
FluidCloud: An Open Framework for Relocation of Cloud Services

Andy Edmonds
Zürcher Hochschule für Angewandte Wissenschaften

Thijs Metsch
Intel Ireland Limited

Dana Petcu
Institute e-Austria Timisoara

Erik Elmroth
Umeå University

Jamie Marshall
Prologue

Plamen Ganchosov
CloudSigma

Abstract

Cloud computing delivers new levels of being connected,
instead of the once disconnected PC-type systems. The
proposal in this paper extends that level of connectedness
in the cloud such that cloud service instances, hosted by
providers, can relocate between clouds. This is key in
order to provide economical and regulatory benefits but
more importantly liberation and positive market disrup-
tion.

While service providers want to lock in their cus-
tomer’s services, FluidCloud wants the liberation of
those and thereby allow the service owner to freely
choose the best matching provider at any time. In the
cloud world of competing cloud standards and software
solutions, each only partially complete, the central re-
search question which this paper intends to answer: How
to intrinsically enable and fully automate relocation
of service instances between clouds?

1 Introduction

Today, cloud computing [1] service instances cannot
easily move from one cloud service provider to another.
Cloud standards are seen to be the panacea, yet have little
adoption by the market, especially by the market’s dom-
inant players. Even when adopted, de jure standards are
not as widely adopted as de facto standards (e.g. Amazon
EC2). Software libraries and frameworks that abstract
cloud computing services to common interfaces are more
widely adopted (see “Related Work”). However, even the
most relevant standards or software libraries have little or
no service instance relocation functionality. Ultimately,
those cloud service instances remain locked under the
control of the service provider, unless significant manual
and/or ad hoc efforts are spent by the service instance
owners.

The proposed solution is the FluidCloud framework
which aims to make relocating services instances easier

and automated. From this work a number of research and
engineering challenges arise including data optimisation,
runtime architecture adaptation, and goal-oriented ser-
vice instance relocation.

2 A Problem in the Cloud?

Cloud service instances remain locked under the control
of the service provider. FluidCloud will liberate these in-
stances. Having the ability for a cloud service instance to
easily and seamlessly move from one provider to another
will bring advantages and freedom to any cloud service
owner. Essentially, it will bring service instance “move-
ment rights” to the cloud. However there is no encom-
passing means to accomplish this.

FluidCloud fits within the soon future cloud. A rea-
sonable view of this future cloud is the InterCloud. The
InterCloud is described in [2], [3], [4] where the gen-
esis and progression of it from singular to multi-cloud
ecosystems is stated. The concept of the InterCloud
is based on the proliferation and continued growth of
public clouds ranging from Infrastructure as a Service
(IaaS), Platform as a Service and up to Software as a
Service (SaaS). The ecosystem of these cloud service
providers include the popular Amazon EC2, Rackspace,
and CloudSigma.

2.1 The FluidCloud Concept
Within the highly populated ecosystem of cloud service
providers combined with the InterCloud concept, it be-
comes crucial, both technically and financially, that ser-
vice instances can be relocated and consequently adapted
to their new service provider. In the vision of the Flu-
idCloud framework, the hosting cloud provider of the
service instance is not a concern anymore as the service
can be fluidly (easily, on-demand and dynamically) re-
located between service providers. The FluidCloud con-
cept addresses multiple benefits: it will bring liberation

1



to cloud service developers and operators who own ser-
vices and are responsible for the associated data. They
should have the option of movement for those services
instances, data and the efficient means to enable them.
It will enhance the InterCloud by advancing the defi-
nition (service topology), architecture and implementa-
tions of cloud computing, yet for stakeholders makes the
transition easy through the framework. It will make it
more economical by suggesting new compatible service
providers, based on economical differentiators. Regula-
tory obligations can dictate the geographical location of
the service instance. If a running cloud service instance
is in an unrecognised or risky geographic region, the ser-
vice provider can use FluidCloud to relocate that service
instance at risk. Finally, with ease of relocation, posi-
tive market disruption is introduced, with the market
place opened further, enabling greater competition based
on service provider differentiation and not on technical
lock-in or limitation is key.

2.2 FluidCloud Scenarios

To see how FluidCloud can be used in a practical sense,
consider some examples which demonstrate the need for
the FluidCloud framework.

• A Cloud Service Developer (CSD, e.g. Univer-
sity startup). Take the example where a university
startup implements a new service in the cloud. The
type of service is one that is architected to han-
dle bursty traffic as described in [5]. After a pe-
riod of time, the selected provider does not satisfy
from technical (e.g. provider outages), economical
(e.g. provider increasing prices), due to service of-
fer changes. Here the benefits from a FluidCloud
concept is that the startup can easily relocate their
service to a new cloud service provider.

• A Cloud Service Provider (CSP; e.g. CloudSigma,
ProfitBricks). A cloud service provider would like
to relocate (or “on board”) new customers from
other cloud service providers. What is needed is to
relocate new end-user service instances to their ser-
vices from other, potentially, competing, differenti-
ated services. This would allow the CSP to let their
customers seamlessly relocate and adapt to their ser-
vice offering. The cloud service provider operates
the FluidCloud framework and offers it as a service.

• A Cloud Broker (e.g. CompatibleOne or Zimory).
Developers and providers of cloud brokerage ser-
vices and software should consider adding cloud
service relocation functionality to their cloud bro-
kerage offers. Typically, a cloud broker discovers

and provisions a cloud service instance on the be-
half of the service owner. Once that target service
instance is provisioned the end-user interacts and
uses the target service instance, either through inter-
faces provided by the cloud broker or directly using
the interfaces of the provisioned target service in-
stance. The cloud broker is aware of the end-users
service instances and can continually watch for
compatible service types that can be offered to the
end-user as a replacement, based on economic/geo-
location/performance/feature/cost bases. If the ser-
vice owner was interested the cloud broker can, us-
ing FluidCloud, relocate the service on the owner’s
behalf.

2.3 FluidCloud Contributions

For such scenarios, as described above, to be technically
realised there is a set of missing technologies. Fluid-
Cloud fills these gaps by providing the following key
contributions:

1. Service Instance Relocation – Ensuring the over-
all orchestration and process of moving a cloud
service from the source to the target cloud service
provider. There are two types of cloud services that
FluidCloud will support and enable relocation for:
IaaS and PaaS based services. The decision to re-
locate will be initiated by the owner of the service
(e.g. through a user interface or API).

2. Service Instance Adaptation - The conversion,
transformation and movement of the service and its
related data. Related to relocating IaaS and PaaS
services are the potential service adaptations that
need to take place. Parts of the service might need to
be adapted when relocated. For example virtual ma-
chines may need to be adapted (re-contextualised)
as its environment changes [6]. If we turn our atten-
tion to the PaaS area service instances need might
need to be adopted (on source code level) for a cer-
tain target platform.

3. Data Relocation - Relocation, migration, transfor-
mation and conversion of the data belonging to the
service. Relocation of data fundamentally means
moving bits and bytes. Currently tools such as
GlobusOnline provide a service for easily trans-
ferring data between Grid sites using the proven
GridFTP protocol [7]. Certainly technologies like
Software Defined Networking can help when data
paths are needed on-demand to be established be-
tween two providers.

2



3 Architecture

Core to realising FluidCloud are the following compo-
nents shown in the proposed logical architecture.

Figure 1: Conceptual Architecture

The key components are the following:

• Service Instance - A logical container that com-
prises the application and the data.

• CloudConduit - Orchestrates the process, intro-
spects the service instances (incl. topology) to be
relocated. It is also responsible for the lifecycle of
Migrators and setup of viaducts. The relocation is
triggered with this module.

• Broker - Discovers and provides both cloud
provider services and Migrator facilities. Eventu-
ally it monitors the service instances. Also orches-
trates the deployment of the Migrators.

• Migrator - These are the libraries and services for
adaptation and carry out one specific task related
to relocation (possibly partial) of service instances.
Multiple Migrators might be needed to carry out the
overall relocation.

• Viaduct - A logical path between two parties in
which Migrators are organised. All together those
accomplish the task of relocating a service instance
from one cloud provider to another. Migrators as
well as more network-oriented components (like
proxies) are located on this path. All those com-
ponents might be organised as workflows with mul-
tiple pipelines if needed.

• Cloud Service Provider - A provider of either IaaS
or PaaS service types.

In the diagram above, the CloudConduit analyses the
service to be relocated and based on that it uses the Bro-
ker to find suitable replacement providers. Based on the

replacement provider the CloudConduit uses the Broker
again to find suitable Migrators to aid the relocation pro-
cess.

Cloud service implementations are varied because
their implementation can use IaaS or PaaS, for example.
Therefore FluidCloud addresses:

1. Relocation of IaaS-based Service Instances. Fluid-
Cloud will show the relocation of a service instance
(and its data) running within virtual machines (on
a local development machine, private end or public
cloud). Triggers for the relocation can be scaling,
costs, dependability or geo-location. The service
instance will automatically be adapted to the new
environment.

2. Relocation of PaaS-based Service Instances. The
relocation of a PaaS based service instance and its
data between providers. Key to this demonstration
is the ability to adapt the service instance (on source
code level) and convert it to the new environment.
The motivation should be to bring PaaS services
from closed environments (e.g. Google App En-
gine) into more open ones (e.g. CloudFoundry).

3. Service Instance Adaptation: IaaS to PaaS. A soft-
ware developer has developed a service on his own
virtual machine in a (Private) Cloud now he wants
to roll-out this service on an available PaaS provider
such as Google App Engine.

Currently infrastructure services are the main service
type targeted by FluidCloud, however the architecture is
capable to cover both platform services and IaaS to PaaS
cases with different Migrators.

4 Implementation

The first proof-of-concept (PoC) of the logical archi-
tecture for IaaS-based relocation has been implemented
using the Python programming language. Each of the
components are standalone processes which communi-
cate with each other using asynchronous messaging (See
Figure 2). The prototype uses the Advanced Message
Queuing Protocol (AMQP).

The CloudConduit has capabilities to process requests
for relocating service instances. When such a reloca-
tion is triggered it inspects the service instances for sub-
components (sub-services) and their dependencies. This
is done through the RESTful Cloud APIs supported by
both cloud providers, OpenStack1 as source and Smar-
tOS2 as destination, in this case. Based on the inspection

1http://www.openstack.org
2http://www.smartos.org

3



Figure 2: Implemented Architecture

it creates a set of tasks which need to be executed. Cur-
rently, the tasks are executed in sequential order. Later
on the scheduling of these tasks may become more elab-
orate where parallelisation of tasks is appropriate.

The Broker now has the information to instantiate the
appropriate Migrators that make up the Viaduct. The Mi-
grators take care of the actual relocation and topology
change of the service instance.

This implementation has been deployed within one
data centre across two different platforms. The trigger
for the relocation is done based on a performance evalu-
ation of both platforms. A virtual machine on the Smar-
tOS platform has a significantly higher I/O throughput
(60.2MB/s on KVM virtual machine under SmartOS and
43.2MB/s on KVM virtual image under OpenStack mea-
sured with dd on identical hardware).

In this evaluation, a simple node.js service which has
been deployed with a virtual machine within OpenStack
is to be relocated to SmartOS. This virtual machine has
block storage attached to it through an OpenStack cinder
volume. The node.js also makes use of OpenStack Swift
object storage.

After relocation the virtual machine will be running on
the SmartOS platform. The data within the block storage
will be relocated, whereas the data in the object storage
will stay where it is, indeed the object storage could be
hosted elsewhere e.g. Amazon S3. This will demon-
strate that the service topology of the service instance can
change after the relocation depending on the new desti-
nation service provider. This change in topology is done
automatically. The service topology before and after re-
location is shown in Figure 3:

Figure 3: Service Instance Before and after Relocation

The decision for this service topology after reloca-
tion is made by the CloudConduit and should be prefer-
ably guided by service owner policies, something not im-
plemented in the PoC. Overall, to relocate this simple
node.js application the following Migrators were placed
on the Viaduct:

• The virtual machine image Migrator will pause the
virtual machine on the OpenStack side and create
a new virtual machine on the SmartOS side. Both
machines are then booted using a prepared ubuntu
image3. This is done such that the contents of the
source image can be copied to the target image.
The image itself is copied using the netcat and the
dd command on the running ubuntu instances. Af-
ter this copy operation the virtual machine on the
SmartOS platform can be booted and will be an ex-
act copy of the source VM. This is one approach of
many.

• The Relocator for the OpenStack block storage
copies the data from the block storage device in
OpenStack cinder onto the Filesystem of the virtual
machine running on KVM in a SmartOS zone. This
is done with the help of the sftp protocol.

• Reconfiguration of the node.js application’s con-
figuration file is based on regular expressions and
a simple Python script. It changes the paths for
node.js interpreter and the path to the data.

5 Evaluation

The first outcome of this initial PoC was to prove that
the architecture satisfies the scenarios described in this
paper. The separation between the CloudConduit and the
Broker was found useful as several technologies for the
Broker exist. Furthermore the Broker can be used to es-
tablish Viaduct(s) as this could be made up out of virtual
machines, which each could host a Migrator4. The over-
all architecture therefore has been proven to satisfy the
needs.

The second outcome was to have initial metrics about
the runtime of a simple relocation process. It will be
crucial that the runtime cost is minimised and possibly
reveal if actual online relocation can be achieved. For
the relocation of the service instance in the PoC, a total
downtime of ∼10 minutes was needed. The relocation
was performed over a 1 Gb Ethernet network.

This combines the time for stopping the virtual ma-
chine and relocating it (seconds for stop, ∼5 minutes
for relocation of the virtual machine image of 5.4GB),

3In this case the virtual machine within OpenStack was initially
booted from a volume instead of an image.

4The Migrators were executed in sequential order.

4



the time to move the data from the block storage to the
virtual machine (∼1 minute for 512MB test file within)
and finally the reconfiguration (∼10 seconds to copy the
script and execute it). Times fluctuated over several runs
of the relocation. In general the time-to-relocation us-
ing this PoC will depend on the data payload sizes of the
virtual machine image and the data in the block storage.

Overall the PoC proved the concepts to be working.
In particular the implemented architecture described in
the last sections should demonstrate that the concepts of
FluidCloud are technically feasible. More over, the im-
portant thing is that the concepts described in this paper
demonstrate a way of enabling fluidity of services be-
tween clouds.

6 Related Work

Standard defining organisations interfaces such as
OCCI5 [8], CIMI6 or CDMI7 may realise interoperabil-
ity but they do not necessarily solve the issue of relo-
cation. The paper [9] reviews aspects related to porta-
bility and interoperability in clouds. It notes the lack of
adoption of standards by vendors saying that “vendor[s]
like[s] to put barriers to exit for their customers”. Re-
lated thoughts are discussed in [10]. Here it is noted that
cloud systems utilising different hypervisors will not in-
teroperate, in part because they do not use the same data
formats.

Adapter libraries enabled the means to manage mul-
tiple cloud offerings. The most prominent of these
are Apache libcloud, fog.io, RightScale, Enstratius and
jClouds.

There are quite a number of Platform as a Service
(PaaS) offerings available today. Including Heroku, Red
Hat OpenShift, CloudFoundry and Google App Engine.
The majority of the PaaS offerings leverage the existing
interoperability work that each language (and its stan-
dard libraries - e.g. WSGI for Python) and supporting
services (e.g. MySQL, RabbitMQ) already have. How-
ever, this is not uniform across all PaaS offerings nor are
the management interfaces to those platforms.

The Open Data Centre Alliance released a report [11]
on long distance service instance relocation. Noted that
relocation of workload possible but [. . . ] migrations oc-
cur between disparate data centres of the same cloud
provider [. . . ] most of the time. So here the most ob-
vious issues becomes clear: relocation is possible but
mostly within a service providers domain, and that inter-
domain (InterCloud) relocation on IaaS and PaaS level
needs more research.

5http://www.occi-wg.org
6http://dmtf.org/standards/cmwg
7http://cdmi.sniacloud.com

Currently available software solutions for data man-
agement exist such as: Cloudant, Xeround, MongoLab
or Amazon S3. But currently they lack the ability to con-
vert data between the service instances, or relocate data.

The paper [12] looks at InterCloud more from the
federation aspect and the authors describe their architec-
tural vision of that InterCloud. One important aspect that
the authors do note is the importance of cloud brokers in
their architecture [13] as supported by [1].

7 Conclusions and Further Work

The need for service relocation will become ever needed
the more cloud services are used and the more service
owners move their services to the public cloud. Not
only but as private cloud owners trust further and re-
alise the value of the public cloud service relocation will
be a need. FluidCloud will present a means for this to
be supported a prototype framework is available. This
framework will be released and supported under an Open
Source license. There are further research and engineer-
ing challenges to be investigated including live service
instance relocation between data centres, data payload
minimisation, service decomposition over multiple target
service providers and the leveraging of software-defined
networking technologies.

References

[1] P. M. Grance (2011). The NIST Definition of Cloud
Computing. NIST special publication.

[2] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond,
and M. Morrow (2009). Blueprint for the Intercloud
- Protocols and Formats for Cloud Computing Inter-
operability. Internet and Web Applications and Ser-
vices, 2009.

[3] D. Bernstein, D. Vij (2010). Intercloud Exchanges
and Roots Topology and Trust Blueprint., The 2011
World Congress in Computer Science, Computer
Engineering and Applied Computing.

[4] Y. Demchenko, M. X. Makkes, R. Strijkers, C. de
Laat (2012). Intercloud Architecture for Interoper-
ability and Integration. IEEE 4th International Con-
ference on Cloud Computing Technology and Sci-
ence (CloudCom)

[5] J. Elson (2008). Handling flash crowds from your
garage. USENIX 2008 Annual Technical Confer-
ence.

[6] D. Armstrong, D. Espling, J. Tordsson, K. Djemame,
and E. Elmroth. Runtime Virtual Machine Recontex-
tualization for Clouds. Euro-Par 2012 Workshops,

5



Lecture Notes of Compouting Science, Vol. 7640,
Springer-Verlag, pp. 567 - 576, 2012.

[7] J. Bresnahan, M. Link, G. Khanna, Z. Imani, R. Ket-
timuthu and I. Foster. Globus GridFTP. Proceedings
of the First International Conference on Networks
for Grid Applications (GridNets 2007), Oct, 2007

[8] A. Edmonds, T. Metsch, A. Papaspyrou, and A.
Richardson, Toward an Open Cloud Standard, IEEE
Internet Computing, vol. 16, no. 4, Jul. 2012.

[9] D. Petcu (2011). Portability and interoperability be-
tween clouds: challenges and case study. Towards a
Service-Based Internet , 62–74.

[10] S. Ortiz Jr. (2011). The problem with cloud-
computing standardization. Computer magazine ,
13–16.

[11] Open Data Center Alliance (2012). Long Distance
Workload Migration. ODCA.

[12] C. Ward (2010). Workload Migration into Clouds
Challenges, Experiences, Opportunities. 2010 IEEE
3rd International Conference on Cloud Computing.
IEEE.

[13] C. Daryl, B. J. Plummer (2011). Cloud Services
Brokerage Is Dominated by Three Primary Roles.
Gartner.

6


