
Jobber: Automating Inter-Tenant Trust in The Cloud

Andy Sayler Eric Keller
University of Colorado, Boulder

Dirk Grunwald

Abstract

Today, a growing number of users are opting to move
their systems and services from self-hosted data cen-
ters to cloud-hosted IaaS offerings. These users wish
to both benefit from the efficiencies that shared multi-
tenant hosting can offer while still retaining or improving
the kinds of security and control afforded by self-hosted
solutions. In this paper, we present Jobber: a highly au-
tonomous multi-tenant network security framework de-
signed to handle both the dynamic nature of cloud data
centers and the desire for optimized inter-tenant commu-
nication. Our Jobber prototype leverages principals from
Software Defined Networking and Introduction Based
Routing to build an inter-tenant network policy solution
capable of automatically allowing optimized communi-
cation between trusted tenants while also blocking or re-
routing traffic from untrusted tenants. Jobber is capable
of automatically responding to the frequent changes in
virtualized data center topologies and, unlike traditional
security solutions, requires minimal manual configura-
tion, cutting down on configuration errors.

1 Introduction

We are in the midst of a paradigm shift in the way we
host our digital infrastructure. The rise of cloud com-
puting has driven users away from private, self-hosted
approaches toward large, multi-tenant data centers that
are both more cost-efficient and more flexible than tradi-
tional solutions. Security in these public data centers is a
significant concern, and many researchers have focused
on designing technology for isolating tenants. This ten-
dency toward strict isolation, however, leaves untapped
benefits – namely, numerous possibilities for inter-tenant
optimization and cooperation derived from the colloca-
tion of interacting services in multi-tenant data centers.
Inter-tenant communication in modern data centers al-
ready composes 10% to 40% of all data-center commu-

Data Center Network

Tenant A

Virtual 
Machines

Security 
Middlebox

Tenant B

Virtual 
Machines

Tenant C

Virtual 
Machines

Public 
Internet

Security 
Middlebox

Security 
Middlebox

Figure 1: Inter-Tenant Data Communication Today

nication [7], and this number will likely grow as we con-
tinue to consolidate data centers and shift services into
the cloud. It is thus desirable to find more efficient ways
to process and secure such traffic, leading to both an in-
crease in cloud performance and a decrease in operation
cost.

Consider a website that uses an advertisement bidding
and insertion system. Even though the ad system likely
shares tenancy with many of its clients in the data cen-
ter, the service must treat all client interactions as un-
trusted communication, increasing network latency due
to the overhead required to secure such communication.
In the absence of manual configuration based on pre-
arranged business-to-business relationships [11], inter-
tenant communication is treated in the same manner as
external communication: as untrusted traffic that must
be passed through a complex and resource intensive se-
curity stack. This security stack often includes systems
like inter-domain routers, firewalls [5], traffic monitors,
and a variety of other middlebox systems (Figure 1).
In the cloud, these systems require additional resources
to run, costing tenants extra money and increasing net-
work overhead. In addition to the costs and overhead
incurred when treating all communications as untrusted
traffic, traditional security solutions rely heavily on stat-



ically configured polices that are prone to misconfigu-
ration. The highly dynamic nature of multi-tenant data
centers only exasperates this issue, requiring frequent
manual policy updates to handle the volatile topologies
associated with virtualized infrastructure.

We are interested in removing this manual configura-
tion and automating the development of trusted relation-
ships. Trust relationships should not require manual con-
figuration, but should instead grow organically through
interaction and reputation – e.g., between the ad system
and a well-behaving client. Toward this end, we present
Jobber1: a highly dynamic network security system de-
signed to handle both the volatile nature of the cloud and
the desire for optimized inter-tenant communication in
multi-tenant data centers.

Much like Ethane [9], Jobber can transparently direct
untrusted traffic through high-overhead, high-security
flows while automatically allowing trusted traffic to pass
through optimized lower overhead flows. In contrast to
Ethane, which relies on statically configured rules, Job-
ber builds and leverages a trust network between tenants
to dynamically determine if a communication attempt
between tenants should be allowed, denied, or routed
through additional security infrastructure.

The Jobber architecture includes three core compo-
nents. The individual implementations of each compo-
nent are flexible (although we provide suggestions based
on the development of our prototype); it is the relation-
ships between the components and the core functionality
provided by each that comprise our core Jobber vision:

Trust Network: Jobber employs a trust network be-
tween tenants to compute which tenants should
be granted low-overhead, privileged connections,
and which should be treated as untrusted hosts
or blocked completely. Our Jobber prototype
uses techniques from Introduction Based Routing
(IBR) [10] to realize this capability, effectively plac-
ing a market value on good behavior. This encour-
ages well behaved tenants to form inter-tenant trust
relationships while isolating misbehaving tenants.

Sensor Framework: Jobber requires one or more sen-
sor systems from which it can gather data on which
to base individual tenant reputations within the trust
network. Our prototype employs a modular sensor
framework that we intend to interface with a variety
of network data sources, from intrusion detection
systems (IDS) to host-based access logs.

Programmable Routing and Security: Jobber must be
able to programmatically control network rout-
ing and security rules in order to steer traffic be-
tween various network security paths (or block it
all together). We have explored prototypes that

1A jobber is a middle man in the exchange of stocks and securities.

utilize various programmatic routing and security
schemes. Using legacy cloud infrastructures, Jobber
can interact with various cloud data center APIs to
control routing and security. In future SDN-based
data centers, Jobber can interact directly with an
OpenFlow-based SDN controller [13] to obtain this
functionality.

In the remainder of this paper we discuss using
reputation-based trust networks to obtain a largely
configuration-less security framework (§2). We then ex-
plore the architecture of Jobber in §3, discuss open prob-
lems related to Jobber in §4, and conclude in §5.

2 Configuration-less Security

Most network security solutions in use today are stati-
cally configured: the user programs them with a pre-
defined set of rules regarding who can and who cannot
communicate. These rules must be constantly updated
as the network topology and the nature of inter-tenant re-
lationships change. Jobber moves away from this static
configuration model in favor of an autonomous config-
uration model that can dynamically adapt to a chang-
ing network environment. In this section we discuss the
problems with static configuration as well as the tech-
nologies Jobber employs to achieve autonomous opera-
tion.

2.1 Problems with Static Configurations
It is a well documented fact that manually configured
network security systems are highly prone to configura-
tion errors [16, 9]. These configuration errors are often
the root cause of security breaches in “secure” networks.
Many of these configuration errors stem from the fact
that generating a policy stipulating all allowed (or de-
nied) communication on even very simple networks can
be a very complicated task. It is easy to forget to add
a rule, or to add a rule too many. Even advanced mod-
ern firewall systems like Firmato [8] generally start with
elaborate policy definitions.

And if properly elucidating the security policy on a
static network isn’t hard enough, the volatile nature of
modern networks only serves to make the situation much,
much worse. Today’s networks, be they locally hosted
or in a shared data center, are often populated by more
virtual machines than physical ones. This virtual infras-
tructure gives operators a lot of flexibility in terms of
reassigning computing resources in response to various
demands, but this flexibility also means that network se-
curity polices must be constantly kept up-to-date with the
current state of the network. Properly capturing the net-
work’s static security policy is no longer enough. We

2



must now update these polices every time we create or
destroy virtual resources, making already common con-
figuration errors even more likely.

Furthermore, trust relationships between tenants
change on a regular basis. A trusted partner one day
may be a compromised and threatening partner the next.
Systems that rely on manually configured trust networks
based on semi-stable business relationships are unable to
quickly respond to the shifting threat landscape inherent
in modern networks and data centers.

2.2 Trust Networks and IBR

The solution is to move away from systems that rely on
statically captured network policies. Instead, we want
an organically grown, autonomous, and highly dynamic
mechanism for capturing the security state of the network
at any given instance. Trust networks seem a promising
candidate to fit this bill. Researchers have proposed a va-
riety of methods for dynamically building trust networks,
from concepts that leverage social relationships [14] to
concepts based on the behavior of power grids [12]. In-
troduction Based Routing (IBR) [10] is another novel ap-
proach to building dynamic trust networks. IBR relies on
game-theoretic models of trusted communities. Commu-
nities dynamically grow and shrink on the basis of intro-
ductions between hosts. The system incentives making
introductions to well-behaved hosts while discouraging
the making of introductions to misbehaving hosts.

In IBR, a host must ask to be introduced to any host
with which it wishes to communicate. Whether or not
a host is willing to make an introduction is based on
reputations that each host maintains for the other hosts
with which it has interacted. When communication be-
tween two introduced hosts completes or is terminated,
the involved parties send either positive or negative feed-
back to the host who originally introduced them, allow-
ing that host to continue to build its internal reputation
map. This system places a market value on good behav-
ior, and eventually leads to the isolation of misbehaving
hosts and the interconnection of behaving hosts.

The cost-structure of cloud data centers serves to fur-
ther reinforce IBR’s “market value on good behavior”,
making it an especially good candidate to satisfy Job-
ber’s trust network component. Jobber extends IBR be-
yond per-host reputation to maintain reputation on a per-
tenant basis. This system allows each tenant to maintain
a reputation for each other tenant and to use these reputa-
tion as the basis for making introductions to allow direct
tenant-to-tenant communication.

A system based on reputation raises a bootstrapping
problem since it must start with no knowledge of prior
interactions. To cope with this, we bootstrap the Job-
ber IBR network by making the data center provider a

special case that will always provide an initial introduc-
tion between tenants. In effect, each tenant starts out
with a minimally-trusted connection to the data center
provider. They can then request introductions to any
other tenant via the common provider node, noting that
such connections have not been vetted in the same man-
ner as introductions from other hosts, and should thus be
treated as “probationary” until more data is available on
which to gauge their reputation. Over time, communities
of trust are formed as tenants develop more inter-tenant
trust connections. As this happens, the reliance on the
cloud provider as an introducer diminishes.

2.3 Sensor Framework

In order to determine reputations, sensors are needed to
gather evidence as to whether or not a tenant is well be-
haved. We propose an extensible per-tenant Jobber sen-
sor framework with a standardized interface that allows
Jobber to collect information from a variety of sources
and use it as the basis for IBR feedback generation (Fig-
ure 2). Possible sources of interaction information range
from network-wide solutions like centralized intrusion
detection systems [15], to host-based solutions like fire-
walls and authentication logs, to Jobber-aware applica-
tion solutions that can directly report to the framework.
For example, a tenant could configure the existing se-
curity logging system on a deployed host to report all
connection attempts on closed ports to the Jobber sen-
sor framework. The framework could then use this data
to decrease the reputation of hosts attempting to make
unauthorized connections. With this system, one must
initially configure of the sensors and definitions of what
constitutes “good” and “bad” behavior. Once initially
configured, however, the framework automatically incor-
porates the sensor feedback to maintain the underlying
reputation maps.

By centralizing IBR data collection for each tenant
and exposing a standardized data collection interface, we
can both aggregate feedback from a multitude of hosts
as well as collect feedback from a variety of systems.
This flexible approach fits well with Jobber’s underlying
goal of making data center security more flexible and au-
tonomous. Our sensor approach is similar to that taken
by centralized monitoring projects like Nagios [3] that
rely on a standardized, extensible interface to collect data
from a wide variety of information sources. After gath-
ering all the data in a centralized location, each tenant
can maintain their own generic lists of which data points
constitute positive behavior and which constitute nega-
tive behavior. These data points can then lead to the sin-
gle interaction feedback score provided to other tenants
at the end of a given multi-tenant interaction.

3



Sensor 
Framework

Data Collection Interface

Intrusion 
Detection 
System

Host 
System 

Logs

Firewall 
Alerts ...

Router 
Status Etc

Sampling and Throttling Layer

Behavior Classification Layer

Tenant Reputation Query Interface

Tenant Reputation Database

Jobber Server

Tenant Aggregation Layer

Figure 2: Extensible Sensor Framework

3 Jobber Architecture

Jobber is an overarching system that orchestrates differ-
ent resources to realize reputation based trust systems in
multi-tenant cloud infrastructures. In this section we dis-
cuss three increasingly transparent and optimized Job-
ber architectures. In particular, we focus on architec-
tures using the interfaces provided by Amazon’s Elastic
Compute Cloud (EC2) [4] service. We discuss both host-
aware and host-unaware architectures. Then we discuss
a Jobber architecture that leverages the OpenFlow frame-
work to overcome the limitations inherent in the legacy
architectures.

3.1 Today’s Cloud - Host Aware
Our first architecture assumes that each host can be made
Jobber aware. This requires running an additional Jobber
process on each host, as well as interfacing specific ap-
plications with Jobber to provide feedback.

Figure 3 shows the basics of a client aware Jobber ar-
chitecture. In this architecture, each tenant operates a
Jobber server. This server is responsible for negotiating
and responding to all Jobber related requests from other
tenants. It also interacts with the Jobber client processes
running on each of the tenant’s hosts.

When a Jobber-aware application on Tenant B wishes
to open an optimized, direct connection with a host from
Tenant A, it must notify the Jobber client process of this
request. The Jobber client then repeats the request to
the Jobber server on Tenant B, who then contacts Jobber
servers from other tenants to secure the necessary intro-
ductions to Tenant A. If a trust path can be successfully
built, the Jobber server on Tenant A notifies the Jobber
client on the host in question to open up the necessary
host-based firewall ports to allow direct communication
from the Tenant B host. The Tenant B Jobber Server then

Virtual Machine

Security 
Middlebox

Jobber Client

Jobber 
Server

Tenant A

Local 
Firewall

Local 
Apps

Virtual Machine

Jobber Client

Local 
Firewall

Local 
Apps

Tenant B

Virtual Machine

Jobber Client

Local 
Firewall

Local 
Apps

Jobber 
Server

Security 
Middlebox

1

2

3

Figure 3: Jobber in a legacy data center with Jobber
aware clients - Flow 1 (red) shows a typical untrusted
interaction being processed via the traditional security
stack. Flow 2 (black) shows the Jobber servers for each
tenant interacting to request a trusted connection. Flow
3 (green) shows a direct, trusted tenant-to-tenant inter-
action that bypasses the traditional security stack.

informs the application that originally requested the di-
rect connection that the connection is now available, al-
lowing the application to switch to using the direct con-
nection, and avoiding the overhead normally imposed by
the Tenant A security stack for untrusted communication.

This architecture allows tenants to leverage Jobber in
data centers that do not yet offer support for program-
matic network routing and security changes. Its reliance,
however, on each individual host and application being
Jobber aware still imposes a large overhead to deploy-
ment. We can avoid this overhead if we utilize an archi-
tecture that does not require client awareness.

3.2 Today’s Cloud - Host Unaware
Figure 4 shows an alternate Jobber architecture for exist-
ing data centers that does not require each individual host
and application to be Jobber aware. This architecture
leverages Amazon’s Virtual Private Cloud (VPC) [6] ser-
vice to dynamically reroute host communication along
either trusted or untrusted connections. VPC provides
functionality for programmatically updating the routing
table for a tenant’s network, allowing the Jobber server
to manipulate the routes as required to obtain the desired
functionality. This architecture also introduces the Job-
ber sensor interface discussed in §2. This interface is
used to both monitor trusted interactions for the purpose
of generating feedback as well as to monitor untrusted
connections to identify connections that might be benefit
from promotion to trusted status.

In this architecture, the Jobber server, using informa-
tion from the Jobber sensor interface, decides when it
would be beneficial to promote an inter-tenant interaction
to trusted status. When Tenant B’s Jobber server finds a
potential trusted interaction, it communicates with Job-

4



Virtual Machine

Security 
Middlebox

Jobber 
Server

Tenant A

Local 
Firewall

Local 
Apps

Virtual Machine

Local 
Firewall

Local 
Apps

Tenant B

Virtual Machine

Local 
Firewall

Local 
Apps

Jobber 
Server

Security 
Middlebox

1

2

3
VPC 

Router
VPC 

Router
Jobber 

"Sensor"
Jobber 

"Sensor"

Figure 4: Jobber in a legacy data center without client
modification - Labeled flows are as they are in Figure 3
with the addition of the Jobber sensor interface monitor-
ing traffic and the programmable VPC router directing
traffic between trusted and untrusted paths.

ber servers for other tenants to obtain the necessary in-
troductions and establish the required trust connection
to Tenant A. If a direct trusted connection can be ob-
tained, Tenant A opens up the necessary firewall ports to
allow a direct connection from Tenant B. It also sets up
the necessary sensor infrastructure to monitor the trusted
connection for the purpose of providing post-interaction
feedback. It then informs Tenant B that the direct con-
nection is available. The Tenant B Jobber server updates
its VPC routing table to begin steering the newly pro-
moted inter-tenant interaction directly to the Tenant A
host, bypassing the standard Tenant A security stack.

These EC2-based architectures, while appropriate for
deployment in an existing cloud infrastructure, still have
a number of downsides. In particular, the bootstrapping
methods discussed on §2 must be modified in order to
compensate for the lack of cloud provider involvement.
Furthermore, these architectures either require Jobber-
aware hosts and applications or require additional infras-
tructure to handle the detection of optimize-able inter-
tenant flows and to direct inter-tenant routing.

3.3 Jobber for the Future Cloud
We can overcome the limitations of existing cloud infras-
tructures by architecting Jobber for future data centers.
We imagine these data centers offering Jobber awareness
as a service, optimized for their SDN-capable back-end
networks. We can leverage the SDN capabilities of the
future data center to transparently detect and direct traf-
fic at a data-center wide level, avoiding the need for per-
tenant Jobber routers and proxies. This future data center
gives us the ability to realize a Jobber architecture that is
both more capable and less expensive than the legacy ar-
chitectures discussed thus far.

Virtual Machine

Security 
Middlebox

Jobber 
Server

Tenant A

Local 
Firewall

Local 
Apps

Virtual Machine

Local 
Firewall

Local 
Apps

Tenant B

Virtual Machine

Local 
Firewall

Local 
Apps

Jobber 
Server

Security 
Middlebox

1

2

3

Jobber 
"Sensor"

Jobber 
"Sensor"

Provider 
SDN 

Switch

Provider SDN Controller

Provider Jobber Client

Data Center Network

Figure 5: Jobber in an SDN-capable, Jobber-aware data
center - The flows are as described in Figure 4, except
that the VPC router has been replaced by a Jobber-aware
data center switch/router, and that the data center con-
troller is now Jobber aware and capable of transparently
creating direct connections whenever possible

Figure 5 shows our Jobber architecture integrated with
an SDN-capable data center. As in the legacy architec-
tures, each tenant operates a Jobber server responsible
for responding to introduction requests. This server in-
teracts with the Jobber sensor framework to collect data
related to ongoing inter-tenant communication and ten-
ant reputation. Unlike previous architectures, however,
we now exploit the SDN capabilities of the data center
network by running the Jobber client as an application on
the data center SDN controller. In this way, the data cen-
ter controller can respond to “Packet In” events caused
by attempted inter-tenant flows by attempting to secure
a direct trusted connection between communicating ten-
ants.

For example, when a host from Tenant B attempts to
communicate with a host from Tenant A, the data cen-
ter controller, via the Jobber client, queries the necessary
per-tenant Jobber servers for the required introductions
between Tenant B and Tenant A. If a trusted introduc-
tion sequence is available, the controller writes a flow to
the data center switch forwarding the communication di-
rectly between tenant hosts and bypassing the untrusted
security stack for each tenant. If no trusted connection is
available, the switch forwards the communication along
the untrusted path where Tenant A can either choose to
block it all together or to allow it subject to additional
security measures.

This arrangement provides a low overhead means for
deploying Jobber. Each tenant maintains the flexibil-
ity to monitor reputation metrics and allow or deny in-
troduction requests as they see fit, while the controller

5



shoulders the burden of finding the necessary introduc-
tion sequences and routing the traffic along the appro-
priate path. In this deployment, we envision data cen-
ter providers offering the Jobber framework as a service
which tenants can leverage by simply standing up a Job-
ber server to handle all incoming Jobber requests. If
a tenant takes advantage of this service, they can save
money and effort by enabling dynamic, trusted, low-
overhead communication with other trusted tenants.

4 Open Problems and Questions

Jobber is currently a work in progress. We have built a
Jobber proof-of-concept prototype for the SDN-based ar-
chitecture proposed in §3 using the Floodlight SDN con-
troller framework [1] and the Mininet network emulation
platform [2]. We are working on expanding our SDN-
aware prototype toward the full functionality discussed
in this paper, as well as constructing prototypes of the
alternative legacy architectures proposed using Amazon
EC2. As a work in progress, there are still a number of
open problems and questions related to our Jobber vi-
sion.

The biggest open question is exactly how much of a
performance and cost benefit Jobber can provide. We
know that inter-tenant traffic comprises a significant frac-
tion of total data center traffic, but until we can deploy a
fully functioning Jobber prototype and evaluate its per-
formance relative to the existing solutions, it is difficult
to qualify exactly how much of a performance gain Job-
ber has to offer. While we are confident that Jobber
will provide both performance and cost benefits, we also
note that Jobber offers automatic configuration benefits
regardless of any performance and cost advantage.

We must also complete a more thorough analysis and
definition of the Jobber security model. Trust networks
like IBR are effective in determining who is trustworthy
and who is not, but they do tend to allow for one “free
attack” per tenant when a previously trustworthy tenant
begins to misbehave. How quickly Jobber can detect and
respond to these trusted-to-untrusted reputation flips and
how much damage might be done before it does remains
to be seen.

Finally, while we propose candidates to satisfy each
of the three core Jobber components discussed in §1, it
is possible that there are alternate implementations for
each component that may work better than our currently
proposed suggestions. Once we complete our initial Job-
ber prototype using the discussed implementation (IBR,
SDN, client-defined sensor framework), we plan to com-
plete several alternate implementations and evaluate their
relative merits. We also believe that it may be possible to
push down some of these component implementation de-
cisions to individual tenants (as we have tried to do with

our sensor framework) in order to keep Jobber as flexi-
ble as possible and to encourage its use in a variety of
diverse situations.

5 Conclusions

We believe that Jobber provides a compelling alterna-
tive to the existing configuration intensive static security
paradigm used in many cloud data centers. Jobber al-
lows for optimized inter-tenant cooperation and commu-
nication not subject to the security overhead required for
untrusted connections. Jobber’s ability to leverage opti-
mized inter-tenant communication helps reduce the cost
of using shared infrastructure while securely increasing
the throughput available in such infrastructure. Jobber’s
freedom from manual configuration makes shared infras-
tructure more manageable while decreasing the security
vulnerabilities introduced by configuration errors.

References
[1] Floodlight. http://floodlight.openflowhub.org/.
[2] Mininet. http://mininet.github.com/.
[3] Nagios. http://www.nagios.org/.
[4] AMAZON. Amazon ec2. http://aws.amazon.com/ec2/.
[5] AMAZON. Amazon ec2 security groups. http:

//docs.aws.amazon.com/AWSEC2/latest/UserGuide/

using-network-security.html.
[6] AMAZON. Amazon virtual private cloud. http://aws.

amazon.com/vpc/.
[7] BALLANI, H., JANG, K., AND KARAGIANNIS, T. Chatty Ten-

ants and the Cloud Network Sharing Problem. Proc. of NSDI
(2013).

[8] BARTAL, Y. Firmato: A novel firewall management toolkit the
hebrew university of jerusalem. Proceedings of the 1999 IEEE
Symposium on Security and Privacy 22, 4 (2004), 381–420.

[9] CASADO, M., FREEDMAN, M., AND PETTIT, J. Ethane: Taking
control of the enterprise. ACM SIGCOMM Computer Communi-
cation Review 37, 4 (2007).

[10] FRAZIER, G., DUONG, Q., WELLMAN, M., AND PETERSEN,
E. Incentivizing responsible networking via introduction-based
routing. Trust and Trustworthy Computing 6740 (2011).

[11] IBM. Vpn scenario: Basic business to business connec-
tion. http://tinyurl.com/ibm-vpn-b2b. Access March 4th,
2013.

[12] MAO, Y., SHEN, H., AND SUN, C. From credit and risk to trust:
towards a credit flow based trust model for social networks. Pro-
ceedings of the 17th ACM international conference on Supporting
group work (2012), 209–218.

[13] MCKEOWN, N., AND ANDERSON, T. Openflow: enabling in-
novation in campus networks. ACM SIGCOMM Computer Com-
munication Review 38, 2 (2008).

[14] MISLOVE, A., POST, A., DRUSCHEL, P., AND GUMMADI,
K. Ostra: Leveraging trust to thwart unwanted communication.
Proc. of NSDI (2008).

[15] PAXSON, V. Bro: a system for detecting network intruders in
real-time. Computer networks 31, 23-24 (1999).

[16] WOOL, A. A quantitative study of firewall configuration errors.
Computer 37 (2004), 62–67.

6

http://floodlight.openflowhub.org/
http://mininet.github.com/
http://www.nagios.org/
http://aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://aws.amazon.com/vpc/
http://aws.amazon.com/vpc/
http://tinyurl.com/ibm-vpn-b2b

	Introduction
	Configuration-less Security
	Problems with Static Configurations
	Trust Networks and IBR
	Sensor Framework

	Jobber Architecture
	Today's Cloud - Host Aware
	Today's Cloud - Host Unaware
	Jobber for the Future Cloud

	Open Problems and Questions
	Conclusions

