
A Hidden Cost of Virtualization when Scaling Multicore Applications

Xiaoning Ding∗ Phillip B. Gibbons† Michael A. Kozuch†

∗New Jersey Institute of Technology, †Intel Labs Pittsburgh

Abstract

As the number of cores in a multicore node increases in
accordance with Moore’s law, the question arises as to
whether there are any “hidden” costs of a cloud’s virtu-
alized environment when scaling applications to take ad-
vantage of larger core counts. This paper identifies one
such cost, resulting in up to a 583% slowdown as the
multicore application is scaled. Surprisingly, these slow-
downs arise even when the application’s VM has dedi-
cated use of the underlying physical hardware and does
not use emulated resources. Our preliminary findings
indicate that the source of the slowdowns is the inter-
vention from the VMM during synchronization-induced
idling in the application, guest OS, or supporting li-
braries. We survey several possible mitigations, and re-
port preliminary findings on the use of “idleness consol-
idation” and “IPI-free wakeup” as a partial mitigation.

1 Introduction

Virtualized environments, in which user applications
are run inside virtual machine (VM) instances, are
ubiquitous in cloud computing. Also ubiquitous is the
use of multicore nodes in cloud environments, with a
steadily increasing number of cores per node (socket).
Amazon EC2’s CC2 and CR1 instances, for example,
offer 32 virtual cores running on two 8-core Intel®
Xeon® E5-2670 processors with hyperthreading [2]. As
the number of cores per socket continues to increase in
accordance with Moore’s law, a natural question arises:

Does the cloud’s virtualized environment incur
“hidden” costs when cloud-based applications are
scaled to take advantage of larger core counts?

This paper identifies one such cost that, to our knowl-
edge, has not been studied in prior work. Namely, appli-
cations scaled to run on a multicore node can suffer up

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of cores

ocean-cp (physical)
ocean-cp (virtual)
facesim (physical)

facesim (virtual)

Figure 1: Speedups of ocean-cp and facesim on the vir-
tual machine and physical machine varying the number
of cores.

to 583% slowdown when executed within a VM, com-
pared to the same parallel application run on the physical
machine without virtualization. In particular, large slow-
downs arise even when the application’s VM has dedi-
cated use of the underlying physical hardware and does
not use emulated resources. While there are a number
of studies identifying performance overheads of virtual-
ized execution [1, 4, 5, 6, 7, 8, 9, 11], most of them focus
on the overheads incurred by I/O operations, and none
of them explain the slowdowns we observe for compute-
bound applications or provide a mitigation.

Figure 1 presents two illustrative examples of high
virtualization overheads when scaling multicore applica-
tions, for the ocean-cp and facesim benchmarks from the
SPLASH-2X and PARSEC-3.0 suites, respectively. Each
benchmark was run within a VM, with a dedicated phys-
ical core allocated to each virtual core, and then com-
pared to the performance of the same benchmark on the
same cores but without virtualization. Speedup is calcu-
lated relative to the (non-virtualized) execution on one
physical core, when varying the number of cores from
one to sixteen. (Full details of the experimental setup
used throughout this paper appear in Section 6.) Figure 1
shows that ocean-cp suffers over a 100% virtualization

penalty for 8 and 16 cores! The penalty for facesim,
while not as dramatic, is still 82% for 16 cores. We ob-
served similar trends for other SPLASH-2X and PAR-
SEC benchmarks. The extreme case was for the dedup
benchmark (not shown) from PARSEC, where the virtu-
alization penalty for 16 cores was 583%!

We were surprised to find such dramatic slowdowns
from virtualization, as typical virtualization overheads
are < 20% for dedicated hardware and non-emulated re-
sources, and began to investigate their possible causes.
We discovered that the SPLASH-2X and PARSEC
benchmarks suffering the most were the ones in which
virtual cores were frequently idling due to blocking syn-
chronization in either the benchmarks or the guest sys-
tem (OS or supporting libraries). While such synchro-
nization is certainly expected to reduce the scaling of ap-
plications, why was the penalty in the virtualized setting
much more severe?

As detailed in Section 2, we found that the high
penalty for synchronization-induced idling when virtu-
alized was due in large part to the cost of the VM hy-
pervisor’s (VMM’s) intervention when handling virtual
core idle loops. To efficiently share physical machine re-
sources among multiple virtual machines, when a virtual
core enters an idle loop, the VMM is notified by the hard-
ware to suspend the virtual core and to schedule another
virtual core if there are any. Once the application execu-
tion is no longer blocked at the synchronization point,
the resumption of the execution by the VMM is trig-
gered by a rescheduling inter-processor interrupt (IPI),
typically sent by another virtual core in the same VM.
The suspended virtual core is rescheduled on a physi-
cal core and the suspended thread is woken up. Both
the delivery of the IPI and the rescheduling of the virtual
core are costly operations in a virtualized environment,
significantly increasing the overhead of synchronization.
This, in turn, limits application scalability, and the more
synchronization-intensive the execution, the higher the
virtualization penalty.

Note that the synchronization may not even be explicit
at the application level, e.g., in dedup where the problem
synchronization is within the guest OS’s virtual memory
allocator. Thus, even if the application design is scalable,
the performance penalty cannot be avoided if the system
design is not scalable.

Given this identification of a key component to the
virtualization overhead, a number of mitigation strate-
gies could be pursued, as discussed briefly in Section 3.
While a thorough investigation of these strategies is an
interesting research direction for the community, here we
highlight one such strategy and its effectiveness in reduc-
ing the overheads. We propose an approach called idle-
ness consolidation, which consolidates short idle periods
on multiple virtual cores into long idle periods on fewer

cores, in order to lessen the frequency that virtual cores
enter/exit idle loops. This is combined with a technique
we call IPI-free wakeup for waking up threads on virtual
cores without sending IPIs, in order to eliminate VMM
intervention. Our system, called Gleaner, is detailed in
Sections 4 and 5.

We have implemented a prototype of Gleaner. Prelim-
inary results (Section 6) on 16 cores show that Gleaner
reduces the virtualization slowdowns of facesim, ocean-
cp and dedup by 4.8x, 5.5x, and 13.9x, respectively.

2 Problem Statement and Analysis

There are two basic types of inter-thread synchronization
primitives: spinning, where a waiting thread repeatedly
checks some condition to determine if it can continue,
and blocking, where a waiting thread yields its execution
resources and relies on system software to wake it up
when it can continue executing. Often, synchronization
libraries combine the two approaches: threads waiting
for some condition (such as the release of a lock) will
spin for a brief period of time, and if the needed resource
is not freed within some timeout, the thread will block.

One effect of blocking synchronization is that the
number of active threads changes dynamically, and
therefore, the number of CPU cores that are active may
change accordingly. When the number of active threads
drops below the number of active cores, some cores will
become idle. When the number of active threads in-
creases such that it exceeds the number of active cores,
idle cores must be activated. For example, when a thread
calls pthread mutex lock to request a mutex lock that is
held by another thread, it will block itself through appro-
priate library/system calls, waiting for the release of the
mutex lock. If there are no other threads ready to run
in the system, the core running the thread becomes idle.
With conventional operating system design, an idle core
executes the idle loop, which typically calls a special in-
struction (e.g., HLT on Intel® 64 and IA-32 architecture
(“x86”) platforms). Such special instructions may put
the core into low power state, subsequently. When the
mutex lock is released, the threads waiting for the lock
are woken up. To maximize throughput, operating sys-
tems often activate idle cores to schedule waking threads
onto them.

In a virtualized environment, some of the operations
executed during blocking synchronization routines must
be handled by the VMM, even though they can be car-
ried out by hardware in a non-virtualized environment.
When software issues the special instruction to place a
particular core in the idle state, that processor will raise
an exception and trap into the VMM. The VMM may
take this opportunity to reschedule other virtual cores—
perhaps from other VMs—onto the idling physical core.

Table 1: Time to wake up a thread on both the physical
machine and the virtual machine under different settings.

Setting Physical Virtual
A: same core 4 µs 6 µs
B: diff cores, spinning 8 µs 17 µs
C: diff cores, blocking 8 µs 37 µs

Thus, the “low power” mode for virtual cores may be ac-
tually that their execution is suspended. When a thread
is again ready to run on that virtual core, the VMM must
activate the virtual core by rescheduling it onto a physi-
cal core. This incurs much higher cost than it does in a
non-virtualized environment, in which switching a core
back from low power mode can be very fast. For exam-
ple, switching from C1 state to C0 state takes less than
1 µs on contemporary Intel® Xeon® (“Sandy Bridge”
and “Ivy Bridge”) CPUs.1

In fact, the rescheduling of an idle virtual core and
the subsequent rescheduling of the newly active thread
on that virtual core are initiated by an IPI made by an-
other virtual core in the same VM (e.g., the one observ-
ing the pthread mutex unlock). In a non-virtualized envi-
ronment, the IPI is delivered by hardware, but in a virtu-
alized environment, the VMM must intercept and deliver
the IPI.

To understand these costs incurred by reschedul-
ing virtual cores and delivering rescheduling IPIs, we
measured the time to wake up a thread blocked in
pthread mutex lock on both the physical machine and
a virtual machine under three different settings, as
shown in Table 1. In setting A, the thread call-
ing pthread mutex unlock and the thread blocked in
pthread mutex lock are pinned to the same core. In set-
tings B and C, the two threads are pinned to different
cores. In setting B, lower power modes are disabled by
keeping idle physical cores polling on the physical ma-
chine and by running low priority threads repeatedly call-
ing sched yield on the virtual machine. In the last setting,
C, lower power modes are enabled. Specifically, when a
physical core becomes idle it enters C1 state, and when
a virtual core becomes idle it calls HLT to suspend itself.

Table 1 clearly demonstrates that virtualization signif-
icantly increases the cost of blocking synchronization.
Under setting C, waking up the thread on an idle vir-
tual core takes 37 µs, 363% more than doing it on an
idle physical core. Under setting B, waking up the thread
does not incur the cost of rescheduling the virtual core.
Thus, the time is significantly lower than that under set-
ting C. But the time is still higher than that on the phys-

1Waking up a core from deep sleep modes (e.g., C3 and C4 states)
can take more than 100 µs. But these modes are not used unless the
system ensures that the core will stay idle for a while.

 0

 100

 200

 300

 400

 500

 600

blackscholes

swaptions

facesim

ocean-ncp

ocean-cp

dedup

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

S
lo

w
d

o
w

n
 (

%
)

Fr
e
q

u
e
n

cy
 (

ch
a
n

g
e
s/

se
co

n
d

)

slowdowns
frequency

Figure 2: Correlation between the performance degra-
dation of six benchmarks when virtualized and the fre-
quency at which virtual cores transition to idle.

ical machine. The costs are mainly from delivering the
rescheduling IPI, which is still needed to interrupt the
idle virtual core from an idle loop. Under setting A,
where a rescheduling IPI is not needed, the wake up
times on the virtual and physical machines are much
closer.

The runtime overhead incurred by blocking synchro-
nization in a virtualized environment increases with
the frequency of (active/idle) state transitions of ap-
plication threads, and in particular, state transitions
of virtual cores. Such transitions arise frequently for
synchronization-intensive applications. This overhead
reduces system throughput and scalability (as we saw in
Figure 1).

To show the correlation between the performance
degradation of applications and the overhead incurred
by synchronization in a virtualized environment, we se-
lected a few SPLASH-2X and PARSEC-3.0 benchmarks
that show different slowdowns when virtualized, and
measured the frequencies at which virtual cores transi-
tion to idle during their executions.2 In these exper-
iments, the number of threads, the number of virtual
cores, and the number of physical cores are 16. As
shown in Figure 2, there appears to be a strong corre-
lation between the slowdowns and the frequencies. For
dedup, its execution is slowed down by the largest degree
(583%). During its execution, the virtual cores transi-
tion their state more frequently than other benchmarks.
We profiled the execution of dedup and the guest OS
and found that the problem was caused by mutex con-
tention in the guest OS kernel, which serializes virtual
memory allocation. More than 30,000 state transitions
were incurred by dedup each second. The costs asso-

2One may also want to measure the frequencies at which applica-
tion threads block, but unfortunately, such measurements are challeng-
ing because the threads may block inside the OS kernel. Instead, we
measure the frequencies at which virtual cores transition to idle, which
is closely correlated with the frequencies at which application threads
block.

ciated with the changes significantly degrade its perfor-
mance when virtualized. As noted in [3], synchroniza-
tion in blackscholes and swaptions is infrequent—their
threads are nearly always busy with useful work, keep-
ing the virtual cores active. Thus, they incur much fewer
virtual core state transitions (less than 100 per second)
and trivial slowdowns (less than 3%) when virtualized.

3 Possible Mitigations

Reducing the performance overhead associated with
state transitions of virtual cores and the threads on them
may be achieved by (a) reducing the cost of such tran-
sitions, (b) reducing the number of such transisitions, or
both.

Once an application thread blocks, the cost of switch-
ing the virtual core into or out of an idle state is related
to the number of context transitions (application to guest
OS to VMM and vice versa) experienced by the core, as
described in Section 2. Hence, one key to reducing idle-
ness transition costs is reducing the number of context
transitions, which typically implies effecting an “idling”
operation higher in the software stack.

For example, an application thread may spin when
blocked rather than yield to the guest OS. If the thread
becomes unblocked in less time than would be required
to transition into the guest OS and back, overall ef-
ficiency is improved by spinning rather than yielding.
Similarly, the guest OS may also spin rather than halt-
ing. However, the guest OS has the additional option of
leveraging an operation like the x86 MWAIT instruction,
which can place the physical core in a low-power state
directly (if permitted by the VMM) such that a simple
store to memory will reactivate the core.

However, because these approaches tend to maintain
physical resources in a low utilization state, they must
be employed with some care. In particular, having
“idling” operations high in the software stack tends to
limit the layers lower in the stack from improving uti-
lization by reallocating idle resources or placing those
resources in a low-power state. For example, the use
of spinlocks in VMs can cause both a lock-holder pre-
emption problem—if the spinlock holder is preempted
by the VMM, the spinlock waiters have to spend extra
time spinning—and a lock-waiter preemption problem—
when spinlock waiters queue up and a waiter is pre-
empted, other waiters after it in the queue will have to
spend more time spinning. These problems can degrade
system throughput by as much as 8x [10].

Thus, idling operations should typically be associated
with a carefully tuned “timeout” value such that, if the
occupied resource does not become usable within the
timeout period, the resource will be released to the con-
trol of lower software layers. The timeouts can be either

Virtual core B

Virtual core A

(a) execution without idleness consolidation

(b) execution with idleness consolidation

Virtual core B

Virtual core A

execution

Cost to wake up

a virtual core

cost to suspend a
virtual core

time

time

Figure 3: An example illustrating how idleness consoli-
dation improves performance.

implemented by software or enforced by hardware via
mechanisms such as pause-loop exiting (PLE).

Furthermore, these approaches for reducing the cost
of state transitions by reducing the number of context
transitions complement our techniques for reducing both
the cost and the number of state transitions, as described
next.

4 Gleaner: Design

Based on the above measurement and analysis, we have
developed a runtime support design, called Gleaner, for
mitigating the multicore virtualization penalty. The basic
idea behind Gleaner is to pair two mechanisms: idle-
ness consolidation for reducing the number of virtual
core state transitions and IPI-free wakeup for reducing
the cost of thread state transitions.

Idleness consolidation seeks to consolidate short idle
periods of virtual cores into long idle periods. The con-
solidation reduces the frequency at which virtual cores
transition their state, and thus reduces the cost associated
with the transitions. This is illustrated by an example in
Figure 3. In the example, two collaborating threads in an
application run on two virtual cores A and B. The threads
synchronize with each other during the phase shown in
the figure. The dotted arrows represent synchronization.

Without idleness consolidation (Figure 3(a)), when a
thread waits at the synchronization point, its virtual core
becomes idle and is suspended by the VMM. When the
condition for the thread to continue its execution is met,
a high cost must be paid to wake up the core.

With idleness consolidation (Figure 3(b)), instead of
running the threads on different virtual cores (note that
in conventional OS design the scheduler tends to dis-

tribute threads to as many cores as possible to maximize
throughput), Gleaner consolidates the threads onto vir-
tual core B. The threads keep virtual core B busy, inter-
leaving their executions. Thus, there is no need to pay the
overhead to suspend and wake up virtual cores, reducing
overall execution time.

If the physical cores are oversubscribed with multiple
VMs, idleness consolidation makes it efficient to share
the physical cores among the VMs to maintain high sys-
tem throughput. If the physical cores are not oversub-
scribed, idleness consolidation causes the cores to stay at
low power mode for longer time periods—saving power.
In the example, when the threads are consolidated onto
virtual core B, the fragmented idle times on the virtual
cores are collected and aggregated onto virtual core A,
which is now idle for most of the time. Thus, the VMM
can suspend virtual core A and allocate the physical core
to other virtual machines or put it into a low power state.

IPI-free wakeup seeks to wake up threads without
sending IPIs and, thereby, eliminate the involvment of
the VMM and minimize the overhead of waking up
threads. This can be achieved by co-locating on the
same core the thread initiating the wake-up action and the
thread to be woken up (setting A in Table 1). If that co-
location is not desirable due to load-balancing or mem-
ory/cache affinity concerns, IPI-free wakeup can also be
achieved by replacing rescheduling IPIs with exceptions
that are not handled by the VMM (e.g., minor page faults
if Extended Page Tables (EPT) is supported) to trigger
rescheduling on the core that is selected to run the wak-
ing up thread. With IPI-free wakeup, the overhead of
waking up threads in VMs may be reduced to a level that
is similar to that on physical machines.

5 Gleaner: Current Implementation

In the current prototype of Gleaner, idleness consolida-
tion is implemented at user-level, and IPI-free wakeup is
implemented in the guest OS kernel via the co-location
method. While one way to implement idleness consoli-
dation is by modifying the guest OS scheduler, we chose
a user-level implementation avoiding the need for an (in-
trusive) kernel implementation and enabling the use of
proprietary operating systems. We will show in Section 6
that with idleness consolidation alone Gleaner can still
effectively reduce the slowdowns of multithreaded ap-
plications in virtual machines. The major obstacle for us
to find a user-level implementation for IPI-free wakeup
is the unavailability of critical information for waking up
threads at user level, including whether there are threads
to be woken up and which threads are to be woken up.
For example, the futex implementation in our OS main-
tains wait queues in kernel space. Naturally, informa-
tion on OS kernel-level synchronization is not available

in user space either.
At user level, consolidation can be achieved by chang-

ing the CPU affinity of application threads. The num-
ber of active cores is adjusted dynamically based on the
variation of workload. To detect the workload, Gleaner
creates a yielding thread on each active core and uses
them to detect if the active cores become over- or under-
loaded. A yielding thread is a user-level thread that has
the lowest priority possible in the guest OS. It calls the
sched yield() system call in a loop. The sched yield() call
relinquishes the virtual core to other threads. If there are
not other threads ready to run, the sched yield() call will
return immediately. Thus, the yielding thread does not
impede the execution of application threads. At the same
time, it keeps the virtual core active even it is not fully
loaded.

To monitor the workload on the active virtual cores,
Gleaner uses a daemon to periodically check the total
CPU time of the yielding threads within the current pe-
riod. If the value is below a threshold, Gleaner deter-
mines that active virtual cores are overloaded and will
activate an idle virtual core. If the value is above an-
other threshold, Gleaner determines that the active vir-
tual cores are under-loaded and will further consolidate
application threads to fewer virtual cores.

6 Experiments

We implemented a prototype of Gleaner and tested it
with the benchmarks selected in Section 2. The exper-
iments were carried out on a Dell™ PowerEdge™ R720
server with two 2.40GHz Intel® Xeon® E5-2665 pro-
cessors, each of which has 8 cores. The physical memory
size is 64GB.

In the system, we created a virtual machine with 16
virtual CPUs and 32GB memory. The VMM is KVM,
with EPT support and PLE support enabled. Both the
host OS and the guest OS are Ubuntu version 12.04.
We compiled the benchmarks using gcc with the de-
fault settings of the gcc-pthreads configuration in PAR-
SEC 3.0. The gcc compiler and the libraries required
by the benchmarks are stock software components in the
Ubuntu Linux distribution.

For each benchmark, we used the parsecmgmt tool in
the PARSEC package to run it with the minimum number
of threads set to 16 in the “-n” option. We run the bench-
mark in four different scenarios: 1) in the host OS; 2)
in the guest OS without Gleaner enabled; 3) in the guest
OS with Gleaner’s idleness consolidation enforced; and
4) in the guest OS with the full Gleaner with both idle-
ness consolidation and IPI-free wakeup enabled. In Fig-
ure 4, we report the slowdowns of the benchmark in the
latter three scenarios relative to its execution in the first
scenario.

 0

 50

 100

 150

 200

blackscholes

swaptions

facesim

ocean-ncp

ocean-cp

dedup

S
lo

w
d
o
w

n
 (

%
)

583%

exec. w/o Gleaner
exec. w/ idle consol.
exec. w/ full Gleaner

Figure 4: Virtualization slowdowns of the benchmarks
on 16 cores with and without the mechanisms in Gleaner.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5

N
u
m

b
e
r

o
f

co
re

s

t(s)

Figure 5: Changes in the number of active virtual cores
in a segment of dedup execution when using Gleaner.

Figure 4 demonstrates that Gleaner can significantly
reduce the execution slowdowns in the virtual machine.
The overhead of Gleaner is trivial for the benchmarks
that already ran efficiently when virtualized, such as
blackscholes and swaptions. For benchmarks facesim,
ocean-ncp, and ocean-cp, their executions are slowed
down by 82% to 123% on the virtual machine. For
these benchmarks, enforcing idleness consolidation re-
duces the slowdowns to below 30% and enabling IPI-
free wakeup reduces the slowdowns to below 20%. For
benchmark dedup, which has the largest slowdown,
Gleaner reduces its slowdown significantly from 583%
to 62% with idleness consolidation, and further reduces
it to 39% with IPI-free wakeup.

Figure 5 shows how the number of active virtual cores
changes in a segment of dedup execution. For most of
the time, Gleaner keeps no more than 5 virtual cores ac-
tive, which run on 5 physical cores. Thus, the remaining
11 physical cores on the machine may either be in a low
power state or be allocated to other VMs.

7 Conclusion

This paper identifies an understudied problem for run-
ning multithreaded applications in today’s multicore-
based clouds. Namely, the costs incurred by blocking

synchronization in virtualized environments can exact
a significant performance penalty when scaling multi-
core applications to take advantage of larger and larger
core counts. This paper proposes a preliminary solu-
tion, Gleaner, that holds promise. However, many de-
tails need to be fleshed out and further study is re-
quired of Gleaner and alternative designs, as well as
other applications. We hope this paper helps to moti-
vate cloud researchers to consider such issues, including
ways to further reduce the virtualization overheads for
synchronization-intensive applications. More generally,
we hope the paper helps motivate the community to ex-
plore the rich space of multicore scaling issues that arise
in the clouds of today and the future.

Acknowledgments. This work was supported in part
by the National Science Foundation under grant CNS-
1019343 to the Computing Research Association for the
CIFellows Project, and done under the umbrella of the
Intel Science and Technology Center for Cloud Comput-
ing.

References
[1] ADAMS, K., AND AGESEN, O. A comparison of software and

hardware techniques for x86 virtualization. In ACM ASPLOS
2006, pp. 2–13.

[2] AMAZON, 2013. http://aws.amazon.com/ec2/instance-
types/instance-details/.

[3] BIENIA, C., AND LI, K. PARSEC 2.0: A new benchmark suite
for chip-multiprocessors. In MoBS 2009.

[4] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-
metal performance for I/O virtualization. In ACM ASPLOS 2012,
pp. 411–422.

[5] HAN, J., AHN, J., KIM, C., KWON, Y., CHOI, Y.-R., AND
HUH, J. The effect of multi-core on HPC applications in virtual-
ized systems. In Euro-Par 2010, pp. 615–623.

[6] LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX:
split guest/hypervisor execution on multi-core. In USENIX WIOV
2011, pp. 1–7.

[7] LANGE, J. R., PEDRETTI, K., DINDA, P., BRIDGES, P. G.,
BAE, C., SOLTERO, P., AND MERRITT, A. Minimal-overhead
virtualization of a large scale supercomputer. In ACM VEE 2011,
pp. 169–180.

[8] LUSZCZEK, P., MEEK, E., MOORE, S., TERPSTRA, D.,
WEAVER, V. M., AND DONGARRA, J. Evaluation of the HPC
challenge benchmarks in virtualized environments. In Euro-Par
2011, pp. 436–445.

[9] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN,
G. J., AND ZWAENEPOEL, W. Diagnosing performance over-
heads in the Xen virtual machine environment. In ACM VEE
2005, pp. 13–23.

[10] OUYANG, J., AND LANGE, J. R. Preemptable ticket spinlocks:
improving consolidated performance in the cloud. In ACM VEE
2013, pp. 191–200.

[11] TICKOO, O., IYER, R., ILLIKKAL, R., AND NEWELL, D. Mod-
eling virtual machine performance: challenges and approaches.
SIGMETRICS Perform. Eval. Rev. 37, 3 (Jan. 2010), 55–60.

