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Abstract

Software will always be vulnerable to attacks. Al-
though techniques exist that could prevent or limit the
risk of exploits, performance overhead blocks their adop-
tion. Services deployed into the cloud are typically cus-
tomer facing, leaving them even more exposed to attacks
from malicious users. However, the use of virtual ma-
chines, and the economy of scale found in cloud plat-
forms, provides an opportunity to offer strong security
guarantees to tenants at low cost to the cloud provider.
We present ScaaS, a security Scanning as a Service
framework for cloud platforms that uses frequent virtual
machine checkpointing coupled with memory introspec-
tion techniques to detect bugs and malicious behavior in
real time. By buffering VM outputs (i.e., outgoing net-
work packets and disk writes) until a scan has been com-
pleted, ScaaS gives strong guarantees about the amount
of damage an attack can do, while minimizing overheads.

1 Introduction

Despite decades of advances in areas ranging from
testing to static analysis and verification, all large real-
world software is deployed with errors. Because this
software is either written in or underpinned by unsafe
languages, errors often translate to security vulnerabili-
ties. While techniques exist that could prevent or limit
the risk of exploits, costly performance overheads block
their adoption, leaving today’s systems open to attack.

Security is an especially important topic in cloud envi-
ronments, since they are often used for running complex
services that may be open to the public. Such software
is an appealing target to adversaries, since breaking the
weakest link in a distributed application can often give
attackers access to other components. As a result, secu-
rity has been consistently cited as one of the foremost
problems for IT professionals, ranking above areas such
as QoS and resource efficiency that are often the focus
of academic research [1]. Cloud providers have an in-
creasing array of products to help customers improve the

performance and monitor the reliability of their appli-
cations. Despite this, security features remain limited,
typically restricted to network issues like firewalls and
VPNs. What is needed is a way for cloud platforms
to provide security functionality as a service, similar to
what they provide today for virtual machine performance
management.

Towards this end we are developing ScaaS, a Scanning
as a Service framework for cloud data centers. ScaaS
takes advantage of recent advances in memory forensics
and VM checkpointing to provide an efficient and scal-
able platform that can scan for a wide range of attacks
within both applications and the operating system. Un-
like past approaches based on expensive VM record and
replay [2], ScaaS uses an asynchronous checkpointing
mechanism to replicate a VM’s memory onto a Scan-
ner host dozens of times per second. The Scanner then
uses VM introspection techniques to study the memory
of the virtual machine, efficiently targeting the changed
memory pages for analysis while retaining context of the
full system. The VM runs on the primary as normal be-
tween checkpoint intervals, but all of its outputs (e.g.,
potentially malicious network packets and disk writes)
are buffered until the end of a checkpoint. At that time,
the Scanner provides a status message indicating whether
the VM has been compromised, or if it is safe to release
the outputs and continue running. This provides strong
guarantees that attacks will be detected within tens of
milliseconds, and that an attack can cause no externally
visible effects.

In this paper we describe our preliminary design for
ScaaS and analyze the feasibility of our approach. We
focus on the overheads incurred by checkpointing and
scanning to illustrate the platform’s scalability in a cloud
environment where a small number of Scanner hosts can
be multiplexed for a large number of protected VMs.
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Figure 1: Virtual machines run on ordinary cloud hosts, periodically sending checkpoints to the Scanners for analysis.
A Scanner host uses VM introspection techniques to search for evidence of vulnerabilities, such as validating canaries
in the OS and applications, or ensuring the integrity of key kernel data structures.

2 Background and Related Work

Virtualization platforms have grown in popularity pri-
marily because they facilitate application deployment
and server consolidation. The hypervisor’s abstraction
layer also allows new services to be transparently pro-
vided to virtual machines, often by treating the VM as an
opaque black box. Here we describe some of the prior
work that used this abstraction layer to provide security
services, as well as the introspection techniques that let
the hypervisor understand the internals of a running VM.

Prior work explored how the hypervisor can offer se-
curity services such as virus scanners, honeypots, and in-
trusion detection services [3—5]. The AfterSight system
is most closely related to our work, and used determinis-
tic record and replay techniques to analyze a second copy
of a VM for security issues in real time [2]. However,
record-replay has very high cost both on the primary (es-
pecially to ensure non-determinism for multi-core vir-
tual machines) and on the secondary (which must fully
re-execute every instruction from the primary). Thus if
a VM on the primary is using four CPU cores, each at
75% load, the secondary machine will also consume at
least as many resources in order to replay the VM and
analyze its state. In fact, the record-replay feature in the
VMware hypervisor used to build AfterSight was dis-
continued in 2011. ScaaS avoids this high cost by us-
ing checkpoint analysis, rather than record-replay. While
this still consumes memory resources on the secondary
server, it makes the analysis of large numbers of pro-
tected virtual machines much more efficient.

ScaaS takes advantage of the Remus high availability
system [6, 7] included in recent versions of Xen to create
checkpoints. Remus continuously transmits checkpoints
of a virtual machine to a secondary host. We extend this
to perform security analysis on the checkpoints as they
are saved to the backup.

Analysis of checkpoints is achieved through Virtual
Machine introspection (VMI), which exploits knowl-
edge of a VM’s operating system to interpret its internal
state [5, 8]. Given a symbol map of the precise kernel
version being run in a VM, tools such as libVMI can eas-

ily locate kernel data structures within the VM’s mem-
ory and translate addresses from guest to physical mem-
ory [9]. VMI can be used in an offline mode for forensic
analysis/debugging a crashed virtual machine, or it can
be performed on a live VM. A natural challenge when
using introspection for security purposes is that a mali-
cious agent might manipulate the kernel state to block
introspection techniques. ScaaS assumes that the system
is started in a clean state and that such attacks can be de-
tected before they resolve, but more advanced techniques
such as semantic view reconstruction could also be used
to avoid this problem [3].

3 ScaaS Platform Overview

The structure of ScaaS is shown in Figure 1. Each host
in the cloud platform runs one or more virtual machines,
each of which is managed by a ScaaS Protection Agent.
The ScaaS Agent is responsible for creating checkpoints
of the virtual machine and transmitting them to a Scanner
host. Each Scanner host can be multiplexed to receive
checkpoints from many different hosts, providing high
scalability.

ScaaS works by breaking a VM’s execution down into
scan intervals. In the simplest form (which we further
optimize in the following sections), a VM runs as normal
between each security scan with no interruption. At the
end of the interval, the VM is paused and its memory
state is copied by the ScaaS Agent to the Scanner host
for analysis. If the Scanner does not find any errors in
the checkpoint, it notifies the VM’s Agent, which begins
execution of a new interval.

If scan intervals are on the order of hours or days, this
approach is similar to how a virus or malware scanner
typically works on a PC. However, this clearly leaves the
target vulnerable for long periods between scans, dur-
ing which time an attacker may cause substantial harm.
The goal of ScaaS is to reduce the scan interval from
hours to milliseconds, allowing an attack to be promptly
caught. We achieve this by performing asynchronous
checkpoints as the VM runs, allowing dozens of scans to
be performed per second at low cost. Further, by buffer-
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Figure 2: A VM executes normally during each checkpoint interval, only pausing briefly at the end so the checkpoint
can be scanned for security vulnerabilities. If an attack is found, the VM can be rolled back and analyzed more

carefully as it runs to precisely detect the point of attack.

ing outputs we can ensure that even if a VM is compro-
mised between scans, it will not be able to adversely af-
fect other servers. This is illustrated in Figure 2, where
the VM’s memory is asynchronously checkpointed to the
Scanner host during two checkpoint intervals. At the end
of an interval, the VM is paused so a consistent check-
point can be made and the full security scan can be per-
formed. If a scan ever fails, the VM can be paused for
later forensic analysis, or rolled back to the last check-
point and resumed under careful introspection, allowing
the attack to be analyzed while it is in progress.

3.1 Making Secure Checkpoints

Checkpoints are the basis for security in ScaaS be-
cause they provide a stable snapshot of a virtual machine
that can be analyzed or rolled back to. Creating check-
points of a virtual machine entails copying its memory
contents, CPU state, and possibly its underlying disk.
Checkpointing is a well studied research area, and vari-
ous approaches have been proposed to optimize both live
VM checkpointing and migration, which typically rely
on the same hypervisor functionality [6, 7].

In ScaaS we build on the Remus high availability sys-
tem included in the Xen hypervisor [6]. Remus pro-
vides high availability by continuously creating snap-
shots of a virtual machine and replicating them to a sec-
ondary server. Through optimizations including dirty
page tracking and compression, Remus is able to perform
dozens of checkpoints per second with acceptable over-
head. Remus also uses output buffering to delay the net-
work packets and disk writes of a virtual machine until
a checkpoint has been persisted to the backup machine,
providing synchronous reliability guarantees at low cost.
ScaaS extends Remus to record a history of checkpoints
on the secondary server, scan them for vulnerabilities,
and provide a framework for controlled replay and foren-

sic analysis.

The Scanner host maintains multiple past stable
checkpoints and a pending checkpoint holding the up-
dates from the current scan interval. The checkpoint his-
tory can be useful for forensic analysis after an attack
to understand how the system evolved prior to detection.
However, maintaining a complete history of all check-
points quickly becomes impractical since dozens may be
created per second. We are exploring techniques to intel-
ligently prune the checkpoint history. Rather than sim-
ply store the last N checkpoints, ScaaS will seek to keep
checkpoints that correspond to important events; for ex-
ample, ScaaS might detect that a checkpoint corresponds
to when a new user logged into the server over SSH, and
flag that as an important point to retain. Checkpoints are
tagged with this kind of information by the Scanner’s in-
trospection engines described in the following section.

3.2 Asynchronous Security Scanning

ScaaS provides a framework for running security
scans to detect evidence of recent exploits. While some
security systems work by intercepting instructions or
function calls that could trigger an exploit, this typically
has high overhead and must be run on each application
[10, 11]. For example, Google’s Address Sanitizer can
detect buffer overflow attacks, but it incurs a 30% per-
formance overhead. In contrast, ScaaS uses an evidence
based approach [12], meaning that it runs the virtual ma-
chine as normal but then periodically inspects key OS
or application data structures for signs that an attack oc-
curred. For example, ScaaS could monitor the kernel’s
memory pages storing the system call table to detect an
exploit that attempts to overwrite entries, or ScaaS could
fingerprint an application’s memory to detect evidence of
a stack smashing attack.

We are developing scans that can be performed syn-



chronously and asynchronously. A synchronous scan is
one that requires a consistent image of the VM’s mem-
ory, thus it can only be performed at the end of a check-
point interval when the full memory state has been re-
ceived. In contrast, scans such as memory fingerprint-
ing do not need a fully consistent image and can be per-
formed asynchronously as memory pages arrive. Per-
forming scans asynchronously can significantly reduce
overhead since it reduces the time during which the pri-
mary VM is paused.

While memory-based scans are done on the Scanner
host, we are also investigating what type of scans can
be efficiently run on the same host as the primary VM.
For example, we are developing an intrusion detection
engine that scans the packets in ScaaS’s network buffer.
This could, for example, fingerprint packets to detect
worm traffic signatures, allowing them to be caught more
easily than through memory analysis. These scans can be
done without adding significant overhead on the primary,
but allow a broader range of attacks to be detected.

3.3 Attack Detection and Response

An attack can be detected at any time by scans on
the primary host (e.g., from network packet buffer analy-
sis), at the end of a checkpoint interval by a synchronous
scanner, or at any time by an asynchronous scanner.
ScaaS can respond to an attack in one of several ways.

Forensic analysis: In the simplest case, when an at-
tack is detected the primary VM is immediately termi-
nated, and the most recent checkpoint as well as infor-
mation about where the attack was detected is saved for
future analysis. The checkpoint can be analyzed with de-
tailed forensic tools which are not practical to run on live
VMs in order to more precisely identify the source of the
attack. ScaaS could also provide a history of checkpoints
for analysis, allowing the investigator to see how the at-
tack evolved over time.

Rollback and Replay: Alternatively, the VM can be
rolled back to its most recent checkpoint and immedi-
ately resumed on the secondary host. More intrusive
analysis tools could then be applied to precisely identify
the attack. For example, if the detected attack caused a
buffer overflow at a particular memory address, a hard-
ware breakpoint could be enabled at that location. Dur-
ing re-execution, the breakpoint would be triggered, al-
lowing the VM to be paused at the exact point of the
attack (instead of a checkpoint shortly before or after the
attack). This would give the forensic investigator precise
information about the system state, including application
call stacks, when the attack occurred.

Honeypot Mode: Since the VM will be resumed on a
Scanner host, it is also easy to transition the VM to act
as a honeypot after the attack is detected. In this mode,
the VM is resumed on the Scanner, but it is kept isolated
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Figure 3: Scan Frequency Overhead

from sensitive resources (e.g., it may be connected to a
sandboxed network or dummy disk). The VM can then
continue executing after the attack occurs, but with all
of its outputs carefully examined and sanitized to pre-
vent infection of other active nodes. This would allow
security investigators to observe how the attack evolves,
which can be useful for building detection and preven-
tion systems.

4 Prototype Evaluation

We are building a prototype of ScaaS using the Xen
hypervisor version 4.5.2, the Remus checkpointing tool,
and libVMI for introspection. Our ScaaS framework in-
troduces scanner modules that can be hooked into the
checkpoint creation code on the primary side or in the
checkpoint receiver on the Scanner. Our current proto-
type supports two simple scans:

A Memory Fingerprinter that hashes the memory pages
in each checkpoint so they can be compared against ei-
ther malware signatures or “known good” state.

A Process Black/White List Enforcer that uses introspec-
tion to detect the processes currently running in the VM.
It can then trigger an error depending on whether a target
process is running or not.

We also test a scanner that performs a configurable
amount of computation at the end of each checkpoint in
order to emulate scanners of varying cost.

4.1 Checkpoint Overhead

We first measure the overhead of different checkpoint
intervals on a variety of application benchmarks. In
these experiments we disable all security scans to find
the baseline cost of continuously replicating a virtual ma-
chine’s memory state. We send checkpoints to the Scan-
ner host over a 1Gbps link while buffering outgoing net-
work packets between each interval.

Figure 3 shows how several benchmarks perform un-
der different checkpoint intervals. For applications that
are CPU intensive (sysbench and sodokut), a longer
checkpoint interval has better performance since it means
VMs are paused less frequently. On the other hand,
using httperf to access an apache webserver is a net-
work latency sensitive applications, giving a more com-
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plex trend—a very low checkpoint interval causes higher
overhead due to pauses, but a longer interval can sub-
stantially delay network packets.

The overhead of the network benchmark httperf is un-
expectedly high compared to numbers in prior work; we
believe that this can be improved by using some of the
optimizations to Remus proposed by SecondSite [7].
In our ongoing work we are looking at sources of over-
head in the checkpointing process including page map-
ping and unmapping for each iteration in a checkpoint,
shadow page table operations, and fast suspend/resume
techniques at the end of each checkpoint.

4.2 Scan Cost and Scalability

To understand the cost of security scans we first mea-
sure the page dirty rate; this indicates the volume of data
that needs to be transferred to and analyzed by the scan-
ner. Figure 4 shows the memory dirty rate when adjust-
ing the number of checkpoints created per second.

Figure 5 shows how application performance changes
when we add an emulated scan of different costs during
the pause period at the end of each checkpoint. We nor-
malize performance compared to a zero-cost scan when
making checkpoints every 50 milliseconds. The CPU-
intensive benchmarks again see little overhead as the
scan cost rises, while httperf worsens due to the added
latency before packets are released from the network
buffer.

Finally, we measure the CPU usage on the Scanner
host to understand the scalability of our approach. Fig-
ure 6 reports the CPU usage required by remus to receive
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Figure 6: Scanner CPU Usage

checkpoints, as well as the CPU usage overhead when
the VM hashes memory pages as they arrive. The CPU
consumption changes depending on the workload and
the checkpoint frequency. Running all received mem-
ory pages through our fingerprint scanner adds further
overhead as shown in the httperf-fingerprint line, but
that overhead becomes negligible with the increase in
the checkpoint interval. We find that we can fingerprint
about 91,000 pages per second with one CPU core. Our
process black list scanner takes about 1 millisecond to
search through the process list at the end of each check-
point. These results show that even when performing 100
checkpoints per second, the CPU usage stays below 50%
for all checkpoint intervals above 70ms, suggesting that
a Scanner host with 10 or more CPU cores could easily
handle a significant number of VMs.

S Conclusions

Running applications within virtual machines pro-
vides new ways to deploy security systems. We are build-
ing ScaaS so that cloud platforms can provide scalable at-
tack detection and forensic analysis for their customers.
The key insight in ScaaS is that many attacks can be de-
tected after the fact by examining memory checkpoints
with VM introspection. By deferring external outputs
(i.e., network packets and disk writes) until a checkpoint
has been scanned, ScaaS will be able to offer strong guar-
antees about the damage an attack can cause.

A number of challenges remain to make ScaaS a re-
ality: the checkpoint overhead must be decreased (es-
pecially for multi-core VMs), the history of checkpoints
maintained at the Scanner host needs to be pruned in a
way that keeps critical past checkpoints while limiting
memory and storage use, and introspection-based secu-
rity scanners need to be developed to detect a range of
realistic attacks. We believe that the ScaaS framework
holds promise to scalably protect critical VMs while in-
curring reasonable performance overhead.
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