Dissecting Open Source Cloud Evolution: An OpenStack Case Study

Salman A. Baset, Chungiang Tang, Byung Chul Tak, Long Wang
IBM T.]. Watson Research Center, Yorktown Heights, NY, USA

Abstract

Open source cloud platforms are playing an increasingly
significant role in cloud computing. These systems have
been undergoing rapid development cycles. As an ex-
ample, OpenStack has grown approximately 10 times in
code size since its inception two and a half years ago.
Confronting such fast-pace changes, cloud providers are
challenged to understand OpenStack’s up-to-date behav-
iors and adapt and optimize their provisioned services
and configurations to the platform changes quickly. In
this work, we use a black-box technique for conduct-
ing a deep analysis of four versions of OpenStack. This
is the first study in the literature that tracks the evolu-
tion of a popular open source cloud platform. Our anal-
ysis results reveal important trends of SQL queries in
OpenStack, help identify precise points for targeted error
injection, and point out potential ways to improve per-
formance (e.g. by changing authentication to PKI). The
OpenStack case study in this work effectively demon-
strates that our automated black-box methodology aids
quick understanding of platform evolution and is critical
for effective and rapid consumption of an open-source
cloud platform.

1 Introduction

Open source cloud management systems are being de-
veloped at a rapid pace. In one such infrastructure-as-a-
cloud (IaaS) system, namely, OpenStack [8], a new ver-
sion is released every six months and incorporates nu-
merous features and bug fixes from community develop-
ers. As shown in Table 1, Grizzly, the latest version of
OpenStack, which was released in April 2013 comprises
of approximately 330 K lines of code. This is a ten fold
increase in term of lines of code from the first release of
OpenStack in October 2010, and an order of magnitude
increase from the previous release Folsom.

Cloud providers looking to adopt latest changes from
the source trunk or a release of a rapidly evolving cloud

platforms such as OpenStack are faced with a unique
dilemma. On one hand, they want to adopt features
and bug fixes as soon as they become available in the
source trunk. On the other hand, they are wary of
the lack of understanding of component interaction, and
how the upgrade will impact the system’s stability un-
der normal conditions as well as failure scenarios. The
plethora of options available for configuring an open
source cloud system further complicates the dilemma
of a cloud provider. Without effectively understanding
how OpenStack evolves from one version to the next and
across versions, and the potential impact of configuration
options and failures, a cloud provider may not be able to
quickly consume the rapidly evolving system.

The distributed nature of cloud management systems
complicates their understanding and analysis. These sys-
tems consist of many distributed components and lever-
age many existing tools, which sometimes interact with
each other in non-intuitive ways. Currently, the choice
of readily available tools for tracing and analyzing het-
erogeneous distributed systems in a black-box manner
is limited. Mostly, black-box tracing tools offer little
help when it comes to system diagnosis based on pre-
cise tracing of messages across distributed nodes since
they are mostly based on statistical techniques [4, 5].
Instrumentation-based approaches [6,7] are also not easy
to use because source code availability and comprehen-
sion is required.

In this paper, we present a deep analysis of how Open-
Stack has evolved over the years. By significantly en-
hancing vPath [10], we analyze complete message in-
teraction among all OpenStack components for logical
operations such as creating or deleting a virtual machine
under multiple configuration options. We perform this
analysis without modifying any source code in Open-
Stack, and analyze four releases. Using our analysis, we
precisely reason about the data flow, understand the im-
pact of various configuration options, and perform what-
if analysis. As part of ongoing work, we are building a

[Release[Time [Nova [Glance| Keyst.[Cinder|Quant.[Swift [Total |

Austin [Oct’10 | 17,288 12,979 30,627
Bextar |Feb’11| 27,734 3,629 16,014 | 47,377
Cactus |Apr’l1| 43,947 4,927 16,665| 65,539
Diablo |Sep’11| 66,395| 9,961 12,451 15,591 91,947
Essex |[Apr’12| 87,750 15,698 11,555 17,646 | 149,596
Folsom |Sep’12 {103,637 20,271[13,939] 20,271 | 42,118 19,114 230,320
Grizzly |Apr’13[120,968 | 21,261{20,071| 49,797| 60,485 23,035 321,081

Table 1: OpenStack evolution in terms of lines of code
written in python. An empty box indicates that the com-
ponent was not part of OpenStack at the time of release.
Keyst. and Quant. are abbreviations for Keystone and
Quantum, respectively.

| glance-registry |<_)| keystone |

— = =
keystone DB

Figure 1: OpenStack Grizzly logical architecture with-
out Quantum. nova-conductor service has been
added in the Grizzly release. The service runs on a
controller and removes direct database operations from
nova-compute which runs on a compute node.

nova-api |<,_)| dashboard |
[/

nova-conductor

Added in Grizzly
to replace direct
DB acccess ina
compute node

nova-scheduler

tool that will leverage the message interaction gathered
from our analysis to inject faults at precise points and
explore the robustness of OpenStack system. As such,
this analysis is not a performance study, but can serve as
a useful input to any performance evaluation.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of OpenStack. In Section 3,
we describe challenges and experiences in designing a
tool for performing dynamic analysis of OpenStack re-
leases. In Section 4, we discuss our results across Open-
Stack releases. Section 5, we discuss ongoing work.

2 OpenStack Background

OpenStack is a fully distributed infrastructure-as-a-
service software system. Its components communicate
via REST, SQL, and AMQP (Advanced Message Queu-
ing Protocol) to perform cloud operations. In this pa-
per, we restrict our analysis to three logical operations in
OpenStack, namely, creating, deleting, and listing virtual
machines.

OpenStack has six main components: compute
(Nova), image repository (Glance), authentication (Key-
stone), networking-as-a-service (Quantum), volume stor-
age (Cinder), and object storage (Swift). Figure 1
and Figure 2 shows the logical architecture of Open-

glance-registry . keystone

lance DB
<
keystone DB

nova-api |(_)| dashboard |

nova-conductor

quantum-agent |

[

_ - — — =

quantum-dhcp |

Figure 2: OpenStack Grizzly logical architecture with
Quantum.

Stack with and without Quantum, respectively. (Cin-
der and Swift are not discussed in this paper due to
space limitation). Quantum implements a subset of fea-
tures for software defined networking. In Grizzly re-
lease, Quantum has been renamed as OpenStack Net-
working. Each component comprises of one or more pro-
cesses (or services). Except for nova-compute and
nova-network, all services shown in Figure 1 run on
one or more controller nodes. For OpenStack deploy-
ment leveraging Quantum (Figure 2), nova-compute
and quantum-agent! run on a compute node. Up to
Folsom release, (nova—-compute) directly connected
to nova database and performed database operations. In
Grizzly release, the direct database operations have been
factored out of the compute node and moved into a
service nova-conductor which runs on a controller
node.
Nova services

(nova—-api), a
and a conductor

comprise of an API server
scheduler (nova-scheduler),
(nova—-conductor) that run
on the controller, and compute and network
workers (nova—-compute, nova-network,
quantum-agent) that run on each physical server
that is part of the OpenStack compute cloud. The nova
services interact with each other through a asynchronous
message passing server (RabbitMQ [3]) which runs
the advanced message queuing protocol (AMQP) [1].
The use of AMQP prevents nova-* components from
storing state and facilitate scalability. In addition, nova-*
components use a database for storing persistent state.
The use of central database and AMQP is potentially a
limiting factor for scalability.

Any user or services of OpenStack must be authen-
ticated using a token issued by Keystone (Keystone
queries the database during authentication). Moreover,
any message from the cloud controller node containing
the token must be authenticated and verified with Key-
stone. Thus, Keystone (and its querying of the database

"In OpenStack terminology, all Quantum components except for
Quantum server are referred to as agents. We refer quantum-agent
to the component that runs on the compute node.

during authentication) is a potential bottleneck in Open-
Stack (as shown in Figure 1 and Figure 2). As a result,
Grizzly changes the default authentication mechanism to
PKI for reducing database interaction for token verifica-
tion.

Further details about OpenStack architecture are avail-
able at [2].

3 Discovering Message Flow Among Com-
ponents: Challenges and Experience

Understanding application behavior and its evolution can
be achieved in several ways. One approach is to manu-
ally read the source code. Another approach is to read
the easily-available information such as application logs
or system monitoring utilities to infer application behav-
ior. These approaches usually take a significant amount
of time and effort, and moreover, capture only bits-and-
pieces of application execution. For a complex system
comprising of multiple components such as OpenStack,
significant inferencing efforts are required to get a clear
understanding of individual system execution flows out
of the source code and application logs.

In order to avoid these difficulties, we have cho-
sen the vPath [10] approach that traces end-to-end
message flows across application components by cap-
turing and analyzing system and library call traces.
Particularly, captures of receive () /send() and
read () /write () calls (and their variations) allow
for observing causal relationships among components;
capturing other calls helps understand what steps are
taken to complete user-issued operations. Such dynamic
interactions of components are difficult to ascertain oth-
erwise, through methods such as tcpdump.

Path tracing consists of two steps, namely, monitoring
and analyzing system and library calls. Source code of
the target application (OpenStack in our case) is not re-
quired in either step. The target application is handled as
a black box.

Monitoring of system and library calls. We use
vPath [10] tool to intercept system and library calls.
vPath tool makes use of the LD_PRELOAD technique.
By setting this environment variable, it can attach a wrap-
per to most of the glibc functions. Upon intercepting
these glibc functions, vPath logs the various parameters
in the invocation, e.g. process name/ID, thread ID, port
number, parameters passed, timestamp, socket number,
and connection ID. Then the original glibc functions are
called to serve the application requests. The noted event
sequence and parameters are processed in the analysis
step to construct the causal event chain.

Analysis of collected data and construction of
traces. In vPath, tracking of message causality across

application processes is made possible based on the fol-
lowing assumption about the threading behavior: once a
message is received by a thread, that thread is the one to
engage in processing of the data; it continues to be the
processing thread until it makes another send or receive
operation. This implies that any activities of a certain
thread following the receive of a message can be consid-
ered to belong to the processing of the same user request.
This assumption allows establishing a linkage between
the initial incoming receive with subsequent activities
and outgoing send messages. The linkage between send
and receive across processes can be formed by pairing
the TCP/IP connection’s socket tuple information which
is unique per connection.

Any scenarios violating this assumption lead to failure
of path tracing. Such scenarios are observed in Open-
Stack messages that are exchanged among nova com-
ponents of OpenStack using RabbitMQ running AMQP
protocol. The presence of message passing queues
allows a thread to continue execution, thus violating
vPath’s original assumption. Without using time stamps
or application level knowledge, it is not possible to con-
struct end-to-end path tracing. In this paper, we use
time stamp information of queued messages for con-
structing the path trace. As using time stamp information
across distributed nodes requires clock synchronization,
we conduct our experiments by placing all OpenStack
processes within a single machine. As part of ongoing
work, we are instrumenting the analyzer with applica-
tion specific knowledge (i.e., message identifiers) to cor-
relate messages that are pushed and pulled from AMQP
queues.

We use analyzer to (i) gather aggregate statistics about
operations (ii) ask what-if questions (iii) analyze a subset
of actions from a message flow that meet certain condi-
tions. In the next section, we present a subset of results.

4 Experimental Setup and Results

We ran all components of OpenStack in a single ma-
chine, since our focus is on message flow/path and
what-if analysis, and not performance. We disabled
all OpenStack timers, and started logging of system
and library calls on all OpenStack components us-
ing vPath. We initially choose the command-utility,
python-novaclient, to create, delete, and list VMs
but quickly realized that it performs a multitude of other
operations to support the logical operations. Conse-
quently, we discontinued the use of this utility and in-
stead crafted REST call messages that were initiated us-
ing curl. Further, we ran CLI of each OpenStack com-
ponent so that each service is forced to authenticate with
Keystone and cache the authenticated token. The authen-
tication for user tokens is in addition to service tokens. In

Diablo | Essex Folsom Folsom Grizzly Grizzly
H nova-net |quantum |nova-net |quantum ‘

SELECT (create) || 16 (450)| 17 (95)| 21(409)| 26 (560)| 20 (139)| 37 (343)
SELECT (delete) 8 (37)| 10 (36) 17 (63)| 23 (241) 13 (36)| 31(192)
SELECT (list) 53D 412 6 (24) 7(25) 1(1) 1(1)
INSERT (create) 4(4) 4(4) 8(23) 9(24) 10 (37)| 13 (40)
INSERT (delete) 0 (0) 0 (0) 1(3) 1(3) 3 (6) 4 (6)
INSERT (list) 0 (0) 0 (0) 0(0) 0(0) 0 (0) 0(0)
UPDATE (create) || 2(9)-5| 3 (12)-5| 7 (60)-11| 7 (58)-12| 8 (74)-13] 8 (70)-16
UPDATE (delete) || 4 (6)-4| 6 (10)-7| 8(22)-9| 8(25)-9|10 (31)-11]10(26)-12
UPDATE (list) 0(0)-0] 0(0)-0 0 (0)-0 0 (0)-0 0 (0)-0 0(0)-0
DELETE (create)

DELETE (delete) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
DELETE (list)

Total tables 53 63 67 83 136 160
glance 4 4 5 5 6 6
keystone 9 10 10 10 19 19
nova 39 49 52 52 111 111
quantum n/a n/a n/a 16 n/a 24

Table 2: SQL statistics for

create, delete, list VMs. The number before parenthesis is the total number of tables

touched, and the number within parenthesis is the actual number of queries. The number after ‘-’ in the UPDATE
rows shows the total number of tables touched across INSERT and UPDATE queries. For Grizzly, there are 55 shadow

tables for nova which archive operation information.

Diablo | Essex Folsom | Folsom |Grizzly |Grizzly
’ ‘ nova-net | quantum | nova-net | quantum ‘
422 54 358 484 82 243
keystone 30GET| 9GET| 17GET| 23GET| 3GET| 6GET
2 POST
4 11 11 9 10 10
nova-api 1POST| 1 POST| 1POST| 1POST| 1POST| 1 POST
nova-compute 4 5 13 14 0 0
nova-conductor n/a n/a n/a n/a 15 16
nova-network 13 19 17 n/a 20 n/a
nova-scheduler 1 2 1 1 4 4
0 0 0 0 0 0
glance-api 2 GET
SHEAD |4 HEAD| 8 HEAD| 8 HEAD |8 HEAD |8 HEAD
glance-registry 6 4 8 8 8 8
7GET| 4 GET 8 GET 8 GET| 8GET| 8GET
quantum-server n/a n/a n/a 44 n/a 62
5 GET 9 GET
1 POST 1 POST

Table 3: Creating a VM: SELECT queries issued by
components and HTTP requests received by different
components.

steady-state, OpenStack services are expected to cache
tokens, baring any bugs or configuration options.

For each experiment, we collected logs generated by
vPath, analyzed them offline to construct message path,
and performed detailed analysis. For Folsom and Griz-
zly release, we analyzed OpenStack operation with and
without Quantum.

4.1 Database and REST Call Analysis

Table 2 shows the total number of distinct SQL queries
for VM creation, VM deletion, and listing all VMs.
There are several interesting observations to be made
from this table that shed light on the evolution of Open-
Stack. First, the number of SQL SELECT queries in-
creases from Essex to Folsom, and then it decreases in
the Grizzly release. The decrease in the number of SQL

SELECT queries in Grizzly is attributed to significant
refactoring of code in Keystone, the authentication com-
ponent. A large number of SELECT queries does imply
a processing overhead, especially, if a SELECT query in-
cludes complicated joins. A detailed performance study
is needed to evaluate the impact, which is not the focus
of this paper. In Diablo, the large number of SELECT
queries is related to HTTP GET requests that Keystone
receives (30 GET requests in total, see Table 3). In Dia-
blo, Keystone was just integrated with other OpenStack
components. The developers did not optimize Keystone
interaction with other OpenStack components. The in-
crease in SELECT queries for Grizzly (quantum) is at-
tributed to Quantum service token authentication. We
were expecting the Quantum token to be cached (as de-
scribed earlier), but we did not observe this to be the case
over multiple runs. We are investigating the cause of ser-
vice token verification in Quantum.

Second, the number of INSERT and UPDATE queries
continue to grow across releases. For a single VM cre-
ation in Grizzly (quantum), 40 INSERT and 70 UPDATE
queries are issued that altogether touch 16 tables. Since
OpenStack is a distributed system, a request can fail
when traversing from one component to the other. If a
VM creation or deletion request fails midway, only a sub-
set of INSERT and UPDATE queries would have been
issued which will need to be subsequently processed to
effectively recover from a failed request. Moreover, any
other configuration state will also need to be removed.
Our path analysis technique can precisely identify which
tables and configuration state were touched by a partic-
ular component, which makes it easier for developers to
write failure recovery code and for operations personnel
to zoom in on a problem. Another implication of these

Diablo | Essex | Folsom |Folsom |Grizzly |Grizzly

nova-net | quantum | nova-net | quantum

SELECT 371 52 292 290 100 140
INSERT 3 3 10 10 22 22
UPDATE 1 2 10 10 8 8

Table 4: Creating a VM: SQL queries before a request is
sent to compute. Compare results with Table 2.

‘ API ‘ ‘ Schedu\er‘ ‘ RabbitMQ ‘ ‘ Compute ‘ ‘ Network ‘

Create|server: 4892B

(1)

Create server: 4981B
<

<
Create server (on the selected hode): 70408

() >
— Create gerver (on the selected node): 7136B
Servgr creation request
returfis a 200 OK response Create network: 31178 |
Status check of VM still negded < ®)

Create netwofk: 3204B

Network creafed: 854B
(4)

Network created: 994B

Close queup: 57B
< (5)
Close queue: 197B

Figure 3: Creating a VM: Message flow among nova
components over AMQP up to Folsom (nova-network).

results is for database sizing. Since these results are per
logical operation (e.g., create VM), a system architect
can easily obtain a bound on the number of newly cre-
ated records as a function of VM provisioning rate.

Table 4 shows an aggregate of INSERT and UP-
DATE queries issued by different components
before nova-scheduler sends a request to
nova-compute over AMQP to create a VM.
From Table 2 and Table 4, it can be easily deduced that
bulk of UPDATE operations occur after a request is sent
to nova-compute. Though not shown in the paper,
we discovered from our analysis that bulk of UPDATE
queries (44 in total for Grizzly (quantum)) were for
updating statistics for the compute node on which VM
was being created, while the remaining queries were for
instance related updates.

Third, when deprovisioning a VM, only one or two
records are deleted from the tables while all other VM-
related records are archived. Our analysis indicates that
the deleted record corresponds to virtual interface and
ports (for Folsom/Grizzly-quantum) of a VM being de-
provisioned. In addition, in Folsom and Grizzly release,
records are inserted in the ‘reservations’ table to indi-
cate the release of VM resource. For instance, if a VM
is provisioned with 512 MB of memory, a record with -
512MB will be inserted into the ‘reservations’ table to
indicate the release of memory resource. From a logging
and audit perspective, such a mechanism is better than a
simple decrementing of provisioned resource.

While SQL query count shown in Table 2 could also
have been obtained through SQL server logs, the logs
do not tell us which component is issuing the queries,
and the message flow which triggered these logs. For

create VM operation, we want to understand which com-
ponents are issuing SELECT queries. Table 3 gives a
break down of SQL SELECT queries sent by different
components. It becomes very clear from looking at this
table that token-based authentication in Keystone is re-
sponsible for issuing a bulk of SQL SELECT queries. If
we configure PKI-based token verification, the number
of SELECT queries in Grizzly (nova-network) drops to
seven. Our tracing tool allows us to easily understand
the impact of configuration options such as the one men-
tioned above.

Single byte recv (). We observed a strange behavior
where components receive HTTP responses one byte at
a time by issuing a (recv ()) call for one byte. From
studying the source code, we have found that the cause
was a python library (webob) used for HTTP message
communications. Although, Openstack is not the direct
reason for this single byte recv (), the use of this li-
brary may degrade performance.

4.2 AMQP and aggregate traffic analysis

Figure 3 shows the message flow over AMQP among
nova-* components of OpenStack which we were
able to deduce using our message path when using
nova-network. This flow is applicable till Folsom. In
Grizzly, the introduction of nova-conductor service
has increased interaction with AMQP server by an or-
der of magnitude. In total, five messages are exchanged
among nova-* components over AMQP. After scheduler
sends the VM creation request to compute node, a suc-
cessful (200 OK) HTTP response is returned to the caller.
As shown in Table 4, our path analysis allows us to
precisely determine what happens in terms of database
queries before scheduler sends the VM creation request
to nova-compute over AMQP.

4.3 Flow Evolution

How does OpenStack flow evolve from one version to the
next and how much similarity is there in the “shape” of
paths? We believe that analyzing flow evolution can best
be performed using an interactive tool (similar to those
available for checking source code differences). Con-
fined to text, we offer some insights. First, nova-api’s
interaction with databases over releases has significantly
increased. Up until Essex, only four records were in-
serted by nova—api in total, three of which were in-
serted before a request was sent to nova-compute (Ta-
ble 4). For Folsom and Grizzly, the number of inserted
records for a similar path are 10 and 22, respectively. The
increase in these inserted records is due to introduction of
a new table ‘instance_system_metadata‘ which contains
the bulk of new records (13 for Grizzly).

Second, the code path for interacting with Glance has
been relatively stable since Folsom. This is also evident
from the limited change in Glance code base from Fol-
som to Grizzly.

Third, while the introduction of nova-conductor

service has removed direct database interac-
tion from a compute node, the interaction be-
tween nova-compute and database through

nova-conductor has actually increased which
manifests itself in SQL UPDATE operations. As
OpenStack code evolves, the developers are focusing
on storing intermediate state from compute node on
the persistent storage, which results into an increase in
UPDATE queries.

S Discussion and Ongoing work

Tracing OpenStack message flow for logical operations
is the first step in understanding evolution of OpenStack.
The tracing, by design, is performed before a system is
actually put into production, and is meant to uncover
any changes in overall code. We are currently enhanc-
ing the tool for automatically correlating log writes with
the message flow and for systematic error injection to an-
alyze OpenStack robustness against failures. The idea is
to automatically insert an error (e.g., modifying the re-
turn value of a system call) at potentially every point in
the trace message flow. As part of systematic error injec-
tion, the errors inserted, message flow resulting from the
error, and the logs will be collected in a central reposi-
tory which will be indexable. The goal is to create this
repository in a small time-frame (e.g., one day). Sys-
tem administrator can potentially consult this repository
when searching for a problem diagnosis. Such an au-
tomated mechanism for inserting faults can significantly
increase the test coverage of a rapidly evolving code base
such as OpenStack.

The tracing results alone shed light on the working of
the system and allow an architect to perform a rough siz-
ing of the components (e.g., DB disk or AMQP message
flow as a function of logical operations such as number
of VMs created.). However, tracing is performed prior
to putting the system in production without instrument-
ing any source code. It may also be useful to follow a
Dapper [9] and Zipkin [11] like approach for collecting
request progress in a distributed system through code in-
strumentation.

A particular challenge in tracing, which we also identi-
fied in earlier sections, is the use of AMQP queues which
cause path information to break. As a design principle,
the distributed systems making use of a similar queueing
mechanism must augment messages with a unique mes-
sage identifier that traverses different components of the
stack to enable offline or online tracing.

6 Conclusion

OpenStack, an open-source cloud management system,
is being widely adopted as an laaS platform. It’s rapid
development and complexity growth complicates its un-
derstanding. This paper presents a deep analysis of how
OpenStack has evolved over the past few years. This is
the first study in the literature that tracks the evolution of
a popular open source cloud platform. We leverage and
enhance a path-tracing tool to automate analysis of four
versions of OpenStack by capturing and analyzing inter-
actions among distributed components for creating and
deleting a virtual machine.

Our analysis reveals important trends of SQL queries,
help understand impact of configuration options, ana-
lyze subset of messages to answer what-if questions, and
identify precise points for error injection. As part of on-
going work, we are leveraging the message flow to de-
velop a framework for error injection. The techniques
presented in this paper are useful for understanding other
rapidly evolving open source systems for effectively con-
suming them within a provider.

References

[1] AMQP. https://en.wikipedia.org/wiki/
Advanced_Message_Queuing_Protocol.

[2] Openstack architecture. http://docs.openstack.org/
grizzly/openstack—-compute/admin/content/
logical-architecture.html.

[3] Rabbitmq. http://www.rabbitmg.com/.

[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed sys-
tems of black boxes. In SOSP, pages 74-89, New York, NY,
USA, 2003. ACM.

[5] A. Anandkumar, C. Bisdikian, and D. Agrawal. Tracking in a
spaghetti bowl: monitoring transactions using footprints. In SIG-
METRICS, pages 133-144, New York, NY, USA, 2008. ACM.

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie
for request extraction and workload modelling. In OSDI, Berke-
ley, CA, USA, 2004. USENIX Association.

[7] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet ser-
vices. In DSN, pages 595-604, Washington, DC, USA, 2002.
IEEE Computer Society.

[8] Openstack. http://www.openstack.org/.

[9] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure. Technical
Report dapper-2010-1, Google, April 2010.

[10] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and
R. N. Chang. vpath: precise discovery of request processing paths
from black-box observations of thread and network activities. In

USENIX, pages 19-19, Berkeley, CA, USA, 2009. USENIX As-
sociation.

[11] Twitter. Zipkin. http://twitter.github.io/zipkin/,
2013. [Online; accessed May 2013].

