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Abstract low resource utilization, e.g., less than 50% CPU and

memory utilizations [5, 8, 22]. Although resource provi-

Scale-out applications have emerged as the dominant "E'loning proposals with tail SLOs in mind exist, they gen-

ternet services today. A request in a scale-out Work'erally do not incorporate tail SLOs explicitly as design

load generally involves task partitioning and merging ;ngiraints and rely on empirical data to verify whether
with barrier synchronization, making it difficult to pre- the design meets tail SLOs or not. For example, the re-

dict the request tail latency to meet stringent tail Ser-gource provisioning problem is formulated as the min-

vice Level Objectives (SLOs). In this paper, we find ;7 ation of the variance of data flow path latency, as
_that thg request ta'_l latency can_bg faithfully pr_ed|cted,a way to indirectly curtail the tail latency [12]; the tar-
in the high load region, by a prediction model using only g (5l Jatency SLOs are tracked using online dynamic
the mean and variance of the task response time as ifaqqhack-loop-control-based schedulers [9, 25]; and em-
put. The prediction errors for t.he 99th p_er(;entlle requesbloying job priority and a rate limiting technique based
latency are found to be consistently within 10% at theOn the network calculus theory [27]. The root cause of
load of 90% for both model and measurement-based tesiy,q gtatys quo is due to the lack of a link between system-

ihg cases. Consequ_ently, the work in this paper estaly, g request tail SLOs and the subsystem-level task per-
lishes an important link between the request tail SLO,mance requirements. The key difficulty lies in the fact
and the low order task statistics in a high load regionhat a scale-out workload may involvask partitioning
where the resource provisioning is desired. Finally, Weandmerging as well agask queuing. Each request in the
discuss hoyv the pre_diction model may f_acil_itate highly request flow with average request raténvolves tasks
scalable, tail-constrained resource provisioning fotesca ) pa queued at and processed by up to several thousands
out workloads. of task subsystems in parallel and then all the task re-
sults are merged and returned, as depicted in Fig. 1a.
1 Introduction Here a task subsystem may involve multiple repllca'ted
servers for task-level fault tolerance and load balancing,

Scale-out, online-data-intensive (OLDI) workloads, such€-8-» Fig. 1b, wherd; = A /3 in the case of load balanc-
as web searching and social networking, provide useri"d. Notable examples are Web search engines [4] and
facing services that involve a large number of servers fog0cial networking [20]. In this case, the request response
parallel processing, while requiring sub-second requesiMe is determined by the slowest task [7]. As the sys-
responsiveness under high incoming request rates. THEM scales out, the' probability that the request response
system running these workloads usually operates unddfme may hit the tail task latency quickly increases [7].
stringent SLOs, such as imposing a tight talil constraint™® daf[e, no general result_s are available that can predict
on high percentile request response time, e.g., 99th di€ tail request response time at scale.
99.9th-percentile, to satisfy as many user requests as pos- This lack of understanding of request tail behaviors is
sible [7,17]. further exacerbated by the various task scheduling and
However, imposing tight tail SLO for OLDI work- tail-cutting techniques being used in task processing. In
loads makes resource provisioning in datacenter a chaparticular, as an effective tail-cutting technique, repli
lenging task. Due to the lack of good understanding ofcated servers in each subsystem are being used to al-
request tail behaviors, the current practice is to overprolow redundant task issues to more than one replicated
vision datacenter resources to meet SLO, at the cost cferver to be processed, with the earliest result returned



The remainder of the paper is organized as follows.
Section 2 presents the prediction model, simulation re-
sults, and analyses. Section 3 discusses how the pro-
posed model may facilitate tail-constraint resource pro-
visioning. Finally, Section 4 concludes the paper.

(a) A system with subsystems as black 2 TailL atency Pr ediction M odel
boxes.

2.1 Basicldeas
> m@\ A system serving scale-out, OLDI workloads commonly
4 2 TTTHw) 4 involves a large number of task subsystems for parallel
Dispatcher™” processing. The diversity in the actual implementation
m—@/ of subsystems makes it extremely difficult to predict the
task performance, let alone the request performance, in
general. However, since the ultimate goal of this research
is to be able to design request scheduling algorithms that
Figure 1: The task partitioning and merging model. can meet stringent tail SLOs by proof of design, while
achieving high resource utilization, we are interested in
the peak-load resource provisioning in a high load re-
and rest removed [7, 24]. Although some analytic re-gion, e.g., 90% or higher. In this region, it is possible to
sults are available on redundant task issues [10, 21, 26fredict the task performance for a task mapped to a wide
they either address only a single replicated server subrange of subsystems using a simple prediction model, as

system with exponential task service time distributionwe now explain.
only [10] or parallel request load balancing without task

(b) A subsystem with one dispatcher
and three replicated servers.

partitioning [21, 26]. The task partitioning-and-merging 00 0 ——0og
part of a scale-out workload generally lies in the criti- A Lu )
cal path for request processing and constitutes a major E[X], VIX]

part of request processing time and hardware cost, e.g.,
more than two-third of the total processing time and 90% Figure 2: A subsystem as a black box.
hardware cost for a Web search engine [13]. Hence, it
is of paramount importance to establish a link between There is a large body of research results in the context
the system-level request tail SLOs and the subsystenuf queuing performance in high load regions (e.g., see
level task performance requirements to facilitate explic-[23] and the references therein). In particular, a classic
itly tail-constrained resource provisioning at scale. result, known as the central limit theorem for heavy traf-
This paper aims at tackling the above challenge. Itfic queuing systems [14,15], states that for a G/G/m (here
makes the following two major contributions. First, by m is the number of servers) queue under heavy traffic
treating each subsystem as a black box, we find that thiwad, the waiting time distribution could be approximated
tail behavior of a task mapped to a subsystem can be cappy an exponential distribution. Clearly, this theorem ap-
tured by a generalized exponential distribution functionplies to the response time distribution as well, since the
in the high load region, which uses the mean and varitesponse time distribution converges to the waiting time
ance of the task response time as input. This black-boxlistribution as the traffic load increases. The intuition
solution allows the request distribution function and thusbehind this approximation is that in the high load re-
any given request tail SLOs to be explicitly expressedgion, the long queuing effect helps effectively smooth
as a function of the means and variances of the individ-out service time fluctuations (i.e., the law of large num-
ual task response times as the system scales out. Hendmers), which causes the waiting time or response time to
in the case of homogeneous subsystems for parallel tastonverge to a distribution closely surrounding its mean
processing, the request tail SLO is only dependent owalue, i.e., the short-tailed exponential distributioa; r
the mean and variance of the task response time for ongardless of the actual arrival process and service time
task mapped to any given subsystem. Second, we digdistribution. Inspired by this result, in this paper, we
cuss how the proposed request tail prediction mechatreat any task subsystem, e.g., the one in Fig. 1b, as a
nism may be used to facilitate highly scalable, explic-black box, given in Fig. 2. We further postulate that for
itly tail-constrained resource provisioning using homo-a task mapped to a black box subsystem and in the high
geneous virtual machines (VMs) in a cloud environment.load region, the task response time distributigx) for



any arrival process can be approximated as a generalizegincex;, is a function ofu and a, which in turn, are

exponential distribution function [11], as follows, functions ofE[X] andV [X] of the task response time (ac-
(1—e )T x>0 cording to Egs. (2) and (3)), a link between any given tail
Foe(X) = { 0 other’wis (1) SLOin terms ofx, and p, andE[X] andV X] is estab-
& lished. The implication of this result is significant. On

wherep anda are the scale and shape parameter, respe@ne hand, with any given tail SLO, the resultiggX]
tively. The mean and variance of the task response tim@ndV [X] can serve as the task response time budgets

are given by [11] for highly scalable, distributed task-level resource prov
sioning. On the other hand, with given measured task re-
EX] = l[w(a +1)— (1), (2)  sponse time statistics in terms@fX] andV [X], whether
H the system meets the target tail SLO or not can be ac-
1 tely predicted. In the following two subsections, we
VIX] = S[@@) -y (a+1 3) curatelyp 9 ’
X] uz[w (D)= (a+1)], 3 test the performance of this prediction model at the sub-

where ¢(.) and its derivatives are the digamma and system and system levels, separately.

polygamma functions. _ o
From Egs. (2) and (3), itis clear that the distribution in 2.2 Subsystem Tail L atency Prediction
Eqg. (1) is completely determined by the mean and vari-

. : . In this section, we test the accuracy of the pro-
ance of the task response time. The rationale behind thSosed prediction model against a wide range of sub-
use of this distribution, instead of the exponential distri

bution, is that it can capture both heavy-tailed and short—syStemS including pure model-based subsystems, hybrid

. . . . ‘measurement-and-model-based subsystems, as well as a
tailed task behaviors depending on the parameter settmg&re measurement-based subsystem

ano_l meanwhile, it degenerates to the exponenti_al distri- For pure model-based and hybrid subsystems, we con-
bution ata' = 1 andE[X] =1/u. As we shall see inthe - gy o typical subsystem setup given in Fig. 1b. It in-
following subsection, th|s d.|str-|but-|on _S|gn|f|cantly ?Ut cludes a dispatcher and three replicated servers. A task
performs the_exponenual distribution in ter”.‘s of tail la- arriving at the subsystem is distributed to server replicas
tency p.red|.ct|v1'e power for all the cases studied. . by a dispatcher based on a predetermined policy. Each
. Th_e |mpI|_c_at|on of the above black box approxima- server replica is modeled as an M/G/1 queuing system.
tion is significant. |t allows not only the task perfor- Namely, for all the cases studied, the task arrival process
5 modeled as a Poisson process, which is considered a
ood model for scale-out workloads [19]. Both model-
ased and measurement-based service time distribution
efunctions are considered, including the following,

tems to be captured by a unified distribution function,
but also the request response time distribution and hen
the tail SLO for the entire task-partitioning-merging sys-
tem to be derived. To see why this is the case, on
notes that with all the task subsystems in Fig. 1a be— Empirical distribution measured from a Google search
ing viewed as black boxes, one effectively transforms test leaf node provided in [18], which has a mean ser-
the task-partitioning-merging problem into a split-and- vice time of 4.22ms, a coefficient of variance (CV) of
merge model [16] whose distribution function can be ex- 1.12, and the largest tail value of 276.6ms;

pressed as follows, assuming the task response times for

tasks mapped to different subsystems are independeft A heavy-tailed truncated Pareto distribution [2] with
random variables the same mean service time, i.e., 4.22ms, and a CV

of 1.2, resulting in the corresponding parameters: the
Fou (%) = MiLi(1—e )% x>0, @) shapea = 2.0119, the lower bound = 2.14ms, and
™ 0 otherwise the upper boun#i = 276.6ms, which is set at the same

maximum value of the empirical distribution above.
Now assume that the parallel subsystems are homoge-
neous, the distribution function can be further simplified— Weibull distribution [6] also with the same mean ser-

as, vice time and a CV of 1.5, resulting in the correspond-
1- equ)Na x>0 ing parameters: the shape parameter 0.6848< 1,
Finy (%) = { 0 other’wise ) i.e., a heavy-tailed distribution [6], and the scale pa-

rameter3 = 3.2630.
With Eg. (5), it can be easily shown that tipeth per-

centile request response tigcan be written as, We consider two task dispatching policies. The first pol-

icy is a popular one, known as the Round-Robin (RR)
1 | P \ Na policy. In this policy, the dispatcher will send tasks to
Xp=—_log(1- (ﬁ)) ®)  different server replicas in an RR fashion. The second



policy is still RR, but it also allows redundant-task issue, Table 1: The prediction errors for the measurement-baseqstains.
a well-known tail-cutting technique [7, 24]. This policy

allows one or more replications of a task to be sent to dif- Per centiles

ferent server replicas in the subsystem. The replications #lients ~ 95th ~ 99th  99.9th
may be sent in predetermined intervals to avoid overload- 20 -11.305 7.911 24.216
ing the server replicas. In our experiments, at most one 30 -3.233 5.295 13.429
task replication can be issued, provided that the origi- 40 -1.718 5452 2974
nal one does not finish within 10ms, which is around the 50 0.703 2.015 -1.381

95th-percentile of the empirical distribution above.

For model-based and hybrid subsystems, the simu- ) o
lated tail task response time is compared against thé-3 System Tail Latency Prediction
tail response time predicted by the proposed predictio
model, i.e., Eqg. (1), which uses the simulated mean an
variance of the task response time as input.

EP this section, we evaluate the accuracy of our general-
ized exponential distribution model as the system scales
._out. We consider the task-partitioning-merging system in
For the pure measurement-based subsystem, we Mg 14 withN — 10,100,500, and 1000 nodes for all the

pllementtidha SZ" searcg gzn gige [1(]j_sub_system using reviously studied model-based and hybrid subsystems.
cluster of three Amazon m3.medium instances, eac ig. 4 presents the prediction errors at different load lev-

.rejponsi_ll?klle f‘éf the sr?me Saf‘p'e. shard .Of tgzwlikipﬁqi%ls for the 99th percentile request response times. Again,
Index. € 'Sp?‘tc Ing policy 1S, again, . In this for all the cases studied, the errors are within 10% at the
experiment, multiple client threads issue tasks to thqoad of 90%. Even at the load of 80%, the prediction er-

servers in a stop-_and-walt fashion, i.e., a client se_:nds fors are with 10% and 20% for the cases with and without
task and then waits for the response before sending thﬁil cutting, respectively

next one. The random combination of the task flows from
all the clients mimics a random arrival process. We focus
on the cases when the number of clients is large enoug
to put a heavy load on the servers. Without knowing theb
inner-working of the VMs, we simply treat them as black
boxes and the testing is solely based on the measured ta
response time statistics.

For the experiments on both pure model-based and hy-
brid subsystems, Fig. 3 presents the prediction errors foB  Facilitating Resour ce Provisioning
both the exponential and generalized exponential distri-
butions at the load of 90%. First, we note that the generin this section, we discuss how the above prediction
alized exponential distribution significantly outperfam model may be used to facilitate highly scalable, explic-
the exponential distribution for all the cases studied - Secitly tail-constrained resource provisioning. For ease of
ond, the prediction errors for the generalized exponentiatiscussion, we use the following example scenario as a
distribution are consistently within 10% across the en-guide throughout the discussion. Assume that a content
tire 95-99.9th percentile response time range, even foservice provider wants to outsource its OLDI scale-out
the RR case without tail cutting. These results confirmservices to a cloud service provider. With a given size of
our postulation that the generalized exponential distribu parallel searchable databd3€e.g., an entire index as in
tion function could accurately predict the task tail perfor a Web search engine) and monetary budgjethe con-
mance in the high load region. tent service provider wants to know whether or not the

Now we further test the performance of the gener-service to be deployed may sustd&requests per sec-
alized exponential distribution for the aforementionedond, while meeting the tail SLO, i.e., theth-percentile
measurement-based subsystem. The relative errors of thiequest response time bfms.
predicted task tail latencies against the measured ones An ad hoc approach is to immediately deploy the ser-
are given in Table 1. In this experiment, as the number o¥ice to a certain scale and at runtime, scale out/up or
clients increases, the aggregate task throughput inceasdown the system dynamically in a pay-as-you-go man-
and then levels off as the number of clients reaches 40er to meet the performance targets or monetary bud-
indicating that the subsystem is under heavy load condiget. Without an initial estimation, however, such ap-
tion. As one can see, the prediction errors reduce to lesgroaches run the risk of either over budgeting or failing
than 10% for all cases as the number of clients reachet® meet SLO and/or targeted request throughput perfor-
40, consistent with the performance data for the modelmance. Moreover, using the pay-as-you-go service for
based and hybrid cases. dynamic resource provisioning is generally much more

As a work in progress, the testing of the proposed pre-
iction model for a complete Solr-based search engine on
mazon EC2 is underway. The above testing results at
oth subsystem and system levels give us the confidence
to expect that the results from this testing case will also
B?é fairly accurate.
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Figure 4: The prediction errors for the system composed d¢f batdel-based and hybrid subsystems with the Round-Robirefdppee plots) and
redundant-task-issue (lower three plots) policies.

expensive than static resource reservation for resource Finally, x, is compared againdt and the total cost
planning [3]. Given the sheer size of the system to be for runningN VM clusters withm each is compared
deployed, it is of paramount importance to develop an against the associated buddget to see if both the
offline, highly scalable resource provisioning approach tail SLO and monetary budget are met. If both are
that can provide a quick initial assessment of whether met, a feasible tail-constrained resource provisioning
the performance targets and monetary budget can be metis found. Otherwise, the performance targets and/or
or not. budget are revised and then rerun the procedure. Note

The idea of our approach is sketched by the following that if xp is found well belowi., one may consider re-
tail-constrained resource provisioning procedure, in the ducingN and/orm and see if it is still belowL. This
context of the above example scenario: iterative testing can help minimize the cost.

— Foradesired type of VMs with, e.g., given CPU speed,
memory size, and pricing model, build a replicated
server cluster subsystem in the cloud usmgtwo
to three) VMs by replicating a portion of the total
database, i.eD/N, to all the VM replicas, wherd|,
an integer value, may be selected in such a way thathis paper proposed a simple prediction model to predict
D/N can fit comfortably in the memory in each VM; the tail SLOs for scale-out applications involving task-

partitioning-merging. The required inputs to the pre-

— Measure the mean and variance of task response timfiction model are only the mean and variance of task
in the cluster running a task scheduling policy, at de-response time for a task mapped to a subsystem. The
sired task ratd = R; experimental results showed that the prediction model

ields accurate prediction with errors consistently withi

0% at the server loads of 90% or higher, providing a

much needed prediction tool to facilitate tail-constrdine

fesource provisioning for scale-out applications.

This is a work in progress. A full-fledged testing of
— Estimate thep-th-percentile request response time  the proposed prediction model in Amazon EC2 cloud is
based on Eq. (6); currently underway.

4 Conclusions

— Find the parameters of the generalized exponentia{
distribution in Eq. (1) by plugging in the measured
mean and variance task latency into Egs. (2) and (3)
respectively;
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