Interactive Debugging for Big Data Analytics

Muhammad Ali Gulzar!, Xueyuan Han!, Matteo Interlandi', Shaghayegh Mardani!, Sai Deep
Tetali?, Tyson Condie!, Todd Millstein!, and Miryung Kim!

YUniversity of California, Los Angeles
2Google, Inc.

Abstract

An abundance of data in many disciplines has accel-
erated the adoption of distributed technologies such as
Hadoop and Spark, which provide simple programming
semantics and an active ecosystem. However, the current
cloud computing model lacks the kinds of expressive and
interactive debugging features found in traditional desk-
top computing. We seek to address these challenges with
the development of BIGDEBUG, a framework providing
interactive debugging primitives and tool-assisted fault
localization services for big data analytics. We showcase
the data provenance and optimized incremental compu-
tation features to effectively and efficiently support in-
teractive debugging, and investigate new research direc-
tions on how to automatically pinpoint and repair the root
cause of errors in large-scale distributed data processing.

1 Introduction

To process massive quantities of data in the cloud, devel-
opers leverage data-intensive scalable computing (DISC)
systems such as Google’s MapReduce [7], Apache
Hadoop [2], and Apache Spark [30]. In these DISC sys-
tems, scaling to large datasets is handled by partition-
ing data and assigning tasks that execute a portion of
the application logic on each partition in parallel. Unfor-
tunately, this critical gain in scalability creates an enor-
mous challenge for data scientists in resolving errors.
The application programming interfaces (API) pro-
vided by DISC systems expose a batch model of ex-
ecution: applications are run in the cloud, and the re-
sults, including notification of runtime failures, are sent
back to users upon completion. Therefore, debugging
is done post-mortem and the primary source of debug-
ging information is an execution log. However, the log
presents only the physical view—the job status at indi-
vidual nodes, the overall job progress rate, etc., but does
not provide the logical view—which intermediate out-

puts are produced from which inputs, what inputs are
causing incorrect results or delays, etc. Alternatively, de-
velopers may test their program by downloading a small
subset of data from the cloud into their local disk, and
then run the application in local mode. However, this ap-
proach can miss errors when, for instance, the faulty data
is not part of the downloaded subset.

To address the above challenges, we develop BIGDE-
BUG [12], a framework providing expressive and in-
teractive debugging primitives for big data analytics.
In BiGDEBUG, we must re-think the notion of break-
points, watchpoints, and step-through debugging com-
monly found in a traditional debugger such as gdb. For
example, simply pausing the entire computation would
waste large amounts of computational resources and pre-
vent correct tasks from completing, reducing overall
throughput. As another example, requiring the user to
inspect millions of intermediate records produced during
execution is clearly infeasible. To emulate interactive
step-wise debugging without reducing throughput, our
simulated breakpoints enable a user to inspect a program
without actually pausing the entire computation. To min-
imize unnecessary communication and data transfer, our
on-demand watchpoints enable a user to retrieve inter-
mediate data using a guard and transfer the selected data
on demand. To support systematic and efficient trial-
and-error debugging, we enable users to change program
logic in response to an error at runtime and incrementally
recompute affected data only from that step.

In this paper, we showcase the data provenance [14]
and optimized incremental computation [28] features that
we have been developing in Apache Spark to support
interactive debugging in an effective and efficient man-
ner [12]. We then propose a variety of automated fault
localization services that leverage these features together
to automatically isolate failure-inducing workflows, di-
agnose the root cause of an error, and resume the work-
flow for only affected data and code. BIGDEBUG and the
extensions proposed here will contribute to improving



productivity and correctness of big data applications.

2 Background and Motivation

Our effort targets Apache Spark [30], the next genera-
tion high-performance distributed dataflow framework,
but generalize to other dataflow cloud computing plat-
forms. Apache Spark [3] is a large scale data processing
platform that achieves orders-of-magnitude better perfor-
mance than Hadoop MapReduce [2] for iterative work-
loads. BIGDEBUG targets Spark because of its support
for interactive ad-hoc analytics, allowing programmers
to explore the data as they refine their data-processing
logic. Furthermore, a variety of domain-specific exten-
sions have been built on Spark [20, 11, 4], which offer
unique requirements e.g., for debugging machine learn-
ing and graph-based algorithms.

The primary abstraction in Spark is the resilient dis-
tributed dataset (RDD) [30], which is a collection of
records that can be operated on in parallel. A Spark pro-
gram is a sequence of operations that input and output
RDDs, called transformations (e.g., map, reduce, filter
group-by, join) and actions (e.g., count, collect). Trans-
formations are lazily evaluated; the actual evaluation oc-
curs when an action is called. At that point the Spark
runtime executes all the transformations leading up to the
action to produce a result. Internally, the Spark master
translates a series of RDD transformations into a DAG
of stages, where each stage contains some sub-series of
transformations until a shuffle step is required (i.e., data
must be re-partitioned).

Suppose that Alice writes a Spark program to parse
and analyze election poll logs. The log consists of bil-
lions of log entries and is stored in Amazon S3. The size
of the data makes it difficult to analyze the logs using a
local machine only. Each log entry contains the phone
number, the candidate preferred by the callee, the state
where the callee lives, and a UNIX timestamp:

249-904-9999 Clinton  Texas 1440023983

val log = "s3n://xcr:wJIYQuws/logs/poll.log"
val text_file = spark.textFile(log)
val count = text_file
4 .filter( line =>
line.contains("Texas"))
.filter( line => line.split("
") [3].toInt > 1440012701)
6 .map(line = > (line.split(" ")[1] ,
1))
.reduceByKey(_ + _).collect()

Figure 1: Election poll log analysis program in Scala

Figure 1 shows the program written by Alice, which
totals the number of “votes” in Texas for each candi-
date, across all phone calls that occurred after a particular

date. Line 2 loads the log entry data stored in Amazon
S3 and converts it to an RDD object. Line 4 selects lines
containing the term ‘Texas.” Line 5 selects lines whose
timestamps are recent enough. Line 6 extracts the can-
didate name of each entry and emits a key-value pair of
that vote and the number 1. Line 7 counts the votes for
each candidate by summing by key.

Alice already tested this program by downloading the
first million log entries from the Amazon S3 onto a lo-
cal disk and running the Spark program in a local mode.
When she tests her program with the subset of the data
using a local mode, there is no failure. However, when
she runs the same program on a much bigger data stored
in S3 using a cluster mode, she encounters a crash. Spark
reports to Alice the physical view of the crash only—the
type of crash, in this case NumberFormatException,
with a stack trace, the id of a failed task, the id of an
executor node encountering the crash, the number of re-
trials before reporting the crash, etc. However, such
physical-layer information does not help Alice to debug
which specific input log entry is causing the crash. Even
if she identifies a subset of input records assigned to the
failed task ID, it is not feasible for her to manually in-
spect millions of records assigned to the failed task. She
tries to rerun the program several times but the crash is
persistent, making it less probable to occur due to a hard-
ware failure in the cluster.

3 The BigDebug Framework

BIGDEBUG consists of three main modules: (1) the
interactive debugging primitives and API surfaced to
users [12]; (2) Titian data provenance support for tracing
the lineage of records though data-parallel transforma-
tions [14]; and (3) Vega for optimized incremental com-
putation for re-executing modified programs. Titian and
Vega are underlying building blocks for making interac-
tive debugging effective and efficient, since BIGDEBUG
must help users to isolate original records relevant to fail-
ures only, and trial-and-error debugging often involves
re-executing the same program with different inputs or
modified program logic.

As a preliminary work, we developed the user-
level debug primitives [12] and Titian for data prove-
nance [14]. We are currently developing optimized in-
cremental computation support in Spark.

3.1 Interactive Debugging Primitives

Simulated Breakpoint. Doing a step-by-step execution
to inspect intermediate outputs is a common debugging
strategy. There are several technical challenges in im-
plementing such breakpoints in DISC. First, traditional



breakpoints will pause the entire execution at the break-
point, while a user investigates an intermediate program
state. If we naively implement a normal breakpoint, a
driver will communicate with all executor nodes so that
each executor will process data until the breakpoint in
the DAG and pause its computation until further debug
commands are provided. This naive approach causes
all the computing resources on the cloud to be tem-
porarily wasted, decreasing throughput. Second, high-
performance processing DISC systems such as Spark op-
timize their performance by pipelining multiple transfor-
mations as a single stage. Therefore, there is a mismatch
between the logical view of a program and its physical
view. Specifically, if two transformations T1 and T2 are
pipelined as a single stage, then the intermediate results
after T1 are not viewable, as they are not materialized.

To address these challenges, BIGDEBUG provides an il-
lusion of a breakpoint, even though the program is still
running on the cloud in the background. For exam-
ple, when a simulated breakpoint is hit, BIGDEBUG may
spawn a new process to record the transformation lineage
of the breakpoint, while letting the executors continue
processing the task. When a user requests intermediate
results from the simulated breakpoint, BIGDEBUG recom-
putes such results on the fly.

On-Demand Watchpoint with Guard. Similar to
watching a variable in a traditional debugger gdb, a user
may want to have a watchpoint to inspect intermediate
data. Because millions of records are passing through a
data-parallel pipeline, it is infeasible for a user to inspect
all intermediate records. Such data transfer would also
incur high communication overhead. To overcome these
challenges, our on-demand watchpoint with a guard clo-
sure function enables a user to query for a relatively small
subset of data matching the guard. A user may also iter-
atively modify the guard to narrow down the scope of
captured data further.

Crash Culprit Determination and Remediation.
DISC systems are limited in their ability to handle fail-
ures at runtime. For example, crashes in Spark cause
the results of all correctly computed stages to simply be
thrown away. Remediating a crash at runtime can save
time and resources by avoiding a program re-run from
scratch. While waiting for a user intervention, it is im-
portant to utilize idle resources by running pending tasks
continuously to achieve high throughput. To repair the
crashed program, a user may want to know not just the
current crash culprit record but a crash-inducing input
by leveraging Titian’s data provenance support in Sec-
tion 3.2. To avoid the re-computation of stages prior to
a crash, BIGDEBUG implements several real-time reme-
diation methods. It enables users to correct the crashed
record, skip the crash culprit, or supply a code fix to re-
pair the crash culprit at runtime. This code fix feature can

leverage Vega’s incremental computation (Section 3.3).

BIGDEBUG scales to terabytes and its record-level trac-
ing incurs less than 25% overhead on average. It deter-
mines crash culprits orders of magnitude more accurately
and provides up to 100% time saving compared to the
baseline replay debugger [12].

3.2 Data Provenance for Error Tracing

A common scenario when debugging big data analyt-
ics is to first identify the subset of intermediate data
that causes a failure, and then deduce which input data
is the origin of the failure-causing intermediate records.
The second part of this task motivates the need for data
provenance (also referred to as data lineage) support in
DISC systems like Spark. While data provenance is well
studied in the database community, data provenance sup-
port for DISC systems is challenging: operators such
as join and group-by create many-to-one or many-to-
many mappings for inputs and outputs, and these map-
pings are physically distributed across different nodes.

Current approaches to supporting data provenance in
DISC systems (specifically RAMP [13] and Newt [18])
cannot support interactive debugging. These systems
maintain the provenance metadata in external storage and
support data provenance queries through a separate pro-
gramming interface. In part due to these design choices,
they also provide little support for viewing intermediate
data or replaying alternative data-processing steps on in-
termediate data. Our experiments with these approaches
(a fragment of which reported in Table 1) show that they
do not operate well at scale, which has motivated us to
develop our approach.

Titian RAMP Newt
dataset grep | wc | grep | wc | grep wc |
500MB 1.27x 1.18x 1.4x 1.34x 1.58x 1.72
5GB 1.18x 1.14x 1.18x 1.32x 2x 3x
50GB 1.14x 1.22x 1.18x | 2.20x 7x 28x
500GB 1.10x | 1.29x | 1.18x | 1.60x 14x inf

Table 1: Overheads of Titian, RAMP and Newt for grep
and word count jobs. The overhead is a measure of how

much extra time (indicated by a multiplier) is needed to
run a job with the data provenance being recorded.

To address this scalability challenge, our work
Titian [14] implements data provenance in Apache Spark
by directly extending the RDD abstraction with fine-
grained data provenance capabilities. From any given
RDD, users can obtain a LineageRDD reference, which
enables data tracing functionality i.e., the ability to
transition backward (or forward) in the Spark program
dataflow any number of transformation steps. Further-
more, any native RDD transformation can be invoked on
a given LineageRDD reference, thereby supporting a re-



play capability. The provenance support provided by our
LineageRDD abstraction integrates with Spark’s internal
batch operators and fault-tolerance mechanisms, offering
orders-of-magnitude better performance when compared
to prior approaches.

3.3 Optimized Incremental Computation

Program debugging in DISC systems are iterative pro-
cesses. Programmers start out with an initial workflow,
which typically ingests data from several sources, and
performs one or more transformations on them. This
workflow is then iteratively improved by adding new
transformations or modifying existing ones until any ob-
served errors are eliminated and the output has the de-
sired form. Unfortunately, existing DISC systems run
each workflow version anew, discarding all work done in
the previous iterations. The immense scale of the data
typical in cloud computations makes these kinds of de-
velopment iterations very time consuming, thereby pro-
hibiting the possibility of debugging at interactive scale.

Our on-going work Vega aims to optimize incremental
computation in the face of code changes. Vega merges
two complementary approaches to speed up the execu-
tion of a modified Spark program. First, Vega rewrites
a modified program to push the modifications as late as
possible in the dataflow, thereby enabling more oppor-
tunities to reuse materialized intermediate results from
a previous execution. Second, we adapt prior work on
incremental dataflow [19, 23] to model code changes
in terms of data changes and to propagate the deltas to
downstream computation. Vega also determines when
such delta propagation is more profitable than ordinary
re-computation based on a cost estimate.

By mixing the above two approaches, Vega delivers
orders of magnitude performance gains with respect to
normal Spark in re-executing modified programs. For in-
stance, Figure 3 shows the effectiveness of Vega in eval-
uating the program of Figure 2, which introduces a map
operation that adds a suffix to each word (shown in grey)
in a word count program. The re-execution response time
under Vega is around three orders-of-magnitude faster
than executing from scratch in stock Spark.

1 //WordCount.Scala
val textFile = spark.textFile("hdfs://...")
val counts = textFile
.flatMap(line => line.split(" "))
.map(word => (word, 1))
6 .map(k, v) => (k + suffix, v)
.reduceByKey(_ + _).collect()

Figure 2: Edited word count program, the gray box iden-
tify the transformation added to the original word count
program
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Figure 3: Comparison between Vega and regular Spark
for re-evaluating the modified program of Figure 2.

4 Automated Fault Localization Services

Errors are hard to diagnose in big data analytics. An error
could occur due to a bug in the program logic, or it could
be due to anomalies in the input data. Leveraging the
underlying building blocks and mechanisms proposed in
Section 3, our vision is to provide tool-assisted capabil-
ities to automatically localize failure-inducing code and
data, diagnose the root cause of an error, and safely re-
pair the workflow. This section sketches new research
directions on automated fault localization in the context
of big data processing.

Defining Test Oracles. The first step is to help users
identify failures. Certain types of failures, such as ex-
ceptions and occurrences of NaN (‘not a number’) are
easy to classify as errors. It is inherently difficult to have
expected answers for a vast amount of unseen data. We
investigate a variety of methods to allow users to easily
define test oracles. A user may upload a ground truth
result, and BIGDEBUG will automatically consider false
negatives and false positives as test failures. A user may
supply assertions and labeling rules [15] which can then
be used to classify output data as passing or failing.
Isolating Failure-Inducing Inputs. When a program
fails, a user may want to investigate a subset of the orig-
inal input inducing a crash, a failure, or a wrong out-
come. This problem of simplifying and isolating failure-
inducing input is a long standing problem in software
engineering. Delta Debugging (DD) simplifies the set
of original inputs to a minimal subset of inputs that still
produces the same test failure through systematic test-
ing with different inputs [31]. The DD algorithm splits
the original input into different configurations using a bi-
nary search strategy and re-runs the same program with
different inputs. If all tests with different subset config-
urations pass, the algorithm increases the granularity of
the split by creating even smaller subsets of the selected
data. Conversely, if one of the tests fail for a particular
subset, it recursively applies the same procedure. The
whole process is illustrated in Figure 4.
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Figure 4: Automated fault localization using Delta De-
bugging

Applying DD to big data applications would be ex-
tremely expensive for two reasons. First, the DD algo-
rithm is a black box procedure and does not consider the
structure of the dataflow graph. Therefore, it cannot win-
now out irrelevant inputs easily by considering the lin-
eage mapping between intermediate inputs and outputs.
Second, the original input is very large and therefore,
naively re-running the same program with different in-
puts subsets can be extremely expensive. To overcome
these limitations, we are currently investigating how to
combine Delta Debugging with data provenance and op-
timized incremental computation. Consider a histogram
program in Spark that computes an average movie rat-
ing for each age group. When the average rating looks
suspicious for a particular age group, say the bin with
ages from 20 to 30, data provenance can report all input
records contributing to the particular bin only, winnow-
ing out the records contributing to other bins.

To reduce the cost of reruns, we will investigate how
to split intermediate results in half, as opposed to split-
ting the original input records. For example, by lever-
aging in-memory default cache at stage boundaries, we
can resume the computation from the last transformation
right before a wide dependency such as join occurs in
a dataflow graph. We will also investigate how to fur-
ther push this data splitting function (essentially a filter)
to downstream by analyzing the commutativity of user
defined map and filter functions.

Localizing Faulty Program Logic. We can go even
further and localize faults within a transformation of
the application-specific program logic. =~ For exam-
ple, suppose that a user-defined function
if (word!'=null) (word,1); else (word,0); is used
within a map transformation. It may be the case that
faults are much more likely when one of the two paths
in this function is traversed. To achieve fine-grained,
intra-stage fault localization, we will investigate the use
of spectra-based fault localization [17, 24, 8]. The chal-
lenge of bringing spectra-based fault localization to the
space of big data systems is that we must collect path
coverage from each distributed worker node in a scalable
and efficient manner and aggregate the coverage profile

word =>

at the driver node to identify faulty program paths.

Repairing Faults Finally, once we have localized the
root causes of errors, it is natural to provide tools that
aid developers in repairing these errors. The wealth of
data available in the setting of big data analytics makes a
data-driven approach to repair quite promising. A key
challenge is to define a search space of possible pro-
gram edits that is tractable yet expressive. While the-
oretically an application can contain arbitrary code, we
plan to leverage the fact that a small set of operators ap-
pear often (filter, reduce, etc.) in big data analytics,
and each operator has a few common ways in which it is
used (e.g., to remove outliers, to perform a summation).

5 Related Work

Fisher et al. [9] interviewed 16 data analysts at Microsoft
and studied the pain points of big data analytics tools.
Their study finds that a cloud-based computing solution
makes it far more difficult to debug and data analysts
often dig through trace files distributed across multiple
VMs. Zhou et al. [32] manually categorize 210 randomly
sampled failures of a big data platform at Microsoft. Job
failures and slowdowns are common in DISC applica-
tions and many in-field failures are caused by logical and
design errors.These findings motivate BIGDEBUG.

Several approaches help developers debug DISC ap-
plications by collecting and analyzing execution logs [5,
26, 27,29, 10]. Unlike BIGDEBUG, none of these help de-
velopers debug DISC applications in real time, because
they conduct post-mortem log analysis.

Inspector Gadget [21] is a proposal for monitoring and
debugging data flow programs in Apache Pig [22]. It
simply lists desired debug APIs, but leaves it to others to
implement the proposed APIs. Arthur [6] is a post-hoc
instrumentation debugger for Spark. It requires a user to
write a custom query for post-hoc instrumentation and it
supports post-mortem analysis only. Graft [25] is a post-
hoc instrumentation debugger for a graph-based DISC
computing framework, Apache Giraph [1]. Daphne [16]
enables a user to attach a debugger to a remote process
on the cluster. Such an approach works for DISC systems
that meterialize intermediate results, but it does not work
for an in-memory, pipelined, DISC system like Spark.

6 Conclusion

This paper presents the current status and future direc-
tions of BIGDEBUG that aims to provide interactive and
tool-assisted debugging capabilities for big data analyt-
ics. Developers can leverage BIGDEBUG to significantly
reduce the amount of debugging time, reducing the over-
all time to market for their big data applications.
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