www.colfaxdirect.
com/store/pc/viewPrd.asp?idproduct=
1760&idcategory=7.

[7] Optical splitter. http://www.fs.com/-p-11959.
html?currency=USD.

[8] Optical tranceiver. http://shop.sfpcables.com.

[9] Windows server. https://technet.microsoft.
com/en-us/library/hh831764.aspx.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of machine Learning research, 2003.

[11] K. Canini, T. Chandra, E. Ie, J. McFadden, K. Gold-
man, M. Gunter, J. Harmsen, K. LeFevre, D. Lepikhin,
T. Llinares, et al. Sibyl: A system for large scale su-
pervised machine learning. Machine Learning Summer
School, Santa Cruz, CA, 2012.

[12] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat.
Helios: A hybrid electrical/optical switch architecture for
modular data centers. ACM SIGCOMM, 2010.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. ACM SOSP, 2003.

[14] C. Gray and D. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency.
ACM SOSP, 1989.

[15] G. Keeler, D. Agarwal, C. Debaes, B. E. Nelson, N. C.
Helman, H. Thienpont, and D. A. Miller. Optical pump-
probe measurements of the latency of silicon cmos optical
interconnects. IEEE Photonics Technology Letters, 2002.

[16] M. Kubale. Graph colorings. American Mathematical
Society, 2004.

[17] D. Li, Y. Li, J. Wu, S. Su, and J. Yu. Esm: efficient and
scalable data center multicast routing. IEEE/ACM Trans-
actions on Networking (TON), 2012.

[18] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Com-
munication efficient distributed machine learning with the
parameter server. Advances in Neural Information Pro-
cessing Systems, 2014.

[19] X. Li and M. Freedman. Scaling ip multicast on datacen-
ter topologies. ACM Conext, 2013.

[20] H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen,
S. Savage, S. Seshan, G. M. Voelker, D. G. Andersen,
M. Kaminsky, et al. Scheduling techniques for hybrid
circuit/packet networks. ACM Conext, 2015.

[21] A. Miller. Online graph colouring. Canadian Undergrad-
uate Mathematics Conference, 2004.

[22] S. V. Pemmaraju and R. Raman. Approximation algo-
rithms for the max-coloring problem. ICALP, 2005.

[23] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating microsecond circuit switching into
the data center. SIGCOMM, 2013.

[24] P. Samadi, V. Gupta, J. Xu, H. Wang, G. Zussman, and
K. Bergman. Optical multicast system for data center net-
works. Optics express, 2015.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. SIGCOMM, 2001.

[26] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Bir-
man, R. Burgess, G. Chockler, H. Li, and Y. Tock. Dr.
multicast: Rx for data center communication scalability.
ACM Eurosys, 2010.

[27] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagian-
naki, T. E. Ng, M. Kozuch, and M. Ryan. c-through:
Part-time optics in data centers. ACM SIGCOMM, 2010.

[28] Y. Xia, T. S. E. Ng, and X. S. Sun. Blast: Accelerating
high-performance data analytics applications by optical
multicast. INFOCOMM, 2015.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster computing with working
sets. HotCloud, 2010.

http://www.networkcomputing.com/data-centers/100-gbps-headed-data-center/407619707
http://www.networkcomputing.com/data-centers/100-gbps-headed-data-center/407619707
http://www.networkcomputing.com/data-centers/100-gbps-headed-data-center/407619707
http://www.calient.net/products/s-journal-photonic-switch/
http://www.calient.net/products/s-journal-photonic-switch/
http://www.calient.net/resources/application-notes/
http://www.calient.net/resources/application-notes/
https://hadoop.apache.org
http://www.ieee802.org/3/ba/
http://www.ieee802.org/3/ba/
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=1760&idcategory=7
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=1760&idcategory=7
http://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=1760&idcategory=7
http://www.fs.com/-p-11959.html?currency=USD
http://www.fs.com/-p-11959.html?currency=USD
http://shop.sfpcables.com
https://technet.microsoft.com/en-us/library/hh831764.aspx
https://technet.microsoft.com/en-us/library/hh831764.aspx

	Introduction
	HyperOptics Architecture
	ToR Connectivity Design
	Routing and Relay Set Computation
	Analysis
	System Overview
	Multicast Scheduling

	Preliminary Evaluation
	Experiment Set Up
	Simulation Results
	Effect of Splitter Fanout Used in OCS
	Performance Comparison
	Computation Time of Control Algorithm

	Conclusion

