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Abstract

Current state of the art runtime systems, built for manag-
ing cloud environments, almost always assume resource
sharing among multiple users and applications. In large
part, these runtime systems rely on functionalities of
the node-local operating systems to divide the local re-
sources among the applications that share a node. While
OSes usually achieve good resource sharing by creat-
ing distinct application-level domains across CPUs and
DRAM, managing the IO bandwidth is a complex task
due to lack of communication between the host and 10
device. In our work we focus on controlling the hard disk
drive (HDD) IO bandwidth available to user-level appli-
cations in a cloud environment. We introduce priority-
based (PBS) IO scheduling, where the ordering of 10
commands is decided cooperatively by the host and IO
device. We implemented our scheduling policies in the
Linux storage stack and Hadoop Distributed File System.
Initial results show that in a cloud environment, the real-
time commands managed by PBS outperform the real-
time IO scheduling of the Linux kernel by up to a factor
of ~ 5 for the worst case latency, and by more than 2x
for average latency.

1 Introduction

In recent years, cloud platforms emerged as an indispens-
able resource for development of novel large-scale ap-
plications in industry and academia. Cost-effectiveness
and availability of computational and storage resources
at a large scale, provide opportunities for complex algo-
rithms that are computationally expensive and can gen-
erate large amounts of data.

The potential of cloud computing has been convinc-
ingly demonstrated in numerous studies and real-world
examples [13, 2]. In terms of computational models,
cloud environments are not restrictive, but a common
computational model used in these environments is em-

barrassingly parallel (map-reduce). Widely accepted due
to the easiness of use, map-reduce is also convenient for
performing large-scale data analysis — a workload fre-
quently present in large scale storage systems.

Cloud systems allow sharing and oversubscription of
distributed resources. Two main reasons motivate re-
source sharing: (i) to further improve the cost effec-
tiveness and reduce power consumption, cloud providers
frequently enforce resource sharing among the users;
(ii) background system jobs can interfere with user ini-
tiated jobs. Furthermore, it is very common that the
jobs sharing the resources in a cloud have different la-
tency requirements. For example, while serving real-
time queries from a distributed database, certain nodes
can also host background, low-priority jobs. Some ex-
amples of the low-priority jobs are data analytics map-
reduce jobs, load-balancing jobs, and data recovery jobs
that are triggered by the system in case of a node failure.
Computing environments, where multiple jobs with dif-
ferent latency requirements run simultaneously, require
careful scheduling of computational and IO tasks.

To achieve fair resource distribution among
users/applications, system architects developed var-
ious runtime systems that provide resource virtualization
and to each user/application give the impression of
running in isolation. Sharing techniques in modern
operating systems have been studied for resources such
as CPUs and DRAM [11, 3], i.e. individual processes
can be limited on the number of CPU cores and the
amount of DRAM they are allowed to use. However,
achieving efficient multiplexing of the IO requests is
a challenging problem, mostly due to the independent
operational structure of the IO device.

We explore the opportunities for host-HDD co-
-operative 10 scheduling and examine the effects that [O
misscheduling has in a shared resource environment. In
current computing/storage systems, IO request schedul-
ing is a two-level process: (i) the initial request reorder-
ing/merging is performed by the local filesystem, and (ii)



the second-level request reordering is performed within
the 10 device. The existing host-side IO request sched-
ulers do not interact with the IO device, and any prior-
itized request issued from the host-side will almost cer-
tainly be re-ordered once it reaches the drive (we refer to
this re-ordering as misscheduling). As aresult, in a cloud
where multiple jobs might exist on the same node, high-
-priority real-time data accesses cannot gain significant
advantage over low-priority 10 requests.

To address 10 multiplexing in a cloud, we design a
priority-based scheduler (PBS) that exploits HDD prior-
ity commands and instructs the drive to process certain
(usually real-time) requests at high priority. To the best
of our knowledge, this is the first IO scheduler that al-
lows passing priority information between a distributed
filesystem and the storage device, aiming at improving
the response latency for high-priority requests. PBS is
not limited to cloud environments. However, priority
scheduling is most effective in a cloud due to the inten-
sive sharing of storage devices among applications with
different latency requirements. We integrate PBS with
Hadoop distributed filesystem (HDFS) and HBase — a
NoSql database frequently used to manage large amounts
of cloud data. In our prototype implementation, we as-
sign priorities to HDFS and HBase IO requests, and al-
low these priorities to be passed to the priority-based
scheduler and further to the storage device.

We conduct a set of experiments where real-time
HBase queries compete with background map-reduce
jobs and find that co-operative priority-based schedul-
ing improves the worst-case response time for real-time
queries by up to a factor of ~ 5 and the average response
time by more than 2x.

2 Hadoop / HBase

Although our work is not limited to any specific cloud
environment, we choose to integrate our scheduler with
Hadoop/HBase, as these are runtimes widely used in cur-
rent cloud systems. Hadoop/HBase, or a similar varia-
tion, is currently installed in a large number of academic
and industrial cloud systems used by companies such as
Facebook, Google and Amazon [2, 7].

Hadoop is a scalable runtime designed for manag-
ing large-scale storage systems. The Hadoop runtime
contains Hadoop Filesystem (HDFS) and a map-reduce
framework, suitable for algorithms that target processing
of large amounts of data. HDFS was initially developed
as an open source version of the Google filesystem (GFS)
and contains some of the key features initially designed
for GFS.

HDFS also serves as an underlying distributed filesys-
tem for HBase — a NoSQL database that allows real-time
fine-grained accesses to a large amount of data. HBase is

designed based on Bigtable [4], a NoSQL database ini-
tially developed by Google. HBase can serve many users
simultaneously, and at the same time the HBase data can
be used in map-reduce style data analytics.

3 10 Request Scheduling in OS / HDD

On a single node, scheduling of the IO requests is per-
formed at two levels: (i) at the top level, the 10 request
reordering and merging is performed by the filesystem
scheduler, (ii) at the lower level, the 1O requests are re-
ordered by the IO device. The lack of communication
between the two scheduling layers can result in poor
scheduling decisions for the real-time 1Os.

For example, the default Linux scheduler, Completely
Fair Queueing (CFQ), maintains multiple scheduling
classes: real-time (RT), best-effort (BE), and idle. RT re-
quests have priority over the other two classes. However,
the HDD does not recognize the IO priorities assigned
at the OS level and allows request reordering, aiming at
achieving the highest possible IOPS rate. Consequently,
if reordered within the HDD, the RT requests can expe-
rience high latencies or even starvation.

4 Priority-Based Scheduler

Priority-Based Scheduler (PBS) enables prioritization of
read 10 requests by issuing SATA priority commands
directly to the HDD, therefore forcing the drive to pro-
cess certain 10 requests with high priority. SATA pri-
ority commands are part of the SATA specification and
are passed to the drive by setting a specific bit in the
Command Descriptor Block (CDB). PBS is middleware
that resides between the distributed filesystem and the
HDD, as presented in Figure 1, and is composed of ker-
nel and user modules. Spanning kernel- and user-space
is required: the scheduler intercepts read 10 commands
issued by the distributed filesystem (user-level) and fur-
ther passes the intercepted commands to the HDD (from
within the kernel). Depending on the application issuing
the IO requests, PBS decides if the requests will be prior-
itized or not. Note that setting high priority for a request
does not guarantee immediate processing when the HDD
contains multiple high-priority requests.

It is worth mentioning that the strict ordering of 10
requests can be achieved if the device queue is reduced
to a single request, i.e. the host never issues two or more
10 requests concurrently. In that case, the ordering of
the commands established by the host scheduler will be
enforced. However, reducing the device queue depth to
one can reduce the random IOPS rate by up to 50% (even
more for sequential 10s), if the storage device is hard
disk drive. PBS enforces command ordering (based on
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Figure 1: PBS spans both kernel and user space. PBS
communicates with the IO device through the modified
SGIO interface, and with the HDFS through the PBS-
JNI module.

IO priorities), but PBS also allows multiple concurrent
IO requests to be issued to the storage device, therefore
maximizing the IOPS rate.

4.1 User-Level PBS

The user-level PBS module is composed of two entities:
(i) the PBS-JNI library that is attached to HDFS and in-
tercepts the read 10 requests issued by the HDFS-Server,
and (ii) the PBS-CDB library that creates the priority
CDB and passes the CDB to the kernel PBS module.

The user-level PBS library communicates directly to
the kernel-level PBS module and bypasses the standard
kernel IO interface. To allow PBS to read from the
DRAM cache and avoid accessing the HDD when data
is cached, we use the mincore system call, which deter-
mines if a file (or parts of a file) is present in the DRAM.
In case data is cached, the PBS issues a read call through
the standard filesystem interface and let the filesystem
retrieve the data from the cache.

In the current implementation, data fetched through
PBS does not get cached in the DRAM. Caching can be
achieved either by introducing a PBS cache layer or by
merging PBS with the existing filesystem infrastructure.
The reader should note that the current lack of caching
only hurts PBS, and the advantage of PBS over the Linux
10 scheduling could only improve.

The PBS-JNI library accepts several parameters from
the HDFS, such as the file descriptor, the offset in the
file, the number of bytes to read, the buffer where the
returned data is stored, and the IO priority level. Using
the fiemap system call, the PBS-JNI library translates the
file descriptor and the file offset into the LBA. In case of
high priority 10, the PBS-JNI sends all the IO request in-
formation to PBS-CDB. Upon generating the Command
Description Block, PBS-CDB sends the CDB to the drive
via the PBS-kernel module.

SCSI Sublayer ATA Sublayer AHCI Interface
ATA Taskfile

struct sg_io_hdr

FIS

Byte 0 | 27H (host to device)

Sense buff.| Field CDB byte

Byte 1

Timeout cDB
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Figure 2: PBS-Kernel module

4.2 Kernel-Level PBS

Kernel-Level PBS implements two steps. First, PBS con-
verts the CDB to an appropriate data format, such as
FIS (Frame Information Structure), when using a SATA
AHCI interface. The second step includes dispatching
of the prioritized request to the HDD, where the HDD
scheduler prioritizes the request. We further introduce
implementation schemes for each of the steps.

LIBATA in the Linux kernel can conveniently be ex-
tended to accomplish the first step. When a SATA drive
is used, a SCSI command with the priority bit set in the
CDB structure can be sent via the SCSI generic driver
interface (SG_1O) directly to the HDD. This process is
explained as an example in Figure 2. We use a 16-byte
CDB with operation code 0x85H (ATA Command Pass-
Through). Byte 5, bit 7 of the CDB is set to 1 for a
priority command and O for non-priority one. The SCSI
ATA Translation Layer (SATL) transfers the content of
the CDB into the Task File of the SATA protocol with-
out losing priority setup. This data structure is further
converted into a Frame Information Structure (FIS). Dur-
ing the second step a FIS is sent to the HDD using the
AHCT interface. Note that the CDB is part of a data struc-
ture called sg_io_header when it is passed from user-level
library to the kernel-level drivers. Certain other fields
within sg_io_header are also essential for the success of
the priority-based scheduling but will not be discussed in
details here. Kernel-level patch (PBS-Kernel) and user-
-level library that creates priority CDB (PBS-CDB) are
open-source and available for download!. Within the
drive, the priority commands are placed ahead of all non-
priority commands in the 10 queue.

4.3 PBS Integration with HDFS/HBase

To allow interaction between HDFS and PBS, we intro-
duce 10 priorities in Hadoop. In our current work we
assume that read requests from various applications run-

Uhttp://sourceforge.net/projects/iccncq/
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Figure 3: Hadoop software stack with extensions for
passing 1O priorities.

ning in the Hadoop environment are prioritized and the
priorities have been determined ahead of time. One com-
mon prioritization scheme is to allow real-time opera-
tions (such as HBase queries) to be processed at a high
priority, while long running map-reduce (analytics) jobs
would be assigned low priority.

In HDFS, we introduce priorities on both the client and
the server side. The HDFS client receives the 1O priority
from the application either through an environment vari-
able, or through an extended read() call that accepts the
priority level as an additional parameter. Upon obtaining
the application’s IO priority, the HDFES client passes the
priority to the HDFS server through an extended client-
server communication protocol.

We also introduce priorities in HBase. HBase also has
a client-server architecture. In the software stack HBase
is one level above HDFS — HBase runs on top of HDFS,
see Figure 3. To enable priority-based reads in HBase,
we extend the HBase client side to accept the 10 prior-
ities from the application and pass them to the HBase
server side. On the server side of HBase, we replace the
HDFS read() calls with the extended calls that accept the
priority value.

5 PBS Performance

In this section we focus on comparing PBS with CFQ,
the default Linux IO scheduler. For performance com-
parison we run real-time HBase queries generated by
Yahoo! Cloud Service Benchmark (YCSB) [6], as well
as low-priority map-reduce applications. Our software
stack comprises PBS at the bottom, HDFS above the PBS
and HBase above HDFS.

5.1 Experimental Platform

The experimental platform we use is composed of four
servers connected via a 1GbE network. Each server
contains 2 Intel Xeon E5620 CPUs running at 2.4Ghz,
24GB of DRAM and four 3TB Hitachi UltraStar 7K3000
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Figure 4: YCSB with high and low priority 10s, when
rowcounter and wordcount applications run in the back-
ground. Bars represent average latency and are associ-
ated with the left y-axis. Lines represent 95th-percentile
latency and are associated with the right y-axis.

HDDs with a customized firmware that supports request
prioritization. The servers run Linux kernel 2.6.35, ex-
tended with the PBS scheduling module. We use HDFS
0.20.2 and HBase 0.20.6, with our extensions that allow
1O prioritization as well as priority passing to lower lev-
els of the system stack.

When running HDFS across the cluster, one node is
exclusively used as a metadata server, while the other
3 nodes are data nodes. In HDFS, the data replication
factor is 3. Since each node contains 4 HDDs, we run
4 Hadoop datanode processes on each node, and we let
each datanode process manage a single HDD. Therefore,
our setup contains 12 HDFS datanodes. When running
HBase, we found that two region servers per physical
node provide the best performance in terms of memory
consumption and read latency.

5.2 HBase with MapReduce Applications

We capture the effects of PBS in a multi-application en-
vironment by simultaneously running the YCSB-HBase-
-HDFS benchmark and map-reduce jobs. Figure 4
presents the average and 95th-percentile HBase read la-
tency for high/low priority IO requests and map-reduce
applications running in the background. High prior-
ity HBase IOs are issued through the PBS, whereas
low-priority HBase queries are completed by the Linux



scheduler. We set the YCSB benchmark to complete
2000 queries, randomly distributed across the dataset. As
background jobs, we use two map-reduce applications:
rowcounter and wordcount. rowcounter counts the total
number of rows in the HBase database, and wordcount
returns the number of occurrences for each word in a
given set of files. Both mapreduce applications come
with an HDFS/HBase distribution, and represent a typ-
ical workload used in a cloud environment. rowcounter
runs on our 73GB HBase set, while for wordcount we
create a set of files with a total size of 50GB.

For map-reduce jobs we allow up to 4 map and 4 re-
duce jobs per HDD. Since our server nodes contain 4
HDDs, maximum allowed number of jobs per node can
be 32. Note that the number of jobs per node actually
running at any time is smaller, since not all tasks run at
the same time.

In both experiments average 10 latency with PBS out-
performs Linux scheduling by more than a factor of 2. It
is interesting to note that the 95th-percentile latency gap
significantly increases with the number of YCSB threads
in use. This is explained by higher HDD contention
which can result in starvation of low-priority requests.
High-priority IO requests, routed through PBS, compete
only with other high-priority requests, and in the pre-
sented experiments the HDD anti-starvation mechanism
is not triggered for high-priority requests. The highest
recorded 95th-percentile latency difference between PBS
and standard scheduling is close to a factor of 5. PBS can
significantly affect the performance of the background
jobs, particularly when competing with a large number of
high-priority requests. Our assumption is that the back-
ground jobs are long lasting analytics jobs that are not
performance critical.

6 Discussion

In this section we discuss various properties of PBS, and
address applicability of PBS in different environments.
While in the presented study we focus on a case where
I0s are handled with either high or low priority, it is not
difficult to imagine environments where multiple priority
levels would bring significant benefits to the overall QoS.
PBS relies on the SATA software stack in Linux kernel
to deliver priority IO requests. Although the SATA com-
mand set natively supports only two priority levels, mul-
tiple priority levels can be achieved through the SATA
isochronous commands, also supported by PBS.
Virtualized environments represent another area that
could significantly benefit from priority-based 10
scheduling. Prioritization in virtualized environment can
be accomplished in two ways: (i) applications within a
single guest domain could be assigned priorities, or (ii)
priorities could be assigned per guest domain. Support-

ing either of the two approaches requires changes in the
hypervisor storage virtualization driver. The storage vir-
tualization driver is required to accept the CDB created
by the user-level PBS and pass it down through the stor-
age stack. Note that this CDB is of somewhat different
format than what the driver is by default ready to accept
(contains priority bits). Required changes in the hyper-
visor storage driver are similar to the implementation of
the PBS kernel-level module, i.e. the CDB data struc-
ture needs to be updated with the priority bits and this
information needs to be passed further down to the de-
vice. Enabling PBS in a virtualized environment will be
addressed in future work.

With the introduction of priorities, possible 10 request
starvation becomes an important problem. If not han-
dled with care, starvation significantly affects the per-
formance of low-priority jobs. The starvation problem
can be addressed in multiple ways, including both host
and device-level approaches. Commonly, storage device
firmware is designed to trigger the anti-starvation mech-
anism for IO requests that have spent a certain time in
the processing queue without a successful completion.
The anti-starvation mechanism enables progress of low-
-priority requests even in a highly contended environ-
ment. However, the latency of an IO request that was
processed by the anti-starvation mechanism usually ex-
ceeds 5 seconds. Consequently, in a mixed environment
of high and low-priority requests, no real-time queries
can be processed at low-priorities, if only the device
anti-starvation mechanism is used. To prevent starva-
tion at the host level, PBS supports autonomous prior-
ity increase, where long lasting low-priority 10 requests
can be canceled and reissued as high-priority requests.
This approach allows improving the worst case latency
of low-priority commands, at the cost of increased la-
tency for high-priority commands.

7 Related Work

10 scheduling has been the main topic of many studies in
the past years. We briefly summarize published research
in the area of scheduling in a multi-process environment.
Closest to our work is the study performed by Young
Jin et al. [15], which address the issue of host-IO de-
vice misscheduling. They acknowledge the misschedul-
ing problem and design a dynamic scheduler that allows
switching on/off the host and the device schedulers at
runtime. They do not attempt passing the IO priorities
to the device. A set of real-time scheduling algorithms
has been developed [14, 5]. While they rely on SCAN
to deliver highest throughput, we allow our priority com-
mands to be processed completely independently of the
standard drive request processing algorithm. Other tradi-
tional schedulers [10, 12] allow IO priorities, but do not



pass them to the IO device.

Multiple studies [1, 8, 9] improve IO scheduling
in distributed systems by carefully placing 10- and
computation-bound workload and focusing on the effects
of multi-level 10 scheduling in a virtualized/cloud envi-
ronment. These studies are limited to the host side and
do not include priority-aware IO devices.

8 Conslusions and Future Work

Communication between distributed filesystems and 10
devices is a powerful tool that enables low IO access
latencies for real-time workloads in a multi-user cloud
environment. We proposed and implemented PBS, a
scheduling scheme that allows passing of 1O priorities
directly to the storage device and therefore prevents re-
ordering of high-priority IO requests once they reach
the HDD. Our prototype implementation of PBS is em-
ployed with the Hadoop/HBase software stack, and the
focus of our study is on the impact that misscheduling
and IO priorities might have on the cloud system user.
We find that misscheduling can have significant impact
on real-time IO requests when applications with different
priorities compete for the same storage resources. Our
experiments show that priority scheduling outperforms
default Hadoop/Linux scheduling by up to a factor of ~ 5
for the worst case latency and by more than 2x for aver-
age latency. Prioritizing certain IO requests comes at a
significant cost for low-priority requests, and frequently
these low-priority requests can be completed only after
triggering the anti-starvation mechanism.

The focus of our future work is multi-faced. We will
further investigate anti-starvation schemes that would al-
low latency trade-off between high and low-priority 10
requests. Also, we believe the applicability of prioritiza-
tion will become important in virtualized environments
where users have different IO latency expectations. Fi-
nally, using multi-level priorities, either through SATA
deadline commands or as a part of a host-side scheduler,
is another important aspect of our future work.
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