
Toward Secure and Convenient Browsing Data Management in the Cloud

Chuan Yue (cyue@uccs.edu), University of Colorado Colorado Springs, USA

Abstract

Cloud and Web-centric computing is a significant trend

in computing. However, the design and development

of modern Web browsers failed to catch up this signif-

icant trend to address many challenging Browsing Data

Insecurity and Inconvenience (referred to as BDII) prob-

lems that bother millions of Web users. In this position

paper, we present our preliminary investigation on the

BDII problems of the five most popular Web browsers

and highlight the necessity and importance of address-

ing those problems. We also propose to explore a novel

Cloud computing Age Browser (referred to as CAB) ar-

chitecture that leverages the reliability and accessibility

advantages of cloud storage services to fundamentally

address the BDII problems.

Keywords: Browser, Cloud, Security, Convenience

1 Introduction

Cloud and Web-centric computing is a significant trend

in computing. However, the design and development of

modern Web browsers failed to catch up this significant

trend in computing to address many challenging Brows-

ing Data Insecurity and Inconvenience (referred to as

BDII) problems that bother millions of Web users.

Each set of browsing data includes a complete col-

lection of different types of data associated with each

particular browser profile. Those different types of data

can be classified into three categories: (1) user-saved

data such as website passwords, bookmarks, form aut-

ofill values, and input autocomplete values; (2) browser-

saved data such as browsing history and HTTP cookies;

(3) browser preference settings such as homepage, lan-

guage, appearance, security, and privacy that are either

related or not related to the first two categories of data.

Ideally, users’ browsing data should be securely pro-

tected and should be conveniently accessible. By se-

curely protected, we mean the confidentiality (includ-

ing privacy), integrity, and availability of users’ brows-

ing data are assured. By conveniently accessible, we

mean the complete set of browsing data for each browser

profile is consistently maintained, is highly browser-

agnostic, and is available and readily usable anytime,

anyplace, and on any computer. Unfortunately, the re-

ality is that the challenging BDII problems have never

been seriously addressed by either the vendors of mod-

ern Web browsers or researchers.

In this position paper, we make two main contribu-

tions. One is that in Section 2, we present our prelimi-

nary investigation on the BDII problems of the five most

popular browsers and highlight the necessity and impor-

tance of addressing those problems. The other is that

in Section 3, we propose to explore a novel Cloud com-

puting Age Browser (referred to as CAB) architecture to

fundamentally address the BDII problems.

CAB does not save any browsing data on a user’s com-

puter – all the browsing data will be protected and com-

pletely stored in the cloud. It aims to address the BDII

problems by properly leveraging the reliability and ac-

cessibility advantages of cloud storage services while

overcoming the potential concerns of using those ser-

vices. The CAB architecture can also bring one addi-

tional but significant security benefit – it can reduce the

attack surfaces of modern browsers by minimizing the

privileges for file operations, which are often the root

causes of many Web-based attacks. We review related

work in Section 4, and discuss the adoption incentives,

the deployment and development strategy, and imple-

mentation challenges for CAB in Section 5.

2 BDII Problems

Table 1 lists the basic information about the storage of

five selected types of browsing data on the latest ver-

sions of the five most popular browsers on Windows 7.

Other types of browsing data mentioned in Section 1 are

not listed due to space limitation. We can see that these



Table 1: Storage of five selected types of browsing data on the five most popular Web browsers.
Browser Website passwords Bookmarks HTTP cookies Browsing history Preference settings

Internet Explorer (9.0) Windows registry Windows shortcut files text files Windows shortcut files Windows registry

Firefox (17.0) SQLite database SQLite database SQLite database SQLite database JavaScript file

Google Chrome (23.0) SQLite database text file SQLite database SQLite database text file

Safari (5.1.7) property list file property list file binary file property list file property list file

Opera (12.11) binary file text file encoded text file text file text file

browsers persist browsing data to the disk using various

file types such as SQLite database, Windows registry,

Windows shortcut file, text file, encoded text file, prop-

erty list file, JavaScript file, and binary file.

Our preliminary investigation shows many BDII prob-

lems exist in the five most popular browsers. Basically,

these browsers do not provide a strong security protec-

tion to users’ browsing data, and do not provide suffi-

cient support to ensure the consistency and compatibility

of a user’s complete set of browsing data across different

computers and across different browser products.

2.1 Browsing data insecurity problems

“Where a threat intersects with a vulnerability, risk is

present” (NIST SP800-100). For browsing data, the

threat sources are attackers who want to steal users’

sensitive information. The basic threat model we con-

sider throughout this paper is that attackers can temporar-

ily (e.g., in a few seconds) install malware on a user’s

computer using popular attacks such as drive-by down-

loads [4, 12, 14, 16, 20]. The installed malware can then

steal the browsing data stored on the disk.

Such threats are prevalent and have high impacts be-

cause browsing data often contain very sensitive infor-

mation. For example, website passwords have been

continuously targeted by various cracking and harvest-

ing attacks [11, 18, 25]; HTTP cookie stealing attacks

can cause severe security and privacy breaches [6, 26];

browsing history sniffing attacks can also cause severe

security and privacy breaches [21, 23]. Therefore, we do

not intend to further identify threat sources, but focus on

highlighting the vulnerabilities that can be exploited by

threat sources to easily steal sensitive browsing data.

We assume malware will not persist on the victim’s

machine – anti-malware software such as Microsoft

Forefront Endpoint Protection may eventually detect and

remove the malware, or solutions such as the Back to the

Future framework [9] may restore the system to a prior

good state and preserve the system integrity. This is a

reasonable assumption that is also made in other systems

such as Google’s two-step verification system [8].

One particular type of browsing data is the login ac-

count usernames and passwords for different websites. A

user can allow the password manager of a browser to save

the login account information and later automatically fill

the login forms on behalf of the user. In all the five most

popular Web browsers, the protection to the saved web-

site passwords is very weak – the encrypted passwords

stored by the latest versions of those browsers could be

trivially decrypted by attackers for them to log into vic-

tims’ accounts on the corresponding websites. We refer

readers to our recent paper [27] for more details.

Even worse, all the other types of browsing data are

not protected at all by any of those browsers. Given the

rampant of Web-based attacks over the Internet [17] and

the aforementioned attack examples [4, 6, 11, 12, 14, 16,

18, 20, 21, 23, 25, 26], data confidentiality, integrity, and

availability can be easily compromised and many secu-

rity and privacy breaches such as identity theft and be-

havior tracking can occur if those unprotected browsing

data can be accessed by attackers or unauthorized parties.

2.2 Browsing data inconvenience problems

To be conveniently accessible, the complete set of brows-

ing data for each browser profile should be consistently

maintained, highly browser-agnostic, available and read-

ily usable anytime, anyplace, and on any computer.

However, none of the existing popular browsers can pro-

vide such a level of convenience.

Browsers such as Firefox, Google Chrome, and Opera

only provide a limited data consistency support with

a synchronization feature that can synchronize partial

browsing data to their own cloud storage servers and

among users’ computers. Because multiple copies of

browsing data for the same browser profile could ex-

ist on different computers and each copy may contain

some most recent data, synchronization conflicts become

very complex and may not be properly resolved in these

browsers. Browsers such as Internet Explorer and Safari

do not provide a built-in synchronization feature.

Furthermore, the compatibility of browsing data

among these five browsers is very poor. The file types of

the persisted browsing data vary from browser to browser

as shown in Table 1. The structures of those files for

the same type of browsing data also vary from browser

to browser. Google Chrome and Firefox have limited

capabilities to import certain browsing data from other

browsers. But overall, sharing browsing data across dif-

2



ferent browser products is poorly supported; synchro-

nizing the same set of browsing data across different

browser products is much more challenging and has

never been achieved by browser vendors or researchers.

In realistic scenarios, however, it would be very bene-

ficial to users if most types of browsing data such as the

saved website passwords and preference settings could

be browser-agnostic. For example, when a user tem-

porarily works on a library computer that only has Inter-

net Explorer installed, the user should be able to conve-

niently use the same browser profile that is mainly used

on the Firefox of his or her office computer. For another

example, when a zero-day vulnerability on a user’s de-

fault browser such as Opera is disclosed but the secu-

rity patch is not released yet, the user should be able to

choose another browser such as Google Chrome to con-

veniently use the same browser profile.

Based on these preliminary investigation results, we

believe it is necessary and important to thoroughly in-

vestigate the BDII problems, to comprehensively iden-

tify the essential requirements for addressing the BDII

problems, and to rationally explore new browser archi-

tectures that could best address the BDII problems of

modern browsers.

3 Design of the CAB Architecture

We consider the following six requirements listed in Ta-

ble 2 as the candidates of essential requirements for ad-

dressing BDII problems. This list mainly includes the

requirements that are not or only partially met by mod-

ern Web browsers, but are essential and critical based on

our preliminary investigation results in Section 2.

Table 2: Requirements for addressing BDII problems.
Requirements Current Status and Justification of

Necessity

REQ1: provide a strong protec-

tion to ensure the confidentiality,

integrity, and availability of all

types of browsing data

weak protection to passwords, no

protection at all to other browsing

data in existing browsers

REQ2: ensure the consistency of

the complete set of browsing data

for each browser profile across

different computers

partial synchronization in existing

browsers with complex/improper

conflicts resolution

REQ3: support the sharing and

synchronization of the complete

set of browsing data across differ-

ent browser products

poor browsing data compatibil-

ity, very difficult to even simply

share browsing data across differ-

ent browser products

REQ4: assure the complete set

of browsing data be available and

readily usable anytime, anyplace,

and on any computer

only partial browsing data are ac-

cessible by some browsers from

their own dedicated servers

REQ5: offer good usability with

minimum user intervention

too much manual effort (e.g., im-

port/export) in existing browsers

REQ6: follow the principle of

least privilege [19]

too many file operations in exist-

ing browsers

3.1 Design overview

We propose to explore a novel CAB (Cloud computing

Age Browser) architecture that could best address the

BDII problems by taking advantage of the exciting op-

portunities brought by the advances in cloud computing

and especially in cloud storage services (Section 4).

The most distinctive feature of the proposed CAB ar-

chitecture is that all the browsing data will be protected

and completely stored in the cloud – nothing needs to be

stored on a user’s computer. We want to move the storage

into the cloud so that the essential requirements REQ2

and REQ4 (Table 2) could be achieved by properly lever-

aging the reliability and accessibility advantages of cloud

storage services (Section 4). In the long run, trustworthy

cloud storage services [1, 3, 13, 15, 22] could even better

protect regular users’ browsing data than local computers

(which may not be timely and properly patched) do.

Figure 1: The high-level design of the CAB architecture.

Figure 1 illustrates the tentative high-level design of

CAB. The essential part of this design is a simple and

generic Browsing Data Manager (BDM) component that

could be easily and seamlessly integrated into existing

popular browsers to enable them to adopt the CAB ar-

chitecture. BDM consists of five subcomponents: UI,

RM, RED, KM, and Synchronization.

UI provides simple configuration and management

user interfaces accessible at a single location. BDM

does not include any traditional persistent storage such

as a file or a database; instead, it will use an RM sub-

component to replace the traditional persistent storage

of any browser. RM maintains an in-memory array of

EBDRs (Encrypted Browsing Data Records) using a cor-

responding interface for adding, deleting, modifying, and

searching EBDRs. RED performs browsing data encryp-

tion and decryption operations. KM performs crypto-

graphic key management operations. The synchroniza-

tion subcomponent will transparently retrieve (or upload)

a PUPE (Per-User Protected EBDRs) data object from

(or to) an RCSS (Reliable Cloud Storage Service) in real-

time whenever needed.

3



An RCSS simply needs to support user authentication

over HTTPS and per-user data storage, which are basic

functionalities provided by most of the cloud storage ser-

vices (Section 4). It will store a PUPE data object for

each RCSS user. It simply needs to be a reliable cloud

storage service and it does not need to provide any spe-

cial computational support to CAB. The communication

protocol between CAB and an RCSS is also very sim-

ple: after a user authenticates to the RCSS, the synchro-

nization subcomponent of BDM will transparently send

HTTPS requests to the RCSS (e.g., using the REST APIs

to be mentioned in Section 4.2) to retrieve or upload the

PUPE data object of the user.

To use CAB, a user needs to remember a Single Strong

Master Password (referred to as SSMP) with the strength

assured by a proactive password checker and certain

length requirement [2, 11, 24]. SSMP will be used to

derive keys for protecting all the browsing data. The

user also needs to set up an RCSS account and config-

ure the URL address of RCSS once through the UI sub-

component. At the beginning of each browsing session,

the user needs to authenticate to the RCSS and provide

the SSMP to BDM; these two steps need to be performed

only once in each browsing session through the UI sub-

component, thus reducing the risk of phishing attacks

against the RCSS account and SSMP. After that, BDM

will transparently take care of everything else related to

the browsing data management.

3.2 EBDR and PUPE

The EBDR (Encrypted Browsing Data Record) and

PUPE (Per-User Protected EBDRs) data structures must

be compatible across different browsers and must be ex-

tensible for future need, so that the essential requirement

REQ3 (Table 2) could be achieved.

We plan to define two types of EBDRs: profile level

EBDR and website level EBDR. A profile level EBDR

will contain profile specific information such as en-

crypted preference settings or the encrypted browsing

history, and it needs to be decrypted as soon as a user

successfully authenticates to the RCSS and provides the

SSMP to the BDM component of CAB. A website level

EBDR will contain website specific information such as

the encrypted password for a website or the encrypted

HTTP cookies for a website, and it only needs to be de-

crypted when a user visits a particular website.

The structure of a PUPE object should be extensible

and relatively simple. It will contain the protectedEB-

DRs and all the information related to the protection al-

gorithms and parameters. The protectedEBDRs is the

protected result of the entire concatenated EBDRs of an

RCSS user. Each PUPE data object can be simply saved

as a binary or encoded string object for an RCSS user

because its structure does not need to be known or taken

care of by any RCSS. Such a PUPE data object design

makes the selection of protection algorithms and the se-

lection of RCSS services very flexible.

3.3 Data protection mechanism

We plan to achieve the essential requirement REQ1 (Ta-

ble 2) and provide a high level of security guarantee by:

(1) mandating the SSMP with the strength assured by a

proactive password checker and certain length require-

ment [2, 11, 24], (2) using a strong key derivation func-

tion (such as PBKDF2 – Password-Based Key Deriva-

tion Function Version 2 defined in the PKCS5 specifica-

tion [10]) with randomly generated salts and large iter-

ation counts, and (3) employing NIST-approved authen-

ticated encryption algorithms (such as CCM – Counter

with CBC-MAC [5]) to simultaneously enforce strong

confidentiality and authenticity (integrity) on the PUPE

data object of each RCSS user.

All the computations including salt generation, key

derivation, encryption, and decryption etc. are performed

by the BDM component of CAB. Neither the SSMP nor

any derived cryptographic key will be revealed to an

RCSS or a third party. Therefore, even if attackers (in-

cluding insiders of an RCSS) can steal the saved PUPE

data object, it is computationally infeasible for attackers

to decrypt the stolen PUPE data object to obtain a user’s

browsing data.

This mechanism is usable (REQ5 in Table 2) because

it purely uses password-based key derivation techniques

and it only changes the cryptographic operations happen-

ing behind the scenes of browsers. This mechanism is

also very flexible. Whenever necessary, the BDM com-

ponent of CAB can transparently change the protection

algorithms and their corresponding parameters. A user

also has the flexibility to change SSMP whenever neces-

sary. In these cases, all what need to be done by BDM

is to simply update the PUPE data object, and upload the

new PUPE data object to the RCSS.

3.4 Least privilege

The rampant of Web-based attacks [17] can, to a large ex-

tent, be attributed to the vulnerabilities in Web browsers

such as logic flaws or bugs, violation of the principle of

least privilege [19], and weak isolation among compo-

nents or origins. Those vulnerabilities can be exploited

by attacks such as drive-by downloads [4, 12, 14, 16, 20]

to install malware on a computer without user approval.

By moving the storage into the cloud, CAB can per-

form browsing data management without reading, writ-

ing, or manipulating local files and directories (Table 1).

4



In other words, CAB can completely remove the neces-

sity of using the privileges for file operations in support-

ing browsing data management – it only needs to use

those privileges in supporting user-initiated operations

such as explictly saving or uploading files. Minimizing

the privileges for file operations (REQ6 in Table 2) can

reduce the attack surfaces and reduce the risk of drive-by

downloads attacks, in which storing files to a local file

system is an essential phase. This could be a significant

security benefit brought by CAB to modern browsers.

4 Related Work

We review cloud-based browsers to highlight CAB is

completely different from them. We review cloud storage

services to justify why we will build CAB upon them.

4.1 Existing cloud-based Web browsers

We review four popular cloud-based browser prod-

ucts from industry: Amazon Silk Browser, Cloud

Browser [28], Opera Mini, and Puffin Browser [29].

In essence, all these cloud-based browsers follow a

split-browsing approach with the goal of improving the

Web browsing performance on mobile handheld devices.

They use extra servers in the cloud to relay the HTTP re-

quests and responses between mobile handheld devices

and remote websites. They improve the mobile browsing

performance mainly by using those servers in the cloud

to perform the time-consuming webpage rendering and

even JavaScript interpretation tasks.

CAB is completely different from those cloud-based

browsers. First, the objectives are different. Those

browsers improve the performance of mobile browsing,

while CAB addresses the challenging BDII problems of

modern browsers. Second, the security foundations are

different. Those browsers rely on cloud servers to per-

form sensitive computations. Computing on encrypted

data is possible [7], but it is still far away from being

practical for cloud servers to render sensitive webpages

without decrypting them in the first place. In contrast,

CAB has a solid security foundation because (1) it sim-

ply uses the storage services provided by cloud servers

without requiring any special computational support, and

(2) it only saves authenticated and encrypted browsing

data in the cloud. Third, those browsers target at mobile

devices, but CAB explores a generic design that is appli-

cable to both desktop computers and mobile devices.

4.2 Existing cloud storage services

Many cloud storage services such as Amazon Cloud

Drive, Dropbox, Google Drive, HP Cloud Object Stor-

age, iCloud, and Microsoft SkyDrive have been deployed

and widely used. Many of these and other cloud storage

services offer free accounts and storage spaces to regular

users. Most of them follow the predominant REST (Rep-

resentational State Transfer) Web service design model

to allow different client applications to easily access

them. Recent research advances further demonstrate the

continuous improvements in the reliability, accessibility,

and security of cloud storage services [1, 3, 13, 15, 22].

We believe this trend will continue with the joint effort

from both industry and academia.

We do not propose to build any new cloud storage ser-

vice, but focus on enabling our CAB to take advantage of

these free, widely deployed, and easily accessible cloud

storage services to address the BDII problems.

5 Discussions

We now take a top-down approach to further discuss the

adoption incentives, the deployment and development

strategy, and some implementation challenges for CAB.

5.1 Adoption incentives

By meeting the essential requirements listed in Table 2,

CAB will bring significant security and convenience ben-

efits to Web users as highlighted in the previous sections;

this will be the most important incentive for both users

and browser vendors to adopt CAB. For browser ven-

dors, another important incentive lies in the potential of

easy-and-smooth integration of CAB due to its simple

and generic design as highlighted in Section 3.1. This

potential will be further explored in the deployment and

development of CAB.

5.2 Deployment and development strategy

To make the integration of CAB to popular Web browsers

as easy and smooth as possible, we plan to first build

and deploy CAB as browser extensions that can be seam-

lessly installed and used on Firefox and Chromium [30].

These browser extensions can directly meet the essential

requirements from REQ1 to REQ5 in Table 2, and can

be incrementally deployed on users’ browsers. These

browser extensions will also be easily configurable to

directly use most of the existing cloud storage services

(Section 4.2) without requiring any modification to them.

Next, we will modify the source code of the two

browsers to minimize the privileges for file operations

and further meet the REQ6 in Table 2.

Finally, after extensively evaluating the correctness,

performance, consistency, compatibility, convenience,

and security of the CAB browser extensions and the

modified browsers, we will suggest vendors to integrate

CAB into the browsers as a built-in feature.

5



5.3 Implementation challenges

We will carefully consider a number of detailed chal-

lenges in the implementation of CAB. Here are some ex-

amples: the interfaces between the Browsing Data Man-

ager (Figure 1) and other components in the browser

should not be too complex; the granularity of the EBDRs

(Section 3.2) as well as the synchronization frequency

of the PUPE object should be properly determined based

on browsing data usage characteristics; a good balance

between security and usability should be achieved in the

data protection mechanism (Section 3.3); configurability

and flexibility should be considered in the implementa-

tion to address the computational and user interface dif-

ferences between desktop computers and mobile devices.

6 Conclusion

In this position paper, we highlighted the necessity and

importance of addressing the BDII (Browsing Data In-

security and Inconvenience) problems of modern Web

browsers. We also proposed a CAB (Cloud computing

Age Browser) architecture to fundamentally address the

BDII problems. We sincerely welcome your suggestions

and expect to further discuss the challenges in addressing

the BDII problems and realizing the CAB architecture.

7 Acknowledgments

The author thanks anonymous reviewers for their insight-

ful comments and valuable suggestions, thanks Mr. Rui

Zhao for helping verify the information presented in Ta-

ble 1, and thanks Drs. Chunqiang Tang, Byung Chul Tak,

and Ashish Kundu for their valuable feedback and dis-

cussion about this paper. This work was partially sup-

ported by a UCCS 2012-2013 CRCW research grant.

References

[1] BESSANI, A., CORREIA, M., QUARESMA, B., ANDRÉ, F.,

AND SOUSA, P. Depsky: dependable and secure storage in a

cloud-of-clouds. In Proc. of EuroSys (2011).

[2] BISHOP, M., AND KLEIN, D. V. Improving system security

via proactive password checking. Computers & Security 14, 3

(1995).

[3] BOWERS, K. D., JUELS, A., AND OPREA, A. Hail: a high-

availability and integrity layer for cloud storage. In Proc. of CCS

(2009).

[4] COVA, M., KRUEGEL, C., AND VIGNA, G. Detection and anal-

ysis of drive-by-download attacks and malicious javascript code.

In Proc. of WWW (2010).

[5] DWORKIN, M. Recommendation for Block Cipher Modes of Op-

eration: The CCM Mode for Authentication and Confidentiality.

In NIST Special Publication 800-38C (2004).

[6] FU, K., SIT, E., SMITH, K., AND FEAMSTER, N. Do’s and

donts of client authentication on the web. In Proc. of USENIX

Security Symposium (2001).

[7] GENTRY, C. Computing Arbitrary Functions of Encrypted Data.

Commun. ACM 53, 3 (2010).

[8] GROSSE, E., AND UPADHYAY, M. Authentication at scale. IEEE

Security and Privacy 11 (2013), 15–22.

[9] HSU, F., CHEN, H., RISTENPART, T., LI, J., AND SU, Z. Back

to the future: A framework for automatic malware removal and

system repair. In Proc. of ACSAC (2006).

[10] KALISKI, B. RFC 2898, PKCS5: Password-Based Cryptography

Specification Version 2.0, 1999.

[11] KELLEY, P. G., ET AL. Guess again (and again and again): Mea-

suring password strength by simulating password-cracking algo-

rithms. In Proc. of IEEE Symposium on S&P (2012).

[12] LU, L., YEGNESWARAN, V., PORRAS, P., AND LEE, W. Blade:

an attack-agnostic approach for preventing drive-by malware in-

fections. In Proc. of CCS (2010).

[13] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT, A., ALVISI, L.,

DAHLIN, M., AND WALFISH, M. Depot: Cloud storage with

minimal trust. ACM Trans. Comput. Syst. 29, 4 (2011).

[14] MOSHCHUK, A., BRAGIN, T., GRIBBLE, S. D., AND LEVY,

H. M. A crawler-based study of spyware in the web. In Proc. of

NDSS (2006).

[15] POPA, R. A., LORCH, J., MOLNAR, D., WANG, H. J., AND

ZHUANG, L. Enabling security in cloud storage slas with cloud-

proof. In Proc. of USENIX Annual Technical Conference (2011).

[16] PROVOS, N., MAVROMMATIS, P., RAJAB, M. A., AND MON-

ROSE, F. All your iframes point to us. In Proc. of USENIX

Security Symposium (2008).

[17] PROVOS, N., RAJAB, M. A., AND MAVROMMATIS, P. Cy-

bercrime 2.0: when the cloud turns dark. Commun. ACM 52,

4 (2009).

[18] RACHNA DHAMIJA, J.D.TYGAR, AND MARTI HEARST. Why

phishing works. In Proc. of CHI (2006).

[19] SALTZER, J. H., AND SCHROEDER, M. D. The protection of

information in computer systems. Proc. of IEEE 63, 9 (1975).

[20] WANG, Y.-M., BECK, D., JIANG, X., ROUSSEV, R., VER-

BOWSKI, C., CHEN, S., AND KING, S. T. Automated web pa-

trol with strider honeymonkeys: Finding web sites that exploit

browser vulnerabilities. In Proc. of NDSS (2006).

[21] WEINBERG, Z., CHEN, E. Y., JAYARAMAN, P. R., AND JACK-

SON, C. I still know what you visited last summer: Leaking

browsing history via user interaction and side channel attacks. In

Proc. of IEEE Symposium on S&P (2011).

[22] WINDOWS AZURE STORAGE TEAM. Windows azure storage: a

highly available cloud storage service with strong consistency. In

Proc. of ACM SOSP (2011).

[23] WONDRACEK, G., HOLZ, T., KIRDA, E., AND KRUEGEL, C.

A practical attack to de-anonymize social network users. In Proc.

of IEEE Symposium on S&P (2010).

[24] YAN, J. J. A note on proactive password checking. In Proc. of

New security Paradigms Workshop (NSPW) (2001).

[25] YUE, C. Preventing the revealing of online passwords to inap-

propriate websites with LoginInspector. In Proc. of USENIX LISA

(2012).

[26] YUE, C., XIE, M., AND WANG, H. An Automatic HTTP Cookie

Management System. Journal of Computer Networks (COM-

NET), Elsevier 54, 13 (2010).

[27] ZHAO, R., AND YUE, C. All your browser-saved passwords

could belong to us: A security analysis and a cloud-based new

design. In Proc. of ACM CODASPY (2013).

[28] Cloud Browser. http://www.alwaysontechnologies.com/

cloudbrowse/features/.

[29] Puffin Browser. http://www.puffinbrowser.com/.

[30] The Chromium Projects. http://www.chromium.org/.

6


