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1 Introduction

Modern data processing frameworks are used in a vari-
ety of settings for a diverse set of workloads such as sort-
ing, indexing, iterative computations, structured query
processing, etc. As these frameworks run in a distributed
environment, a natural question to ask is – how impor-
tant is the network to the performance of these frame-
works? Recent research in this field has led to contradic-
tory results. One camp advocates the limited impact of
networking performance on the overall performance of
the framework [16]. On the other hand, there is a large
body of work on networking optimizations for data pro-
cessing frameworks [9, 10, 18, 19, 21].

In this paper, we search for a better understanding
of the matter. While answering the basic question con-
cerning the importance of the network performance, our
analysis raises new questions and points to previously
unexplored or unnoticed avenues for performance opti-
mizations. We take Apache Spark [2] as a representa-
tive of a modern data-processing framework. However,
to broaden the scope of our investigation, we also ex-
periment with other frameworks such as Flink, Power-
Graph or Timely. In our study – rather than analysing
Spark-specific peculiarities – we look into procedures
and subsystems that are common in any of these frame-
works such as networking IO, shuffle data management,
object (de)serialization, copies, job scheduling and coor-
dination, etc. Nonetheless, we are aware that the roles of
those individual components are different for the various
systems, and we exercise caution when making general-
ized statements about the performance.

Our study reveals three main findings: (a) up to a cer-
tain level, the performance of the network has signifi-
cant effects on the overall performance of the data pro-
cessing framework. Specifically, for all the workloads
and frameworks we analyzed, moving from a 1 to a 10
Gbps network reduced the query response time by a fac-
tor of two and more (see Figure 1). This result directly
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Figure 1: Runtimes for various workloads (see Table 1)
on a 1, 10, and 40 Gbps network.

refutes the statement about the importance of network
performance made in a previous study [16]; (b) moving
from a 10 to a 40 Gbps network results in almost no per-
formance gains; (c) the inability of the data processing
frameworks to leverage network speeds higher than 10
Gbps is caused by a high CPU footprint that prevents the
system from balancing compute and I/O. For instance,
in the case of Spark, the high amount of CPU work done
per byte moved eclipses any potential gains coming from
the network. We investigate a number of ways to balance
CPU and network time and discuss possible avenues for
data processing frameworks to perform better on upcom-
ing fast networks.

2 Does Network Performance Matter?
A recent study from UC Berkeley concluded that net-

work optimizations can only reduce a job completion
time by 2% [16]. This polarizing statement remains the
last known ground truth about the Spark networking be-
havior and is being picked up by others as well [13]. We
start our investigation by verifying this statement. In-
stead of speculating about the effect of networking per-
formance on job completion time using system instru-
mentation, we actually run identical workloads on the
three generations of networks – 1, 10, and 40 Gbps – with
an otherwise identical system configuration. We use a



Symbol Workload Dataset
TS The TeraSort bencmark [6] 240 GB Key-Value pairs (2.4B tuples of 100 bytes)
PR The Page Rank algorithm (16 iterations) The Twitter graph (41.7M nodes, 1.47B edges) [12]
SQL 20 Spark SQL TCP-DS queries TPCDS dataset with Scale Factor =1000 (1 TB dataset, 300 GB compressed)
WC Word Count The Google Ngram Corpus 28 GB [7]
GB Group By 80 MB dataset (10M keys of 8 bytes)

Table 1: Workload description.
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Figure 2: CPU and network profile (40 Gbps) of an ex-
ecutor for a TeraSort run.

13-server cluster with dual socket Xeon E5-2690 CPUs,
128 GB of DDR3 DRAM, Intel DC S3700 SSDs for stor-
age, and Intel I350 (1 Gbps), Chelsio T4 (10 Gbps), and
T5 NICs (40 Gbps). One of the 13 machines is used for
running the HDFS namenode, YARN resource manager,
and the Spark driver. We run multiple workloads which
are described in Table 1. For all the workloads, Spark
(2.0 from GitHub) uses 1 executor per machine (12 in
total) and 64 GB of memory. To eliminate disk related
overheads, the remaining 64 GB of RAM is mounted as
the temp directory (hadoop.temp.dir) for YARN and
Spark. In all experiments, HDFS always runs on the 40
Gbps network and the Spark numbers reported are from
a warm HDFS cache run which involves no disk IO.

Figure 1 summarizes our results. The y-axis shows
the job run time with three different networks. As shown
by our experiments, without exception, all workloads see
shorter job runtimes when moving from 1 to 10 Gbps.
However, the gains are marginal when moving from a 10
to a 40 Gbps network. Figure 2 shows the CPU and net-
work profile of one executor during an execution of Tera-
Sort. As illustrated, during the shuffle phase (between
the 20-78 second marks), the receive network bandwidth
peaks around the 10 Gbps mark while the transmit band-
width does not go beyond 6-7 Gbps. The CPU utilization
remains high between 80-100%. The execution profiles
of other workloads show a similar pattern where the peak
utilized network bandwidth is always above 1 Gbps but
below the 10 Gbps mark.

At this point we became curious if other data process-
ing systems exhibit the same behavior. To answer this
question, we ran TeraSort and PageRank experiments
on a variety of systems such as Flink, PowerGraph and
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Figure 3: Effect of 1, 10, and 40 Gbps networks on
Flink [1], PowerGraph [11, 5], and Timely [8].

Timely. We chose TeraSort and PageRank as those were
the common workloads we could run on any of the sys-
tems. The aim of these experiments is not to compare
the relative performance (as they can be optimized by
system-specific settings) but to see the relative gains that
they get from using 1, 10, and 40 Gbps networks. Fig-
ure 3 shows our results, which are very much in line with
the previous Spark experiments.

We conclude therefore that, in contradiction to the pre-
viously reported assumption that “network I/O is mostly
irrelevant to the overall performance, even on 1Gbps net-
works” [16], networking performance does matter. In our
setup, moving from a 1 Gbps to a 10 Gbps network re-
sulted in significant performance gains and a reduction
of the response time by a factor of 1.5−2.5×. The per-
formance gain is also visible for workloads which are
not necessarily thought to be network bound such as
PageRank (where the shuffle data is significantly smaller
than the input data size) and Spark SQL queries (which
operate on compressed data).

3 Why 40 Gbps Networks Do Not Help?
A natural question to ask following the last analysis is

what stops these frameworks from leveraging a 40 Gbps
network?. The answer lies in the CPU usage of these
frameworks. For our analysis, we take Spark as a rep-
resentative data processing framework due to both its
popularity and general applicability. We start by first
breaking down the CPU usage for the TeraSort work-
load. We chose TeraSort as it is one of the most well
known workloads and because of the straightforward na-
ture of the network I/O involved. A TeraSort run consists
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Figure 4: A view of the Spark data ingestion pipeline.

of two phases. The first phase is a mapping or classifica-
tion phase - where individual workers read their part of
the key-value (KV) input data and classify the KV pairs
based on their keys. This phase involves only very little
networking as all workers run locally on the nodes that
host the input HDFS data blocks. This assumption can be
verified by looking at the networking traffic in Figure 2
between the 0-20 second marks. The classified output
data (or shuffle data in Spark terminology) is stored in
the memory-resident temp directory. During the second
so called reduce phase, each worker collects all KV pairs
from all workers for a particular key range, and then sorts
the data.

Two features of TeraSort are relevant for our analysis:
(a) in the reduce phase all nodes communicate to all other
nodes; (b) the amount of shuffle data is the same as the
input data. It has been pointed out by Ousterhout et al.
that networking researchers often inflate the importance
or the size of the shuffle data in comparison to the over-
all input size (in [16], Section 4.4). TeraSort workload
does not suffer from such a bias and, hence, should be
an ideal candidate to be accelerated by a fast network-
ing. However, as we have shown in the previous section,
the TeraSort response time reduces by half when moving
from a 1 to a 10 Gbps network (which in itself leaves a
great margin untapped on the table), but stays almost un-
affected when moving from a 10 to a 40 Gbps network.

3.1 CPU Time vs Network Time
To understand Spark’s processing cost we profile its

CPU usage. Figure 4 shows a simplistic view of TeraSort
which helps us understand Spark’s CPU requirements,
especially for the reduce phase of TeraSort. The data in-
gestion pipeline of the reduce phase involves scheduling,
fetching data over the network, and finally sorting. This
pipeline runs on all cores in multiple waves of tasks on
all the compute nodes. In the follow up discussions we
calculate the data-ingestion bandwidth of this pipeline
for various settings. Naturally, the performance of such
a pipeline depends upon both the network as well as
the CPU performance, which together should dictate the
overall job run time.

The CPU breakdown (see Table 2, discussed in more
detail in Section 3.3) reveals that Spark is CPU bound
and that the majority of the CPU cycles are spent on
sorting. In absolute terms it takes 1.2 seconds to sort

approximately 128 MB of KV data. In comparison, it
takes 1110 ms, 110 ms, and 27 ms (theoretical calcula-
tions) to fetch 128 MB of data over a 1, 10, and 40 Gbps
network respectively. Therefore, the relative importance
of the network performance in comparison to the CPU
time (which stays constant) decreases from almost 93%
to 9.3%, and then to just 2% when moving from a 1 to
a 10 and 40 Gbps network. Consequently, the CPU per-
formance lags behind the raw networking performance
(ignoring other implementation related overheads which
we discuss in Section 3.3) by 1-2 orders of magnitude.
Hence, between 10 and 40 Gbps, due to the heavy CPU
usage, the relative network performance improvements
of 4× will result in a modest 5% improvement in the end-
to-end job performance. With such performance figures,
the Spark single-core data ingestion pipeline for Tera-
Sort calculates to 834.5 Mbps/core and would require 48
cores to fetch and process data at a rate of 40 Gbps.

To conclude, the current Spark implementation runs in
a heavily unbalanced configuration where the CPU time
overshadows any networking performance gains. It is
therefore expected that an uneven system cannot deliver
the best performance available when utilizing all its re-
sources [20, 14].

The next question is if the CPU time and network-
ing time can be brought into balance. In the rest of
this section we explore three orthogonal ways of increas-
ing network utilization: a) we reduce the complexity of
the shuffle operations by reducing the partition size; b)
we explore whether the CPU overhead can be signifi-
cantly reduced by optimizing Spark; and c) we inves-
tigate whether increasing the number of cores available
per network link can lead to an increase in performance.

3.2 Effect of Partition Size
One obvious solution to improve the ratio of CPU to

network time is to reduce the complexity of the shuffle
operations in Spark. The high-level idea is that by reduc-
ing the partition size, the sorting time – which follows
a O(n logn) time complexity – becomes comparable to
the network fetch time, which decreases linearly with the
partition size. Therefore, we expect the ratio of CPU to
network time to improve by using smaller partitions.

To confirm our hypothesis, we vary the TeraSort par-
tition size and show the execution time in Figure 5a. In
this setup we chose to run a smaller 12 GB data set with
12 executor with 1 core each. This was necessary as a
240 GB dataset using 1 MB partitions generated 240k
tasks which turned the scheduler into a major perfor-
mance bottleneck. The three lines plotted in Figure 5a
are: (a) the theoretical ingestion bandwidth predicted
from the partition size; (b) the measured ingestion band-
width when sorting the dataset(w/sort); (c) the measured
ingestion bandwidth with sorting disabled (wo/sort). As
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Figure 5: Profile of TeraSort.

expected, a smaller partition size does help to improve
the theoretical bandwidth, however, the system is marred
by implementation related overheads, and does not go
above 606 Mbps/core. It is worth noting that the wo/sort
bandwidth peaks at only 3 Gbps/core, which represents
the maximum per-core data ingestion rate for the system.

In Figure 5b we plot the effect of the partition size
on the total runtime of the sorting job and also include
the average map and reduce times. As observed earlier,
smaller partition sizes help reduce the job runtime from
54.7 seconds for 1 GB, to 22.9 seconds for 64 MB. How-
ever, further decrements in the partition size do not result
in runtime improvements despite reducing the runtime of
the individual map/reduce tasks. This is because a higher
number of partitions generates a higher scheduling over-
head and increases the number of output segments each
shuffle task needs to assemble. The inefficiency of han-
dling small partitions indicates a practical limit to the
per-task partition size which inhibits the framework to
scale to smaller data set sizes. This behavior was also
pointed out by McSherry et al. who showed that modern
data processing frameworks use CPU/IO resources very
inefficiently [14]. Tiny-Tasks [15] made a case for small
tasks operating at granularities of milliseconds. How-
ever, (a) their focus has been more on the scheduler de-
sign [17] than on the whole system optimization; (b) their
assumed networking latencies are still too high (∼100
ms) for a modern rack-scale deployment.

To conclude, smaller partition sizes do not necessar-
ily result in shorter runtime due to excessive amounts of
scheduling, shuffling, and implementation-related over-
heads found in Spark.

3.3 CPU Profile
We next investigate where CPU time is consumed dur-

ing a Spark TeraSort run to establish if improving a spe-
cific Spark component can lead to a significant improve-
ment in performance.

The execution profile of TeraSort, shown in Table 2,
assigns CPU cycles to the various Spark components in-
volved in the execution. For the map phase, 79% of the
execution time is spent in the Spark framework, 9% in

the JVM, and 12% in the kernel (i.e., memory manage-
ment, network, copying). If we zoom in further, 26% of
the execution time is spent on (de)serialization and data
copy within the JVM, 24% on reading/writing from/to
HDFS and calculating checksums, 16% is spent on sort-
ing the data (by the Spark Shuffler), and 13% in other
Spark routines (e.g., iterator operations). Looking at the
reduce phase, 45% of the time is actually spent on sorting
the data, the rest of the time is consumed by 14% itera-
tor related routines, 7% (de)serialization and copy oper-
ations. The JVM and kernel execution times are similar
to the map phase.

To further identify bottlenecks in the data ingestion
pipeline we remove sorting and only gather the un-
sorted data for counting (we call this benchmark Tera-
Count). The theoretical bandwidth of such a data in-
gestion pipeline should be limited by the performance
of the network. However, we found out that the current
Spark execution is still bound by the CPU. The last col-
umn of Table 2 shows the CPU profile breakdown for the
reduce phase of TeraCount (note that the map phase is
similar to TeraSort’s). As can be seen, up to 52% of the
CPU cycles are spent in iterator related routines. Spark
makes extensive use of iterators as a construct to imple-
ment a lazy execution model, which is a key property of
the Spark runtime. For example, TeraCount has at least
7 iterators stacked on top of each other (fetching, com-
pression, deserialization, aggregation, etc.). Every tuple
access moving through the data pipeline requires multi-
ple next/hasNext() calls. Besides iteration, 17% of
the time is spent on (de)serializing and data copying. A
further 11% is spent on other unclassified Spark related
routines. The remaining 20% of the time is spent in the
kernel and the JVM on various memory, networking, and
process management routines.

(De)serialization related overheads have been iden-
tified by Spark developers [3] and others as well [4].
Data copies (and memory cleaning) happen frequently
for pointers when templated datasets are re-sized in the
JVM. Consequently, the long code path executed by the
Spark core engine for every block of data contributes
significantly towards an unbalanced system with a dis-
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TeraSort TeraCount
map reduce reduce

Spark

(de)ser. + copy 26% 7% 17%
HDFS rw + csum 24% - -
Sorting 16% 45% -
Iterator 8% 14% 52%
Misc 5% 12% 11%

JVM 9% 6% 7%
Kernel 12% 16% 13%

Table 2: The CPU profile of a Spark executor.

proportionate amount of CPU cycles requirements. For
example, under one setting in the Spark network receive
pipeline, processing a block of 80MB shuffle data takes
over 2 seconds, where a significant amount of time is
spent on reassembling network data into Spark frames
and messages (no deserialization or data copying is hap-
pening here). In contrast, receiving the actual data on a
40 Gbps network only takes 16 ms.

Our analysis shows that the Spark’s inefficiencies are
not located in a single component or layer that can be tar-
geted by local optimizations. Rather, the high CPU inef-
ficiency is a consequence of the architecture of the frame-
work and requires deeper cross-layer optimizations. Im-
proving a single component will simply move the bottle-
neck to the next stage in the data pipeline.

3.4 Core Scaling
Another tempting way of improving the CPU to net-

work ratio is to simply add more cores per network link.
The increase in CPU power can be obtained either by
investing in more expensive multi-socket servers or by
further increasing the number of cores per CPU.

To validate the feasibility of this approach, we run an
experiment where we vary the number of cores while
processing the same amount of data per-machine. For
example, while running TeraCount on 240 GB using 12
machines, each machine processes 20 GB of data with
a variable number of cores (between 1 to 16). In Fig-
ure 5c we plot the execution times and calculate the data
ingestion bandwidth from the execution time of the re-
duce phase. Spark scales well between 1-2 cores and
closely follows the ideal scaling line. The ideal scaling is
computed by taking the 1 core performance (3 Gbps) and
multiplying it with the number of cores. Beyond 2 cores,
the actual measurements start to divert from the ideal
curve. With ideal scaling, the Spark executor should
have been close to saturating the 40 Gbps link, instead
we measure a peak bandwidth for Spark that is below the
20 Gbps mark.

The results suggest that a part of the TeraCount com-
putation cannot be efficiently parallelized. As a back-
of-the-envelope calculation, we apply Amdahl’s law to
identify the serial and parallel computation components

of TeraCount. We find that counting 240 GB of data in-
volves a serial execution component of 9 seconds and a
parallel component of 260 secs, irrespective of the num-
ber of cores used. Although the serial execution com-
ponent seems relatively small compared to the total run-
time (only 3.75%), it fully explains Spark’s sub-optimal
scaling with the number of cores and limits how much
the data ingestion bandwidth can be accelerated given a
fixed problem size. The implications are that, in order for
Spark to fully benefit from additional cores, all serial ex-
ecution components need to be identified and removed,
even if they represent a relatively small part of the overall
execution time.

4 Conclusions and Outlook

In summary, our investigation so far has shown three
things. Firstly, faster networks can improve the overall
data processing performance as long as there are enough
CPU cycles available. Secondly, Spark as of now cannot
take full advantage of 40Gbps networks as the data inges-
tion pipeline becomes CPU bottlenecked. Thirdly, the
CPU to network imbalance cannot be changed through
optimizations such as reducing the partition size, opti-
mizing a single Spark component, or just by adding more
cores per network link.

We argue that deeper architectural changes are re-
quired in order for Spark to leverage faster networks. We
are in a micro-second era where both networking and
storage devices have latencies in 10-100s of microsec-
onds. The raw device performance will continue to im-
prove, making the thick software layers (and the associ-
ated CPU overhead) a performance bottleneck. Spark’s
inability to leverage high-performance networks is an ex-
ample of this problem. A millisecond here and there
(RPCs, scheduling, serialization, etc.) quickly adds up to
several seconds in the total execution time. While those
inefficiencies have very little impact on the overall sys-
tem performance in the case of a 1 Gbps network, they
are now being exposed on fast 40 Gbps networks.

The CPU heavy operations in Spark are a reminder of
the struggles Linux had to keep up with the emergence
of non-volatile storage. The block and file system layers
which were designed and optimized for the milliseconds-
to-seconds timescales suddenly found themselves run-
ning on a microsecond timescale. Consequently, some
of the inefficiencies in these software stacks got exposed
and performance became CPU bound. However, over
the years multiple optimizations have been put in place
to make the stack thinner, slicker, and more CPU effi-
cient. The same needs to be done with Spark, and in-
general with any distributed computing framework, in
order to make further inroads toward µsecond-scale data
processing.
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