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Abstract
Despite the increasing popularity of Infrastructure-as-a-
service (IaaS) clouds, providers have been very slow in
adopting a large number of innovative technologies, such
as live VM migration, dynamic resource management,
and VM replication. In this paper, we argue that the rea-
sons are not only technical but also fundamental, due
to lack of transparency and conflict of interest between
providers and customers. We present our vision incep-
tion, a nested IaaS cloud architecture to overcome this
impasse. Inception clouds are built entirely on top of
the resources acquired from today’s clouds, and provide
nested VMs to end users. We discuss the benefits, use
cases, and challenges of inception clouds, and present
our network design and prototype implementation.

1 Introduction

Infrastructure-as-a-service (IaaS) clouds provide on-
demand programmable access to a large pool of elastic
compute, network and storage resources in the form of
virtual machines (VMs). The increasing popularity of
cloud also becomes in part the driving force of a large
number of innovative technologies at the hypervisor level
in the areas of dynamic resource allocation [8, 9, 11, 16],
high availability [14], security [10], etc. Unfortunately,
we have found few of these technologies deployed in the
public clouds. For example, live VM migration [9], a
technology developed for years and shipped in both stock
Xen and KVM stable branches, is not supported in most
public clouds. When a physical server is scheduled for
maintenance, users are notified to manually shutdown
their VMs on the server and boot up elsewhere.

We argue that such obstacles against rapid innovation
do not exist by coincidence. While sometimes a new
technology is not commercially adopted due to its exper-
imental nature, it is also fundamentally challenging, or
virtually impossible in many cases, due to lack of trans-
parency and conflict of interest between providers and
customers. For example, live VM migration typically re-
quires the source and destination physical servers to be
on the same layer-2 network, and have shared storage for

VM images. While the feature is desirable for some ap-
plications, it is not required for others (e.g., horizontally
scalable stateless web servers). Since it is often easier
and cheaper to build a scalable layer-3 network without
shared storage, providers have to weigh the tradeoff be-
tween features that are only useful for some applications,
and the tax they impose on the infrastructure for all ap-
plications.

On the other hand, instead of using a general-purpose
public cloud, one could also install cloud management
software (CMS) such as OpenStack [4] and vCloud [5]
to build a private cloud, and customize the software stack
to her specific needs. However, only mega-size compa-
nies have the capability to achieve the scale and multiple
physical points of presence of the public clouds. The up-
front investment to build a private cloud including hard-
ware, software and operation cost might also be imprac-
tical for many organizations.

In this paper we present inception, a nested IaaS cloud
architecture to overcome this impasse. Unlike today’s
clouds (referred to as “reality clouds” for the rest of
the paper) that built with physical resources, inception
clouds are built entirely on top of the resources encapsu-
lated in VMs acquired from reality clouds, without any
provider cooperation or involvement. Compared to re-
ality clouds, inception clouds provide exactly the same
abstractions (e.g., VMs, block storage, networks) to cus-
tomers. Inception clouds not only inherit the benefits of
elasticity and geographic diversity from reality clouds,
but also can be tailored according to specific user sce-
narios and workloads. Our grand vision is that inception
clouds will significantly lower the barrier to build, instru-
ment, evaluate, and deploy cloud technologies, therefore
accelerate the innovation in the area.

Inception is based on nested virtualization [7, 18, 19],
a topic that receives increasing attention in the research
community. Similar to inception, xCloud [17] also con-
sidered nested virtualization as one of its design choices
to build nested clouds to achieve hypervisor extensibility.
The contribution of this paper is to examine the full stack
vertically and horizontally beyond a single host, includ-
ing not only server virtualization, but also networking de-
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sign and CMS, identify use cases and challenges, present
a viable solution based on software-defined networking
(SDN) and OpenStack, and layout future roadmap.

2 Overview

An inception cloud provider hosts the entire infrastruc-
ture on top of VMs acquired from reality clouds (rVMs),
and produce inception VMs (iVMs) that are nested in-
side the rVMs. While we expect there are only a few
large companies as reality cloud providers with huge data
centers and geographic diversity just like today’s public
cloud space, we envision that inception cloud providers
are much more diverse in size and specialty, and each in-
ception cloud is specially optimized for a few types of
applications. Interestingly, an organization might also
be both inception cloud provider and customer given
enough technical depth to enjoy a fast feedback loop for
optimization and customization.

2.1 Benefits
There are several fundamental benefits of inception
clouds compared with reality clouds:

• Low operation overhead. Because there is no physi-
cal hardware to manage, inception cloud providers do
not need to worry about issues like cooling, power, ca-
bling, rack design, malfunctioned hardware replace-
ment, data center real estate, etc. This significantly
lowers the barrier to run a cloud.

• Dom0/hypervisor flexibility. Inception cloud
providers have the flexibility to choose hypervisor
features such as live VM migration [9] and repli-
cation [14], or value added services like intrusion
detection [10] and customized firewall at Dom0
without any cooperation of reality cloud providers.

• App-specific resource allocation. App-specific incep-
tion clouds can take workload characteristic into ac-
count to optimize resource allocation. For example,
a real-time application is very sensitive to oversub-
scribed resources. On the other hand, a performance
insensitive application staying idle most of the time
might enjoy high subscription ratio to improve overall
resource utilization. A general-purpose reality cloud
treats VMs as black boxes. So it is very complicated
if not impossible to distinguish those applications and
optimize accordingly, not to mention multiple poten-
tially conflicting service level agreements.

• Multiple providers. An inception cloud may span
across multiple reality clouds, such as a private on-
premise one and a public one, or among different pub-

lic providers. This opens up an optimization opportu-
nity to take advantage of geographic approximation or
cost reduction.

2.2 Use Cases
We illustrate three representative use cases of inception
clouds as shown in Figure 1. They are built on top of two
public and one private reality clouds, distributed in East,
West and South Coast of the US, respectively.
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Figure 1: Inception cloud use cases.

Virtual Desktop. In a virtual desktop inception cloud,
each iVM represents an employee’s desktop. The inter-
active nature demands low latency from the client de-
vice to its iVM. The desktop iVMs can also be consoli-
dated efficiently because they share many similar mem-
ory pages and disk images, and require low CPU uti-
lization. To build a virtual desktop inception cloud, we
choose all three reality clouds as points of presence. The
iVM allocated to an employee will be transparently live
migrated to the closest physical location when she trav-
els. At the hypervisor level, we enable memory reduction
features [11, 16] and set CPU over-subscription ratio to
high. We also run a virus scanner at Dom0 to period-
ically scan iVM disks and quarantine infected iVMs if
any.
Web Hosting. In a web hosting cloud, we expect to
host two major types of iVMs: web servers and database
servers. Unlike virtual desktops, both servers are per-
formance critical and do not work well with high re-
source subscription ratio. Moreover, many web servers
are stateless, and can scale up and down by adding or
removing instances. So they do not need live migra-
tion. We design the web hosting cloud by enabling two
hypervisor features: instant VM spawning [8] for web
servers to deal with flash crowd, and VM replication [14]
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to achieve transparent database high availability. Option-
ally, one can also run an intrusion detection system [10]
on Dom0 for all public facing web server iVMs.
Continuous Integration. In the development cycle of
CMS, continuous integration (CI) executes a series of in-
tegration tests for every patch submitted and rejects it
unless all tests pass. Take OpenStack for example, due
to the complexity to setup and tear down test environ-
ments, all integration tests are executed in VMs. Cur-
rently, all tests are executed within a single KVM-based
VM. The VMs spawned during testing are nested inside
KVM based on QEMU. Unfortunately, this setup is far
from ideal to test all complicated setups in networking
and scheduling. Instead, in our CI inception cloud, each
OpenStack code snapshot is the CMS, and a CI cloud in-
stance only exists shortly during the testing phase. Our
flexible networking design (Section 3) allows running all
complicated multi-node setup for current-version Open-
Stack. The official OpenStack CI environment and any
enterprise who customizes OpenStack code could use CI
inception clouds for comprehensive testing.

2.3 Challenges

Realizing inception clouds faces many challenges. First,
although recent work [7, 18] brought the nested virtu-
alization overhead in many cases within 5% to 10% of
paravirtualized drivers in a single-level paravirtualized
guest, there are still room for improvement, especially
in I/O performance.

Furthermore, hypervisor is only one piece of the soft-
ware puzzle to operate a cloud. A full stack of solutions
including cloud controller, configuration, monitoring and
troubleshooting are needed. Recent advances in the open
source world such as OpenStack lower the barrier but
there are still many open questions. For example, incep-
tion clouds run on rVMs instead of physical servers. The
membership of a rVM cluster could be a lot more dy-
namic than a physical cluster. OpenStack is not designed
for it, and of course not optimized for it.

Last but not the least, the networking setup from to-
day’s public reality clouds differs dramatically. Each
rVM might have one or more network interfaces plugged
into layer-2 or layer-3 domains, various degrees of con-
nectivity to private networks or the Internet, and differ-
ent firewall rules. To make an inception cloud indepen-
dent of a particular reality cloud networking solution,
we assume the following “least common denominator”:
each rVM has one interface with a pre-assigned private
IP address, and an optional floating public IP address,
reachable directly via network address translation (NAT).
Only TCP and UDP unicast traffic is allowed and no IP
spoofing. Such setup is available in most if not all of
today’s public clouds [1, 4]. However, it is very differ-

ent from how physical servers are wired in data centers,
and is incompatible with many CMS such as OpenStack.
Besides, setting up the networks for rVMs from different
providers to run in a same inception cloud is a challenge.

3 Network Design

In this section we focus on the network design of an in-
ception cloud to run stock CMS like OpenStack.
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Figure 2: Network design of an inception cloud.

Figure 2 gives an overview of the network design of
an inception cloud from the perspective of two reality
cloud data centers. The data centers are geographically
distributed. In an inception cloud, each rVM is equipped
with three sets of isolated networks–management, pri-
vate and public, marked as eth0, eth1 and eth2 respec-
tively in the figure. The management network eth0 corre-
sponds to an intra-data center layer-2 or layer-3 network
provided by reality clouds for rVM-to-rVM communica-
tions. Moreover, we adopt Open vSwitch [15] and tun-
neling protocols (e.g., VXLAN [6], GRE [3]) to build
virtual switches and construct a layer-2 network for pri-
vate iVM-to-iVM communications over eth1, as well as
a layer-2 network for public access to iVMs from the In-
ternet over eth2. In Figure 2 the eth1 and eth2 interfaces
of each rVM are connected to virtual switches obr1 and
obr2, respectively. In addition, in each data center two
gateway rVMs with public IPs provide inter-data center
connections for eth0 and eth1 networks.

We note that the three networks–management, pri-
vate, and public, are isolated from each other. Their
mechanism is transparent to end users of an inception
cloud. As a result, security issues like eavesdropping are
eliminated by design. This network design further en-
ables an inception cloud to construct layer-2 private/pub-
lic networks with arbitrary topology for whatever rea-
sons. Open vSwitch also supports the OpenFlow pro-
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tocol such that more scalable layer-2 technologies can be
easily adopted [12, 13]. One can also run multiple gate-
way rVMs as ingress/egress routers to avoid single point
failures.

3.1 Private Network
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Figure 3: Private network of an inception cloud. Compo-
nents generated by CMS are marked with dashed lines.

Figure 3 shows how iVMs are attached to the private
network eth1 from the perspective of a single rVM. obr1
is the local vSwitch running on each rVM. Moreover, on
each rVM we create a veth pair <eth1, eth1p>, with one
end attached to obr1, and the other end eth1 available for
CMS network controller to build its private network in
the inception cloud, as if it were an actual physical inter-
face. Components that are generated by CMS are marked
with dash lines in the figure. For example, if one chooses
OpenStack Nova network with the flat DHCP mode, a
Linux bridge br1 is auto-created. eth1 and all interfaces
of each iVM are attached to br1. The IP addresses of
iVMs are assigned by a DHCP server.

We specifically rejects the design where an iVM
interface is directly plugged into obr1 because (1) it
would force CMS network controller to work with Open
vSwitch, which could be incompatible with many exist-
ing networking solutions based on Linux bridge; (2) a
network controller usually creates and manages virtual
switches on its own so it does not work with obr1 created
out of band; (3) Open vSwitch does not work properly
with ebtables and iptables in certain scenarios, which are
used widely to implement firewall policies.

3.2 Public Network
Providing Internet access to iVMs is challenging. In to-
day’s reality clouds [1, 4], Internet access to rVMs is
often achieved by setting up one or multiple network
controllers, which perform NAT between public IPs and
rVMs’ private IPs. This appears that “floating” public
IPs can be dynamically associated with specified rVMs.
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Figure 4: Public network of an inception cloud. Compo-
nents generated by CMS are marked with dashed lines.
The gray line indicates the traffic path between a iVM
and the Internet.

To provide the same feature of floating IP associa-
tion in an inception cloud, we design a public network
setup, which requires no changes to underlying real-
ity clouds, is transparent to end-users, and even works
across data centers. We illustrate this design via an exam-
ple given in Figure 4. There are two reality VMs–rVM1
and rVM2. As noted before, eth0 is on the management
network, e.g., with subnet 10.0.0.0/16. eth2 is plugged
in a virtual layer-2 network for public traffic with sub-
net 10.2.0.0/16. Suppose rVM1 has an associated float-
ing public IP 56.0.0.11 assigned from its reality cloud,
and we would like to associate this public IP to iVM2 on
rVM2.
Floating IP on rVM: First, we would like to give the
inception cloud the ability to simply configure a public
IP address on eth2 on the rVM to send and receive traffic
with that IP. In the example, 56.0.0.11/32 is associated on
eth2 at rVM2. For an inbound packet sourced from the
Internet and destined to 56.0.0.11, first rVM1 receives it
on eth0 after the packet being NATed by reality cloud net-
work controllers, i.e., the original destination 56.0.0.11 is
replaced with 10.0.0.11. Second, rVM1 performs a des-
tination NAT (DNAT) to reverse this effect, i.e., destina-
tion 10.0.0.11 is substituted to 56.0.0.11, and the packet
is dumped to eth2 and forwarded to the public network
via obr2. Finally the packet reaches eth2 on iVM2 via
obr2. On the outbound direction, we setup a source rout-
ing rule on rVM2, such that all traffic with source IP
56.0.0.11 should be routed via next hop 10.2.0.11. As
a result, the packet will go through obr2 and reach rVM1
on eth2. On rVM1, there is a source NAT (SNAT) rule to
replace the source IP 56.0.0.11 with 10.0.0.11 and send
out via eth0 to reach the Internet via the reality cloud
network.
Floating IP on iVM: After a rVM can freely configure

4



public IP address, it becomes trivial to use a cloud net-
work controller without modification to implement float-
ing IPs for iVMs. We use OpenStack Nova network as
an example to show the complete picture in Figure 4.
Same as in the private network case, components gen-
erated by CMS are marked with dashed lines. Linux
bridge br1 is created and eth0 on iVM2 is plugged in it,
with an assigned IP 192.168.1.2. For an inbound Internet
packet, once rVM2 receives it, a DNAT rule will translate
56.0.0.11 to 192.168.1.2 and dump it to br1 so that iVM2
can receive it. For an outbound packet, a SNAT rule will
translate source IP 192.168.1.2 to 56.0.0.11. The source
routing policy in rVM2 we discussed earlier will take
over and forward it to the Internet.

Our network design offers high flexibility. Each rVM
can host many iVMs with any number of floating IPs.
Public/private traffic forwarding is not disrupted with
iVM live migration, even across data centers. As a spe-
cial case, if there is only one iVM demanding one float-
ing IP on a rVM, we can directly associate the floating IP
in the reality cloud onto that rVM’s eth0 to avoid internal
forwarding on virtual public layer-2 network, thus reduc-
ing forwarding overhead. Moreover, our network design
applies without changes to recursively nested inception
clouds, as long as within the limit of physical resources.

4 Implementation

We have implemented a prototype inception cloud for
continuous integration on top of a private IaaS cloud as
our reality cloud. Both the inception and reality cloud
use OpenStack as CMS. Specifically in the inception
cloud, we run all OpenStack core components including
compute, volume, image and identity services. Both the
physical machines of the reality cloud and the rVMs run
Ubuntu 12.04 LTS server, with a Linux kernel version
3.2.0-37. KVM with nested virtualization enabled [7] is
the hypervisor.

We chose Open vSwitch version 1.9 to build the net-
work of our inception cloud. The tunneling protocols
supported by Open vSwitch include VXLAN and GRE.
Because GRE packets are dropped by the default Open-
Stack firewall, we chose to use VXLAN which is tun-
neled in UDP. In principle, VXLAN uses UDP-based
packet encapsulation with 24-bit virtual network iden-
tifier (VNI) supporting up to 16.7 million VNIs. We
constructed a star-topology network for simplicity: each
rVM builds a VXLAN tunnel with the gateway rVM,
which acts as a hub for the virtual data center. We turned
on the spanning tree protocol (STP) to avoid accidental
network loops due to misconfiguration.

To automate the configuration and deployment pro-
cess, we wrote Chef [2] cookbooks to setup both Open-
Stack and Open vSwitch VXLAN networks. With-

out any human intervention, we are able to launch an
OpenStack-based CI inception cloud within minutes. It
is worth mentioning that, CI inception clouds enable us
to quickly deploy and evaluate OpenStack from any revi-
sion in the source code management system. After each
set of testing, the CI inception cloud is easily and quickly
torn down by destroying the rVMs.

In the preliminary evaluation, we mostly focus on
functionality tests such as compute API correctness, net-
work reachability, floating IP association, firewall effec-
tiveness, live VM migration, etc. This is exactly the
purpose for a CI cloud. Interestingly, we noticed some
significant performance degradation in iVM compared to
rVM during some I/O stress tests, and we plan to inves-
tigate further in future work.

5 Conclusion and Future Work

This paper presents inception, a nested IaaS cloud ar-
chitecture. The idea originates from our experience in
deploying and experimenting OpenStack with new fea-
tures. We have been longing to lower the barrier of fast
launching and running a large-scale customizable cloud,
without worrying about dealing with physical bare met-
als. This aligns well with the use case of CI inception
cloud outlined in Section 2. Far beyond that, inception
clouds offer other major benefits against reality clouds,
including hypervisor flexibility, app-specific resource al-
location, and cross-provider wide-area deployment. We
hope inception will lower the barrier of entrance to the
IaaS cloud space and inspire further innovation from the
research community.

Our future work are as follows: (1) Our inception
clouds rely on layer-2 private/public networks. To im-
prove network scalability, a more scalable control plane
is necessary. Because Open vSwitch supports Open-
Flow, we plan to build SDN controllers (e.g. similar to
Onix [13]) to both eliminate ARP broadcast traffic and
provide direct traffic routes (as opposed to go through
the gateway as hub); (2) We plan to add new features
into OpenStack, ranging from handling dynamic rVM
addition/deletion, supporting extensible hypervisor func-
tionalities [8, 14], and experimenting myriad resource
scheduling/optimization strategies; (3) In addition to a
private reality cloud environment, we plan to deploy in-
ception clouds across multiple public providers; (4) We
plan to investigate iVM I/O performance bottlenecks,
and explore light-weight isolation technology such as
Linux Containers as alternatives when applicable.
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