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Abstract

Nowadays there is significant diversity in Infrastructure
as a Service (IaaS) clouds. The differences span from
virtualization technology and hypervisors, through stor-
age and network configuration, to the cloud management
APIs. These differences make migration of a VM (or
a set of VMs) from a private cloud into a public cloud,
or between different public clouds, complicated or even
impractical for many use-cases.

HVX is a virtualization platform that enables complete
abstraction of underlying cloud infrastructure from the
application virtual machines. HVX allows deployment
of existing VMs into the cloud without any modifica-
tions, mobility between the clouds and easy duplication
of the entire deployment.

HVX can be deployed on almost any existing IaaS
cloud. Each instance of the HVX deployment packs in
a nested hypervisor, virtual hardware, network and stor-
age configuration.

Combined with image store and management APIs,
the HVX can be used for the creation of a virtual cloud
that utilizes existing cloud provider infrastructure as the
hardware rather than using physical servers, switches and
storage.

1 Introduction

There are many virtualization solutions available today:
VMware ESX, KVM, Xen, just to name a few. These
solutions lack interoperability with each other, meaning
that a VM running on one hypervisor cannot be easily
migrated to another hypervisor.

The existing virtualization solutions differ in several
aspects:

Virtualization technique. There are two major ap-
proaches to virtualization: full virtualization and para-
virtualization. The full virtualization hypervisors present
their guest a complete virtual system and therefore allow

execution of unmodified operating systems. Guest de-
privileging is performed using trap-and-simulate tech-
nique ([8]). Full virtualization hypervisors for x86 ar-
chitecture require hardware assistance available in recent
AMD and Intel processors ([2, 10]). By contrast, in the
para-virtualized environment, the guest operating system
is aware that it is executed on a VM and it should contain
modifications necessary to interface with the underlying
hypervisor instead of performing privileged operations
([1]).

Virtual hardware devices. Different hypervisors ex-
pose different sets of virtual hardware devices such as
CPU, chipset, network and storage controllers. Migrat-
ing a VM from one hypervisor to another resembles
transfer of a hard disk between different computers.

Image formats. Each hypervisor supports its own
proprietary image format, for example, VMware’s
VMDK, or KVM qcow and qcow2.

The situation in the IaaS world is even more com-
plex. Different cloud providers utilize different hyper-
visors. For instance, the leading cloud operator Amazon
EC2 is based on Xen hypervisor, the HP cloud is built on
top of KVM, while the leading private cloud platform is
VMware ESX ([4, 9, 11, 20, 23]). In addition, IaaS cloud
providers offer incompatible APIs for VM provisioning,
configuration and monitoring. Network and storage con-
figuration is different as well and varies from operator to
operator.

Such levels of complexity pose significant challenges
for the development and deployment of enterprise appli-
cations in a public cloud.

Migration of an existing application to the public
cloud requires provisioning and reconfiguration of VMs
for virtualization technology used in cloud, adaptation
for different storage infrastructure, and customization of
the networking stack. Development of new applications
requires analysis of existing cloud architecture, selection
of the appropriate public cloud, and creation of manage-
ment software tailored for that particular cloud.



There are efforts to resolve those issues. For instance,
Xen-Blanket ([22]) uses nested virtualization to run ap-
plication VMs allowing thus to cope with virtualization
technology differences between IaaS providers - but it
can only run PV guests. Another nested virtualization
solution, the Turtles Project ([5]) provides an ability to
run unmodified guests, however it requires modifications
of the cloud provider infrastructure.

Most current commercial and open-source attempts to
ease the pains of cloud migration, interoperability and
duplication are trying to meet these challenges by ap-
plying management only solutions. Typically, they re-
build the VMs from scratch for each copy of the appli-
cation, thus creating different VMs for each copy and
each cloud provider. These VMs are usually created ei-
ther using manually written scripts, or using a configura-
tion management tool ([6, 15]). The main disadvantages
of these solutions are that they require in-depth knowl-
edge regarding the application (meaning one cannot just
use unmodified VM images), and eventually the result-
ing VMs differ from the original ones, rendering these
solutions problematic for many use-cases.

We propose a novel solution to these problems by in-
troducing HVX - a thin virtualization layer running on
top of the already virtualized hardware, providing unified
hardware, network and storage configuration to a guest
VM and capable of running on top of most existing vir-
tual machine monitors (VMM), including both full and
para-virtualized environments. The HVX layer supports
most of the existing image formats and contains imple-
mentation of ESX, KVM and XEN VMMs virtual hard-
ware thus allowing to run any existing VM without any
modification on top of any cloud. For example, an un-
modified guest VM with para-virtualized ESX devices
can be run in EC2 cloud on top of a para-virtualized Xen
host. Moreover, the VM images can be exported back to
the original hypervisor format facilitating migration be-
tween public and private clouds. HVX also contains a
network abstraction layer that provides an overlay net-
work to guest VMs making it possible, for example, to
run several VMs in different public clouds that commu-
nicate on the same network subnet as if they were physi-
cally connected to the same L2 switch.

HVX management system provides convenient and
easy to use interface for creating, configuring and man-
aging the entire multi-VM deployment including appli-
cation virtual machines, storage and the logical network.

2 The HVX Architecture

HVX is a thin virtualization layer running on Linux.
Linux was chosen because of its support for para-
virtualization and the availability of device drivers for all
VMMs. Utilization of Linux scheduler, memory man-
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Figure 1: HVX Architecture

agement and the networking stack significantly simpli-
fies overall system design and implementation.

HVX comprises three major components: nested hy-
pervisor, virtual networking layer and cloud storage ab-
straction layer. HVX hypervisor provides its own set of
virtual hardware, independent of the hardware supplied
by the cloud operator. This enables complete isolation of
cloud specific virtualization technology and I/O configu-
ration details from the application VMs. The support for
the wide range of virtual storage and network devices al-
lows reuse of existing VM images without the necessity
of installing additional drivers and tools. The network-
ing layer provides an ability to define complex network
topologies by creating an overlay virtual network on top
of the cloud provider’s physical network.

Figure 1 illustrates HVX running inside a cloud virtual
machine and executing an unmodified application VM.

3 The Hypervisor

3.1 CPU Virtualization

The heart of HVX technology is the hypervisor. The hy-
pervisor is responsible for execution of the application
VM in a nested virtual environment. The HVX hyper-
visor cannot rely on hardware virtualization extensions
such as Intel VT ([19]) or AMD SVM ([3]) because it
already runs inside a virtual machine. On the other hand,
the nested virtualization support in hardware is not yet
mainstream and there is no guarantee that it will be avail-
able in public clouds in the near future. Hence, the HVX
hypervisor implements full virtualization using binary
translation ([18]).

The HVX hypervisor binary translation and simula-
tion engine emulates the x86 processor ISA. It compiles
the original guest ring-0 machine code into another ma-
chine code sequence that can be executed without alter-
ing privileged state of the physical CPU. HVX hypervi-
sor fetches a basic block of the guest machine code and
replaces privileged instructions with a simulation code
that operates on the emulated software CPU state rather



than on the physical CPU. The original basic block exit
point is replaced with jump to HVX to return control
to the hypervisor after execution of the translated basic
block. The HVX repeats the algorithm again and again
until the application VM is terminated.

One of the most difficult challenges for nested virtu-
alization is achieving a high performance level. HVX
utilizes many advanced techniques to accomplish this,
including basic block chaining, caching and reusing of
translated code, fast shadow MMU and APIC implemen-
tation, direct execution of user space code (Ring 3), im-
plementation of para-virtualized devices for network and
IO, fast context switching between guest VM and the
host kernel, and the use of Linux for guest VM schedul-
ing and memory management.

3.2 Virtual Hardware Devices

HVX implements a variety of virtual hardware devices to
ensure compatibility with industry leading VMMs on the
machine level. The QEMU infrastructure used by HVX
for machine emulation already includes support for vir-
tual hardware used by KVM. It was extended with imple-
mentation of LSI, SAS and PVSCSI disk controller de-
vices as well as VMXNET network devices supported by
VMware ESX. Completing the picture, HVX also added
implementation of XEN para-virtual block and network
devices. The extensive support for commodity virtual
hardware allows HVX to run unmodified VM images
originating from different hypervisors.

4 Network Layer

4.1 Introduction

Each cloud operator supports its own rigid network
topology incompatible with another cloud operators and
not always suitable or optimized for complex applica-
tions. Consider, for instance, a three-tier application con-
sisting of Web server, database, and application logic.
Ideally, the communication between Web server and
database should be disabled on a network level. One way
to achieve this is by placing a Web server and database in
different subnets with no routing between them. Unfor-
tunately, such configuration is not always possible due
to restrictions posed by cloud operators. Another ex-
ample is duplication of an existing multi-VM applica-
tion. For duplicated application to function properly, the
newly created VMs must have exactly the same IP ad-
dresses and host names as the original ones, otherwise
different nodes cannot communicate with each other un-
less their networking configuration is modified. As in the
previous example , this task is not easily accomplished
and may not even be possible with most existing cloud
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Figure 2: Networking

providers. There is a solution for this problem in the pri-
vate data center world - the Software Defined Network
(SDN). SDN was introduced to separate logical network
topology from physical network infrastructure. There
are existing protocols for SDN, such as VXLAN ([21]).
VXLAN is supposed to create an overlay L2 network on
top of layer 3 infrastructure. Unfortunately, VXLAN em-
ploys IP multicast to discover nodes that participate in
the subnet. In order to use multicast, multicast group
must be defined in a router or switch. This is not a viable
option in a cloud provider network and because of that
VXLAN cannot be used to build an overlay network in a
public cloud. Hence, HVX implements its own network-
ing stack.

4.2 hSwitch

The purpose of the HVX network layer (hSwitch) is to
create a secure user-defined L2 overlay network for guest
VMs. The overlay network operates on top of the cloud
operator’s L3 network or even spans on multiple clouds
simultaneously. The overlay network may include multi-
ple subnets, routers and supplementary services such as
DHCP and DNS servers. All network entities are logical
and implemented by the hSwitch component, which is a
part of each HVX instance.

The hSwitch starts its operation with discovery of the
nodes participating in the same logical subnet. Node dis-
covery is accomplished via the configuration file, which
contains the description or logical network and includes a
list of nodes and subnets among other network elements.
After reading the configuration, each hSwitch establishes
a direct P2P GRE link to other nodes in the same logical
subnet. GRE link is then used for the tunneling of en-
capsulated L2 Ethernet packets. The GRE link may be
tunneled inside an IPSec channel, thus creating full iso-
lation from the cloud provider network.



The packet forwarding logic is very similar to that of
the regular network switch. For each virtual network de-
vice, hSwitch creates an vPort object that handles incom-
ing and outgoing packets from the device. vPort learns
MAC addresses of incoming packets and builds a for-
warding table based on the destination MAC address. For
broadcast frames, the vPort floods the packet to all other
distributed vPorts that belong to the same broadcast do-
main. Unicast frames are sent to their designated vPort
using the learnt MAC address.

4.3 Distributed Routing

As already mentioned, the hSwitch implements a logi-
cal router entity that is used to route packets between
different logical subnets. Contrary to a physical router,
the routing function is implemented in a distributed way:
there is no central router entity, instead each HVX in-
stance implements routing logic independently of each
other. The router entity is assigned the same MAC ad-
dress on every node. When a guest wishes to commu-
nicate with a different logical subnet, it sends an ARP
request to discover the router MAC address. The ARP
request is replied by the local router component. After
a local router receives a packet designated to a different
subnet, it consults its forwarding table to find the des-
tination node where it should forward the packet. If the
table is empty, the ARP request is broadcasted to all other
nodes on the designated subnet. On the remote side, the
ARP request is replied by its designated VM and tun-
neled back to the node that originally sent the request.
After the forwarding table is populated, the packets can
be forwarded via unicast communication to their final
destinations.

5 Storage Abstraction Layer

The HVX storage layer allows transparent access to VM
images in the image store and provides storage capacity
for VM attached block devices and snapshots. As with
networking, different cloud providers have different ap-
proaches for storage solution. Some operators provide
dynamic block devices that can be attached to a guest
VM at runtime. Other providers limit VM storage to
a single volume with the size specified at VM creation
time. The HVX storage layer is used to bridge these dif-
ferences by exposing a common API to a guest VM for
accessing underlying storage.

5.1 Image store

The average VM image occupies several hundred of
megabytes and can grow easily to gigabytes of data. Dur-
ing the boot process, a VM expects a high data transfer

rate, otherwise the boot process would become unaccept-
ably slow. In addition, the image store must simultane-
ously serve many images to multiple virtual machines
that may run on physical servers located in different data
centers and geographical regions. Certain regions and
data centers have good connectivity between them while
others suffer from low transfer rates. Even within same
cloud operator network, it is not advisable to place the
image and virtual machine in different regions because of
relatively slow network speeds. To cope with differences
between cloud storage infrastructures, the image store
supports several backends for data storage. It supports
object stores, such as Amazon’s S3, Rackspace Cloud-
Files, network attached devices such as NFS servers or
local block devices.

The image store contains read only base VM images.
During VM provisioning, HVX storage layer creates a
new snapshot derived from the base VM image. The
snapshot is kept on the host local storage and contains the
modified data for the current guest VM. Multiple guest
VMs derived from the same base image do not share lo-
cally modified data. However, it is possible to create a
new base image from the locally modified VM snapshot
by pushing the snapshot back into the image store.

The storage abstraction layer provides a connector to
the image store and implements caching logic to effi-
ciently interface with cloud storage infrastructure. It ex-
poses a regular FUSE ([7]) based file system to the host
VM. To reduce the amount of data transfers between
the backing store and guest virtual machine, each host
VM caches downloaded image data on a local storage,
so the next time when the same data block is requested,
it is served locally from the cache. Local cache signifi-
cantly decreases boot-up times because local disk access
is much faster than downloading image data from a web
store or network location.

Another challenge is to minimize the amount of data
used for image storing to shorten upload and download
times, and lower the cost of physical storage. For that
purpose each VM image has an associated metadata file
describing the partitioning of the image into data chunks.
Data chunks that contain only zeros are not stored phys-
ically and only listed as metadata file entries.

The data stream is scanned during image upload, and
zero sequences are detected and marked in the metadata.
Additional optimizations, such as data compression and
de-duplication techniques, can be used to further reduce
the size of the uploaded image.

5.2 Encapsulating Cloud Provider Persis-
tent Storage

The guest VMs require persistent storage for applica-
tion data. As storage mechanisms vary between cloud



providers, HVX adds an abstraction layer above the
physical storage in the cloud. This layer allows us to ag-
gregate multiple storage resources into logical volumes
with extended capacity. These logical volumes are at-
tached to guest VMs as local block devices and can be
used as persistent storage by the applications running
on the guest VMs. Aggregation of multiple storage re-
sources improves IOPS performance as shown by ([17]).

6 Virtualizing the Cloud

One of the major reasons for server virtualization success
is under-utilization of physical servers. Virtualizational-
lows consolidation of multiple virtual servers into a sin-
gle physical machine, thus reducing hardware and opera-
tional costs. With cloud computing, low levels of utiliza-
tion moved from physical to virtual servers. HVX ad-
dresses this issue and provides the ability to run multiple
application VMs on a single host virtual machine. More-
over, HVX allows resources over-committing in consoli-
dated environment: total amount of guests’ virtual CPUs
and RAM can exceed the amount of CPUs and RAM
available to the host VM. The memory over-commit is
achieved by sharing of identical memory pages and us-
ing swap as a fallback. The performance impact for the
memory over-commit depends on the type of the applica-
tion, but in most cases it is negligible because no actual
memory swapping occurs.

With the aid of the HVX management system ([16])
the application virtual machines are assigned to host
VMs provided by the cloud operator in a way that signif-
icantly improves efficiency and utilization, and reduces
the cost of using the cloud.

Hence, the integration of a nested hypervisor, over-
lay network connectivity, a storage abstraction layer and
management APIs effectively creates a virtual cloud op-
erating on top of existing public and private cloud infras-
tructure.

7 Performance Evaluation

The performance figures presented below were measured
on m1.large and m3.xlarge instances on Amazon EC2
and on standard.xlarge instances on HP cloud. Both host
VMs and HVX guests were running Ubuntu 12.04 with
Linux kernel 3.2.0. The details of the cloud instances
configuration and HVX guests are described in the Ta-
ble 1. We measured relative performance of HVX with
respect to its host VM.

We used a subset of Phoronix Test Suite [14] consist-
ing of apache, openssl, phpbench, pybench, pgbench and
timed kernel build benchmarks for single node perfor-
mance evaluation.

Instance type CPUs Memory Storage Virtualization
m1.large 2 7.5G 16G EBS1 Xen PV
m3.xlarge 4 15G 16G EBS Xen HVM

standard.xlarge 4 16G 480G HD KVM
HVX 2/4 2 4G 16G HVX

Table 1: Benchmark platforms
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Figure 3: Bechmark results

The network performance was measured using iperf
utility.

Figure 3 illustrates performance of HVX relative to the
host VM. The CPU bound user space workloads, such as
openssl, phpbench and pybench, achieve near hundred
percent performance when executed under HVX. The
kernel bound workloads, such as apache and pgbench,
exhibit higher performance degradation which is caused
by overhead due to binary translation of the guest kernel
code. The kernel build combines both kernel and user
space workload and its performance is degraded some-
what less than kernel bound workloads. Additionally
most benchmarks show that in para-virtualized environ-
ment performance is reduced by a larger percent. We
beleive that this is caused by higher overhead associ-
ated with handling of guest VM exceptions and inter-
rupts. Network and IO performance is comparable to the
host when using para-virtualized devices such as virtio
or vmxnet/pvscsi.

8 Conclusions and Future Work

This paper describes HVX - a cloud application hyper-
visor, that allows easy migration of unmodified multi-
VM applications between different private and public
clouds effortlessly. HVX offers a very robust solution
that works on most existing clouds, provides common
abstraction for virtual machine hardware, network and



storage interfaces, and decouples application virtual ma-
chines from resources provided by the cloud operators.

Combined with image store and management APIs,
HVX offers a versatile platform for the creation of a vir-
tual cloud spanning across public and private clouds.

The development of HVX is an ongoing process, and
additional features and improvements are planned for the
future. We plan to enhance the image store a CDN-like
technique to distribute the user images close to the ac-
tual deployment location to optimize for network band-
width. For example, when a user wishes to deploy a VM
on Rackspace cloud, the image will be silently copied to
a Rackspace CloudFiles backend store. For the network-
ing layer, there are plans to integrate with VXLAN ([21])
)and Open vSwitch ([13].

We are also considering integration of HVX with
OpenStack ([12]) to further increase interoperability and
provide industry standard management platform.
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