Clone2Clone (C2C): Peer-to-Peer Networking of Smartphones on the Cloud*

Sokol Kosta™, Vasile Claudiu Perta®, Julinda Stefa™, Pan HuiT, and Alessandro Mei*
*Sapienza Univ, Rome, Italy, THK UST, Hong Kong and Deutsche Telekom Labs, Berlin, Germany.

*{lastname} @di.uniromal.it, Tpan.hui @telekom.de.

Abstract

In this work we introduce Clone2Clone (C2C), a dis-
tributed peer-to-peer platform for cloud clones of smart-
phones. C2C shows dramatic performance improvement
that is made possible by offloading communication be-
tween smartphones on the cloud. Along the way toward
C2C, we study the performance of device-clones hosted
in various virtualization environments in both private (lo-
cal servers) and public (Amazon EC2) clouds. We build
the first Amazon Customized Image (AMI) for Android-
OS—a key tool to get reliable performance measures of
mobile cloud systems—and show how it boosts up per-
formance of Android images on the Amazon cloud ser-
vice. We then design, build, and implement C2C. Upon it
we build CloneDoc, a secure real-time collaboration sys-
tem for smartphone users. We measure the performance
of CloneDoc by means of experiments on a testbed of 16
Android smartphones and clones hosted on both private
and public cloud services. We show that C2C makes it
possible to implement distributed execution of advanced
peer-to-peer services in a network of mobile smartphones
reducing 3 times the cellular data traffic and saving 99%,
80%, and 30% of the battery for respectively security
checks, user status update and document editing.

1 Introduction and Motivation

Smartphones have changed the way we interact with our
mobiles. We use them to call/text as well as to send
emails, tweet, play video-games, shop, watch videos and
so on. All this comes at a price: Battery life. With the
apps becoming always more complex, we are destined
to suffer battery limits even more in the future. Consid-
erable research work have proposed solutions to address
the issues of computational power and battery lifetime
by offloading computing tasks to cloud. Frameworks like

*This work has been performed in the framework of the FP7 project
TROPIC IST-318784 STP, which is funded by the European Commu-
nity. The Authors would like to acknowledge the contributions of their
colleagues from TROPIC Consortium (http://www.ict-tropic.eu).

Public Cloud Providers
Clone DS

R clone E:
M 79.|25.59.1

e \ clone C:

79.125.52.1
3

clone D:

@79. 125.75.6

D
clone B:

MobileA " +-.. (7 46.137.227.24:5001
- ‘connection to clone A

IP = 46.137.227.24:5000

Private Clouds

Figure 1: The C2C architecture and networking.

MAUI [7] and ThinkAir [10] are just a few of the many
offloading methodologies that achieve mobile computa-
tion efficiency and prolong battery life.

In this work we push the smartphone-cloud paradigm
to a further level: We aim at smartphone-to-smartphone
communication offloading, together with computation
offloading. With this in mind, we develop Clone2Clone
(C2C), a distributed platform for cloud clones of smart-
phones. C2C associates a software clone on the cloud to
every smartphone and interconnects the clones in a peer-
to-peer fashion exploiting the networking service within
the cloud. A wireless P2P network between smartphones
is notably hard to realize due to many factors: Severe
battery limitations, frequent loss of cellular coverage in
e.g. subway or rural areas, the way carriers NAT mo-
bile Internet, and so on. These problems are mitigated
with the C2C platform, where the clones are virtually al-
ways on and peer-to-peer connectivity lies upon the high-
bandwidth network of the cloud. Most importantly, C2C
opens up a wealth of novel ways to explore the integra-
tion of mobile computing, networking, and the cloud. It
makes it possible to build P2P-based protocols for smart-
phones, as well as services like content sharing, search,
distributed execution among the C2C network users, and
so on. All this, without the need of relying on a continu-
ous, and, impossible to achieve, P2P connection between
real devices. In addition, coupled with any of the exist-
ing offloading techniques [7, 10], it also can help offload

heavy mobile computational tasks.

On top of C2C we implement CloneDoc, a secure,
real-time collaboration system for smartphone users that
work simultaneously on the same document, dealing
with an insecure server. We use CloneDoc as a paradig-
matic P2P-like application, and show how C2C achieves
communication offloading, by dramatically decreasing
the data traffic handled by the smartphone users (3 times
less). In addition, we demonstrate that, thanks to C2C, all
the heavy crypto and security tools required by Clone-
Doc are handled on the cloud. This translates in 99%,
80% and 30% of energy saving for respectively security
checks, user status update, and document editing.

2 Related work

In the scientific community it is a common belief that
a promising way around the problem of short battery
life of smartphones is offered by offloading mobile com-
putation on the cloud. Early works in this direction,
like [13, 5] show how to benefit from cloud offloading in
terms of security and energy-efficiency. In [7] the authors
describe MAUI, a method level code offloading system
based on the Microsoft .NET framework. MAUI exploits
estimation models and application profilers to offload
particularly heavy methods on the cloud. CloneCloud [6]
uses a process-based offloading methodology: The bi-
nary of the application is partitioned and an off-line anal-
ysis decides which binary pieces are to be migrated to the
cloud. Experiments with clones hosted on private cloud
(local servers) show up to 20x energy saving with appli-
cations such as virus scanning, image search, and behav-
ioral profiling. The first study of the energetic overhead
of the device-clone synchronization is presented in [2].
The works [1, 11, 3] show how offloading benefits from
associating a clone on the cloud to each smartphone.

Note that none of these offloading mechanisms pro-
vide P2P inter-connection of smartphones through the
cloud, nor do they provide communication offloading, as
we will see from our experiments that C2C does. Note
also that our C2C platform offers the possibility to users
to adopt an offloading methodology totally independent
from that of other users in the platform.

3 How to clone on the cloud

For our C2C platform we exploit Android x86—an An-
droid port to the x86 architecture. We consider two host-
ing strategies: (1) Private cloud, or, (2) public (com-
mercial) cloud computing service. On the private cloud
(Linux local servers, CPU Core(TM)2@1.83GHz), we
consider three different virtualizing methods: Xen, Vir-
tualBox (VB), and through the QEMU emulator [4]. As
for the public cloud service, we opt for the Amazon EC2
platform (High-CPU Med., 2 virt.cores 2.5 ECUs). Its
virtualization environment is Xen, and it expects a com-
patible Amazon Machine Image (AMI). Unfortunately,

Test QEMUL. VBL. XenL. QEMUA. Ax86AMI
CPU(MFlops) 2.5 34 45 2.6 57
I/ORd 0.5 5.5 6.2 0.7 72
/0 Wr 0.3 5.1 5.8 0.45 6.8

Table 1: Clone performance. L is for local; A is for Amazon.

an AMI for Android-x86 that runs on top of Xen does
not exist. In addition, aside from the processor emula-
tor QEMU [4], no other virtualization environments are
compatible with Amazon EC2 (including VB). So, pub-
lic cloud cloning so far is only possible by using the An-
droid emulator which runs on top of QEMU. Note that
QEMU runs on top of a virtualized Linux AMI, which in
turn runs on top of Amazon’s Xen. This is far from be-
ing efficient—there are two virtualization layers between
Android and Xen. So, we designed and built a bun-
dle—a custom Amazon Machine Image for Android-x86
(Ax86AMI). This was not easy. It involved re-designing
Android drivers from scratch, adding virutalization sup-
port for Xen, disabling kernel level modules and sensors,
recompiling the kernel of Android x86 etc. We omit the
details of this procedure due to lack of space!.

We compare the performance of the various clones in
terms of CPU (through the Java version of Linpack?),
and bufferized file access (through the standard Java
API). During the test the clone makes use of one pro-
cessor core. Each experiment is repeated 100 times and
the average performance with each cloning method is
shown in Table 1. One can notice that Xen clones win
over all the other virtualization methods, on both Private
and Public cloud (recall that the Ax86MI runs on top
of Xen). Most importantly, our Ax86MI bundle boosts
enormously the performance of the clones on Amazon:
Indeed, QEMU clones perform 23 times less in terms of
CPU than the Ax86AMI clones. In addition, our clones
are more than 13 (13.5) times faster in performing /O
Read (Write) operations. The benchmark results also
show that public cloud clones outperform private cloud
ones. This is expected: Amazon’s High-CPU Medium
instances are more powerful than our local servers.

Note that is not necessary for the clones to be images
of the Android OS running on the cloud—they could be
Linux x86 OS running JVM applications. However, from
a software engineering point of view running Android
OS images makes it straightforward to install/uninstall
user apps on the clone and use them for offloading.

4 C2C: Architecture Design

To enable peer-to-peer networking among smartphone
clones, the C2C platform needs a mechanism that “no-
tifies” clones about the presence of others and gives in-
formation on how to connect to them. Here we stick to

'Our AMI for Android-x86 is open source. If you need it to run
experiments, just drop an email to one of the authors of this paper.
Zhttp://www.netlib.org/benchmark/linpackjava/

a simple baseline architecture for our platform (see Fig-
ure 1). It includes a directory service (CloneDS in the
figure) which takes care of mapping users to clones and
clones to IPs. The CloneDS is always up and its IP is
known (made public by e.g. the C2C platform builder).
We assume also that all the entities in the system—users,
cloud providers, and the CloneDS—have a private/public
key pair and can securely verify their authenticity. A
user willing to join the C2C platform requests a clone,
equipped with a private/public key par and a public IP, to
her cloud provider of choice. The public key is signed
by the user, so everybody can verify the clone’s owner.
The newly created clone performs the following steps,
shown also in Fig. 1: (1) DS register: The clone sends
to CloneDS its respective device ID (mobile A), its ID
(clone A), its IP address, and its public key. (2) DS
lookup: Clone A receives a list signed by CloneDS of all
other clones entries along with their IPs and public keys.
(3) C2C connect: Clone A starts P2P connections with
the other clones. (4) User lookup: User A can always
get her clone’s IP through a CloneDS lookup. (5) User-
clone connection: The user is now ready to connect to
its clone through its public IP, and installs whatever she
likes in her cloned devices (the newly created clone is
a default Android-x86 image running on the cloud, and
does not contain any user data). This includes apps that
she already has in her real smartphone. In addition, the
user negotiates a symmetric key with her clone (this is
done in a standard way thanks to the authenticated pri-
vate/public keys). This key will be used to encrypt and
sign user-clone communication.

4.1 C2C and security

In C2C, we assume that the users trust their own cloud
provider. However, they do not trust the cloud providers
of the other users. The interaction between the mobile
device of a user and its clone is secured by using a shared
symmetric key. In this way encryption of packets and
signatures performed by the real device can be imple-
mented efficiently, which allows devices to save energy.

In the architecture we described, the CloneDS is an
external entity with respect to the cloud providers and is
trusted by all the users in the system. Therefore, cor-
rect users can trust that the information provided by the
CloneDS is consistent. However, since this information
is provided by the cloud providers of the other users, ma-
licious cloud providers can make it impossible to con-
nect to their own users. Or make other users connect to
fake malicious clones. Since the user trusts her cloud
provider, we cannot do much about this.

An alternative architecture for the CloneDS is to im-
plement it as a distributed service among the cloud
providers. In this distributed version, the CloneDS is
replicated on the cloud providers, users connect to the
replica on the cloud they trust, and the replicas are kept

consistent by broadcasting signed updates among the
cloud providers that are part of the system. Of course,
malicious providers can again forge information about
their own users. But correct users and cloud providers
can connect correctly. This distributed alternative might
be more available, since the cloud typically guarantee
high availability.

5 Secure real time collaboration

Many recent works like [12, 14], and the most recent
SPORC [9], argue that secure, real-time group collabo-
ration on sensitive information, e.g., Banking, or shared
documents between cooperating companies, can be ef-
ficiently deployed by making use of untrusted external
servers. Their goal is to force a global order on the con-
current users’ operations. Due to the sensitiveness of the
information, the server is considered as potentially mali-
cious: Its goal may be to partition the clients in disjoint
groups with different views of the document. So, plat-
forms like e.g. GoogleDocs are not to be used in these
cases. Prevalent solutions to the problem [9, 12, 14] in-
volve recurrent P2P communication among users, as well
as heavy cryptography to guarantee crucial security and
system properties. Clearly, all this is unfeasible for our
resource-limited smartphones.

However, with the C2C platform the tables are turned.
C2C delivers efficient peer-to-peer networking for smart-
phones by moving computation and, most importantly,
communication on the cloud. We exploit these fea-
tures of C2C and modify SPORC’s architecture to build
CloneDoc—The first energy-efficient and real-time col-
laboration system for battery constrained smartphones.
CloneDoc demonstrates that our idea of moving com-
munication and enabling P2P networking on the cloud
makes it possible to design energy-efficient non-trivial
P2P applications for smart-phones.

5.1 CloneDoc: System Architecture
Even though similar to SPORC [9], CloneDoc makes use
of the C2C platform which introduces more complex-
ity to the system overall, yet reducing battery consump-
tion by liberating the mobile devices from many tasks.
CloneDoc is a typical P2P-like application with commu-
nication among peers and not-so-light computation due
to cryptography. Thus, we use it as a stress-test for C2C.
The main idea in CloneDoc is to make the clone on the
cloud receive operations from the mobile device, handle
as many tasks as possible on the device’s behalf and keep
the device up-to-date. Recall that the clone is trusted
by the user. In scenarios where CloneDoc is deployed,
e.g. for Banking or intra-enterprise collaboration, the
clones might reside inside the enterprises’ private cloud
platforms. The clone (similarly to the client in SPORC)
maintains two states: the pending queue and the com-
mitted queue. The clone behaves as follows: (1) sub-

mits to the server operations that he gets from the user’s
real-device and (2) appropriately transforms (using Op-
erational Transformation [8]) the operations of the other
users received from the server. It is thus responsible for
correctly handling the queues so that its view of the doc-
ument is coherent to that of other clones. Last, but not
least, the clone sends back to the real device the oper-
ations such that the user’s view is coherent to that of
other users in the system. However, the real and the
cloned device are not physically the same. This translates
into an unavoidable delay in their communications that,
if not appropriately managed, may introduce inconsis-
tency. So, CloneDoc includes a clone—user consistency
protocol, that solves this problem, yet allowing the user
to apply her operations optimistically on her device: We
want a system that looks real-time to the user.

The clone in CloneDoc is also responsible for detect-
ing server misbehavior. This involves encryption and de-
cryption of each operation labeled and received by the
server, checks on sequence numbers and hash chains of
histories sent by other users’ clones that help with the
detection and so on. In addition, when the respective
user is disconnected (e.g. due to loss of cellular cover-
age), the clone continues being on, receiving other users’
operations and applying them locally. All the user has
to do when she gets back is to pull from the respective
clone the set of operations that she missed during her ab-
sence. This has many advantages. First, the user’s device
need not transform these operations past possible opera-
tions contained in its local pending queue (that the clone
has). Indeed, the clone has already taken care of such
transformations. Second, the clone optimizes the list of
operations by canceling possible add character followed
by a del character in the same position. This reduces
the number of operations the real device receives and ap-
plies to the document. Third, the clone sends the whole
sequence encrypted as a unique bundle. So, the device
does only one decryption, instead of one per operation
as in SPORC. Finally, the clone also takes care of all the
crypto operations necessary to handle adding or deleting
users from the system. Nonetheless, the communication
between clone and real-device is always done using se-
cure SSL channels to avoid eavesdropping. According
to the experiments on the testbed, relieving the smart-
phones by handling all these tasks on the clone results in
enormous energy and cellular bandwidth savings.

5.2 Experimental Setup and Results
To test CloneDoc we compare it with SPORC. Un-
like [9], that exploits Google Wave’s source code’we im-
plemented both systems from scratch—Google Wave’s
source code is not compatible with Android.

Our C2C testbed consists of 16 real devices (see Ta-

3http://www.waveprotocol.org/whitepapers/operational—transform

Number, type & OS CPU RAM

6xSamsung Galaxy S+ (Android 2.3) 1.4 GHz 512 MB
2xNexus S (Android 4.0.1) 1 GHz 512 MB
2xHTC Desire (Android 2.3) 1 GHz 576 MB
6xHTC Hero (Android 2.1) 528 MHz 288 MB

Table 2: Specifics of the mobile devices used in the testbed.

Protocol& Smartphone ~ Phase 1 Phase2 Phase3 Phase 4
SPORC-Hero 2300 140 180 5.5
SPORC-Samsung 1700 60 130 2.4
CloneDoc-Hero 1500 22 7 0.9
CloneDoc-Samsung 1250 18 5 0.8

Table 3: Energy consumption in mJ during the 4 test phases.

ble 2 for more details) and an equal number of clones de-
ployed in a hybrid cloud platform: 14 hosted on Amazon,
and 2 hosted on our private server. The untrusted server
resides on our private cloud to make the scenario as het-
erogeneous as possible. Devices communicate with the
untrusted server and the clones (in C2C) through WiFi.
The test, repeated 10 times, has four phases: (1) Edit-
ing phase—users edit the document concurrently; (2) Up-
date of temporarily disconnected user status; (3) Secu-
rity check to detect misbehavior; (4) User membership
remove. The test is repeated 10 times and the results on
single and meaningful operations are averaged. Here we
present the experimental results relative to the two ex-
treme cases: Samsung Galaxy S+ (the highest perform-
ing smartphone) and HTC Hero (the lowest performing
one). We measure energy consumed by the smartphones
on both systems with the Mobile Device Power Moni-
tor*, used by many other works in the area [7, 10]. This
device samples the smartphone’s battery with high fre-
quency (5000 Hz) so to yield accurate results on the
battery’s power, current, and voltage. The results, from
the energy consumption perspective, are presented in Ta-
ble 3. The energy savings achieved with CloneDoc is
high in all the phases—around 30% for document edit-
ing (phase 1), more than 80% for status update (phase 2),
more than 99% for security check (phase 3), and more
than 80% for the user membership remove (phase 4).
This is not surprising: the clones deal with most of the
heavy tasks in the system, by thus dramatically decreas-
ing the burden of the real devices. Most importantly,
in all cases the gap between the energy consumed from
HTC Hero with that consumed by the Samsung Galaxy
S+ is reduced on CloneDoc. This confirms that the C2C
platform boosts up the performance of old-fashioned
low-performing smartphones making them competitive
with newer, more expensive, and more performing ones.

5.2.1 Network Traffic
We have measured the number of bytes sent/received
during the test by the active smartphones when running

“http://www.msoon.com/LabEquipment/PowerMonitor/

Hero-SPORC [l
Samsung-SPORC Hll

Hero-CloneDoc E&3
Samsung-CloneDoc B8
80

70

60
? 50
40

Time (¢

30
20
10

i 0

. . a) b) S
Figure 2: Time to (a) update the state of a temporarily discon-
nected user; (b) apply all edit users’ operations.

SPORC and CloneDoc. The result is that the overall net-
work bandwidth used by the smartphones with CloneDoc
is 3 times less than with SPORC (see Figure 3). This
is because the C2C platform enables offloading of both
computation and communication. CloneDoc benefits of
this feature by offloading most of the networking tasks on
the peer-to-peer network of clones (e.g. communication
with the server and with other users in the network). So,
the smartphone uses less its networking interface. This,
not only spares cellular traffic to the device, but it also
reduces the energy consumption of its battery.

6 Lessons Learned and Conclusions

In this work we built the first Amazon Customized Image
(AMI) for Android OS: A key tool to get reliable mea-
surements of performance of mobile cloud computing
systems. It involved implementing a virtual device driver
for Android-x86, disabling OS services unnecessary for
the cloud platform, and rebuilding its kernel. By using
our Ax86AMI, we were able to get reliable performance
of public and private cloud clones of Android phones in
terms of CPU and I/O. Then we described Clone2Clone
(C20), a platform that offloads networking on the cloud
by realizing peer-to-peer networking of clones of smart-
phones on the cloud. To the best of our knowledge, this
is the first time that distributed computing among smart-
phones is made possible by exploiting cloud services.
We designed the system, implemented it, and tested its
functionalities with CloneDoc: A non-trivial application
for secure group collaboration. For the testbed we used
16 android smartphones and the most performing clones
on both public and private cloud, according to our perfor-
mance study. Our experiments show that building proto-
cols upon C2C (like CloneDoc) has many benefits:
1. Makes the battery last longer thanks to computation
offloading on the cloud;
2. makes the device use the network interfaces less, by
offloading communication on the cloud; thus
3. helps offloading the cellular network as the smart-
phones use less network bandwidth;
4. makes execution of complex operations faster; thus,
the usability of the protocol improves;
5. boosts up the performance of old low-performing
smartphones making them competitive with newer,
more expensive, and more performing ones.

SPORC

CloneDoc

0 20 40 60 80 100
KBytes
Figure 3: Cellular network traffic with SPORC and CloneDoc.

We believe that C2C opens up a wealth of novel ways to
explore the integration of mobile computing, network-
ing, and the cloud. Among others, C2C enables innova-
tive applications such as content sharing and search in the
huge amount of data stored by our devices and makes it
possible to implement distributed execution of advanced
services in a network of mobile smartphones, such as for
example the Diaspora® social network.

References

[1] BARBERA, M. V., KOSTA, S., MEI, A., PERTA, V. C., AND
STEFA, J. CDroid: Towards a Cloud-Integrated Mobile Operat-
ing System. In Proc. IEEE INFOCOM 2013.

[2] BARBERA, M. V., KOSTA, S., MEI, A., AND STEFA, J. To
Offload or Not to Offload? The Bandwidth and Energy Costs of
Mobile Cloud Computing. In Proc. IEEE INFOCOM 2013.

[3] BARBERA, M. V., KOSTA, S., STEFA, J., HUI, P., AND MEI, A.
CloudShield: Efficient anti-malware smartphone patching with a
P2P network on the cloud. In Proc. IEEE P2P 2012.

[4] BELLARD, F. Qemu, a fast and portable dynamic translator. In
Proc. USENIX ATEC *05.

[S] CHEN, E., AND ITOH, M. Virtual smartphone over ip. In Proc.
IEEE WoWMoM ’10.

[6] CHUN, B. G., IHM, S., MANIATIS, P., NAIK, M., AND PATTI,
A. Clonecloud: elastic execution between mobile device and
cloud. In Proc. EuroSys ’11.

[7] CUERVO, E., BALASUBRAMANIAN, A., CHO, D., WOLMAN,
A., SAROIU, S., CHANDRA, R., AND BAHL, P. Maui: making
smartphones last longer with code offload. In Proc. MobiSys ’10.

[8] ELLIS, C. A., AND GIBBS, S. J. Concurrency control in group-
ware systems. SIGMOD Rec. 18 (June 1989), 399-407.

[9] FELDMAN, A. J., ZELLER, W. P., FREEDMAN, M. J., AND
FELTEN, E. W. Sporc: Group collaboration using untrusted
cloud resources. In Proc. OSDI ’10.

[10] KosTA, S., AUCINAS, A., Hul, P., MORTIER, R., AND
ZHANG, X. Thinkair: Dynamic resource allocation and paral-
lel execution in the cloud for mobile code offloading. In Proc.
IEEE INFOCOM 2012.

[117] KOSTA, S., PERTA, V. C., STEFA, J., HUI, P., AND MEI, A.
CloneDoc: Exploiting the Cloud to Leverage Secure Group Col-
laboration Mechanisms for Smartphones. In Proc. IEEE INFO-
COM 2013.

[12] MAHAIJAN, P., SETTY, S., LEE, S., CLEMENT, A., ALVISI, L.,
DAHLIN, M., AND WALFISH, M. Depot: Cloud storage with
minimal trust. In Proc. OSDI ’10.

[13] PORTOKALIDIS, G., HOMBURG, P., ANAGNOSTAKIS, K., AND
H.Bos. ParanoidAndroid: versatile protection for smartphones.
In Proc. ACSAC ’10.

[14] SHRAER, A., CAcCHIN, C., CIDON, A., KEIDAR, 1.,
MICHALEVSKY, Y., AND SHAKET, D. Venus: verification for
untrusted cloud storage. In Proc. of ACM CCSW ’10 (2010).

Shttp://diasporaproject.org/

