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Abstract
Cloud computing leverages virtualization to offer re-
sources on demand to multiple “tenants”. However, shar-
ing the server and network infrastructure creates new vul-
nerabilities, where one tenant can attack another by com-
promising the underlying hypervisor. We design a sys-
tem that supports virtualized networking using software
switches without a hypervisor. In our architecture, the
software switch runs in a Switch Domain (DomS) that is
separate from the control VM. Both the guest VMs and
DomS run directly on the server hardware, with process-
ing and memory resources allocated in advance. Each
guest VM interacts with the software switch through a
shared memory region using periodic polling to detect
network packets. The communication does not involve
the hypervisor or the control VM. In addition, any soft-
ware bugs that crash the software switch do not crash the
rest of the system, and a crashed switch can be easily re-
booted. Experiments with our initial prototype, built us-
ing Xen and Open vSwitch, show that the combination of
shared pages and polling offers reasonable performance
compared to conventional hypervisor-based solutions.

1 Introduction

Cloud computing leverages virtualization to offer com-
puting, storage, and networking resources on demand to
multiple “tenants”. Server virtualization enables mul-
tiple virtual machines (VMs) to run on the same host,
and share a connection to the network. To virtualize the
underlying network, cloud providers increasingly rely
on software switches that run on the hypervisor or a
control VM (e.g., Dom0 in Xen) on the server. These
switches provide access control, resource and name-
space isolation between tenants, efficient communica-
tion between VMs on the same server, and support for
live VM migration. Popular examples include Open
vSwitch [1], VMware’s vSwitch [2], and Cisco’s Nexus
1000V Switch [3].

Despite the many benefits of cloud computing, shar-
ing the server and network infrastructure creates new se-
curity vulnerabilities that make some companies reluc-
tant to move their applications and data to the cloud [4].
The virtualization layer (including the software switch)
is quite complex, forming a large trusted computing base.
For example, there are ∼200K lines of code in the Xen
hypervisor, ∼600K in the emulator, and more than 1M in
the host operating system. With such a large amount of
code, bugs in the hypervisor are inevitable, as evinced by
the many bug reports for Xen in NIST’s National Vulner-
ability Database [5]. Malicious tenants can exploit these
vulnerabilities to attack software switches and the vir-
tualization layer and gain control of the physical server.
The attacker can then obstruct or access other VMs, com-
promising confidentiality, integrity, and availability of
other tenants’ code and data.

Recent research proposes ways to reduce the attack
surface by dividing the virtualization layer into smaller,
independent components [6] or removing the hypervisor
entirely [7, 8]. In NoHype architecture [7, 8], guest VMs
run directly on the server hardware—without an under-
lying hypervisor. As part of booting the VM, NoHype
allocates processor cores, physical memory pages, and
virtual network interface cards (NICs) to the guest VM,
and performs all necessary system discovery. This obvi-
ates the need for guest VMs to perform “VM exits” to ac-
cess services normally provided by a hypervisor. While
a promising way to improve security in the cloud, re-
moving the hypervisor makes it difficult to support soft-
ware switches. A software switch could be supported by
bouncing packets off the NIC or a hardware switch, but
this would consume excessive resources on the PCI bus
and the access link.

In this paper, we design a system that allows virtual
machines to communicate using software switches, with-
out relying on an underlying hypervisor. Rather than re-
laying interrupts through a hypervisor, each VM inter-
acts with the software switch through a shared memory



region using periodic polling to detect network packets.
Both the guest VM and the software switch run directly
on the server hardware, with processing and memory re-
sources allocated in advance. Each VM has its own dedi-
cated region of memory for communicating with the soft-
ware switch, allowing permissions in the hardware page
tables to block access by other VMs. Since the soft-
ware switch does not run in a hypervisor (or in Dom0),
any software bugs that lead to the switch being com-
promised do not open the potential to compromise the
rest of the system, and the switch can be easily “micro-
rebooted” as in earlier work [6] on Dom0 disaggregation.
Experiments with our initial prototype, built using Xen
and Open vSwitch, show that communicating through
shared pages offers reasonable performance compared to
conventional hypervisor-based solutions (limited only by
optimizations of kernel to user space communication that
we have yet to incorporate).

The paper is organized as follows. We first provide
background information in Section 2 on related technol-
ogy and trends that inspire aspects of our architecture.
We then present our architecture in Section 3. The de-
tails of our prototype system are described in Section 4.
We then evaluate our prototype in Section 5. We con-
clude and discuss future work in Section 6.

2 Background: Virtualization Layer

Before we describe the design of our system, we present
some important background material on server virtual-
ization and networking support. First, we briefly de-
scribe how Xen performs networking in the control VM
(i.e., Dom0). Other virtualization technology uses sim-
ilar mechanisms, but we will mainly focus on Xen in
this paper. Then, we explain how Dom0 disaggregation
can improve security and reliability by dividing the con-
trol VM’s functionality into several smaller components.
Finally, we discuss how NoHype goes one step further
by enabling guest VMs to run directly on the underlying
hardware, without a hypervisor.

2.1 Xen Networking in Dom0
By default, Xen provides network functionality in the
control VM, which has direct access to the physical
NICs, as shown in Figure 1. For each guest VM, Xen
creates a pair of connected virtual Ethernet interfaces—
one in Dom0, and the other in the corresponding guest
VM. For example, vif1.0 in Dom0 connects to eth0 of
Guest VM 1. These virtual interfaces can be realized
through para-virtualized drivers, as shown, or device em-
ulation. Para-virtualized drivers use a split driver model,
with a frontend network driver (Netfront) installed in the
guest VM to provide eth0, and a backend network driver
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Figure 1: Xen Networking. For each guest VM, a pair
of connected virtual Ethernet interfaces is created. They
communicate with the help of hypervisor.

(Netback) installed in Dom0 to provide vif1.0. Netfront
and Netback use a Xen event channel to send interrupts
and use shared memory to transmit network packets. For
hardware virtual machines (HVMs) that run an unmod-
ified OS in guest VMs, Dom0 emulates virtualized net-
work devices for guest VMs. By default, Dom0 creates
a Linux bridge that connects all of these virtual Ether-
net devices, so that it can multiplex all guest VMs’ net-
work traffic onto the underlying hardware. Instead of
simply bridging, it is more attractive for infrastructure
providers to connect the virtual interfaces to a software
switch, which can provide more functionality.

2.2 Dom0 Disaggregation
This default architecture with everything, including the
software switch, drivers, and device emulation, running
in Dom0, is not secure. As such, researchers have
worked toward disaggregating this functionality into
smaller, single-purpose and mostly independent compo-
nents that run in separate VMs.

The idea originates from the concept of driver domains
in Xen 2.0, where a backend driver can run in a separate
domain and multiplexes requests from guest VMs’ fron-
tends [9]. Then in Xen 3.3, the concept of stub domain is
introduced which extends the idea of driver domains to
other control VM’s components–namely the device em-
ulation.

More recently, Xoar [6] takes the idea of Dom0 dis-
aggregation further. It breaks Dom0 into single-purpose
components called service VMs and introduces the abil-
ity to restart components, which they call microreboot.
Microrebooting components to known-good snapshots
can reduce the temporal attack surface of individual com-
ponents and allow developers to reason about specific
software state. Sharing of service VMs by guests is
also configurable and auditable, making the whole sys-
tem more secure.
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Figure 2: Secure Software Switch Architecture. A separate domain, DomS, runs a software switch and handles all
network traffic. SecFront and SecEnd create a pair of connected virtualized Ethernet interfaces. The communication
between DomS and a guest VM does not involve the hypervisor or Dom0.

2.3 Disengaging the Hypervisor

With the idea of Dom0 disaggregation, these buggy com-
ponents are isolated from one another. However, for a se-
cure system in a multi-tenant environment, their reliance
on hypervisor involvement is another critical source of
concern. The large code base of today’s hypervisors
might contain bugs that can be utilized by malicious cus-
tomers, and thus be a threat to the whole system.

NoHype is an architecture that eliminates the hypervi-
sor attack surface by enabling the guest VMs to run na-
tively on the underlying hardware while maintaining the
ability to run multiple VMs concurrently [8] [7]. In No-
Hype, the guest VM does not interact with the hypervisor
or the control VM (Dom0) at all. NoHype pre-allocates
processor cores and memory resources for each guest
VM and performs all system discovery during bootup.
Guest VMs on NoHype only use virtualized I/O devices
and directly contact with the underlying hardware. Given
the need for using only virtualized I/O devices in No-
Hype, software switching is only possible by bouncing
packets through the network device over the PCI bus.
Then the communication between two co-located VMs
would traverse the PCI bus four times. This is not effi-
cient, nor is it scalable.

3 Architecture

As discussed above, there are two main security threats
to the communication between the software switch and
guest VMs: their communication requires hypervisor in-
volvement; the software switch is coupled with the con-
trol VM (Dom0). We propose an architecture here which
removes these two threats for a more secure cloud, as
shown in Figure 2. Our architecture removes the first

threat by confining the communication channel between
the software switch and a guest VM to a piece of shared
memory. Both only use polling on the shared memory
region to check for incoming packets, so that they do not
need hypervisor involvement. Our architecture removes
the second threat by putting the software switch in a sep-
arate domain, which we call Switch Domain (DomS).
DomS exchanges all necessary information with the hy-
pervisor and Dom0 during initialization, and then runs
without the hypervisor and Dom0 involvement. There-
fore any compromise of DomS would only produce very
limited damage to the whole system.

3.1 Eliminating the Hypervisor-Guest In-
teraction

In virtualization today, the communication between the
software switch and guest VMs requires hypervisor in-
volvement. The software switch and guest VMs rely on
the hypervisor to send interrupts to coordinate their op-
erations. However, the hypervisor is a potential attack
surface which can be utilized by malicious customers
to compromise the whole system. In order to remove
such a threat, we confine the communication between a
guest VM and software switch to a piece of shared mem-
ory. So, the communication channel is minimal as it is
composed of only some buffer pages with well-defined
packet formats. Furthermore, both sides use polling to
check for incoming packets and do not interact with the
hypervisor.

• Shared Memory: Each guest VM uses a shared
memory region, which is created during initial-
ization, to communicate with the software switch.
There are two first-in-first-out (FIFO) buffers in this
shared memory region, each of which is used for
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communication in one direction. For each FIFO
buffer, one VM writes network packets on one side
and updates the write pointer; the other VM reads
network packets on the other side and updates the
read pointer. Since the write pointer is only modi-
fied by one VM and the read pointer is only mod-
ified by the other VM, the modifications are lock-
free and do not need additional mechanisms to syn-
chronize or coordinate.

• Polling Only: Both sides, guest VMs and the soft-
ware switch, use polling to detect network packets.
They continuously check the FIFO buffers for in-
coming packets. They do not rely on any hypervisor
or Dom0 support. Recall that in native Xen, when
one VM sends out a packet using a frontend driver,
it uses the Xen event channel to inform the back-
end driver in Dom0 (or driver domain) of this new
packet. Compared to that, we eliminate all these in-
teractions in our architecture.

3.2 Limiting Damage From a Compro-
mised Switch

Another threat with today’s system is that the software
switch is coupled with the control VM (Dom0). Such
coupling can cause serious security problems to the sys-
tem. A malicious guest VM could conceivably compro-
mise the software switch through the shared memory re-
gion, and then control or crash the whole system.

In order to remove this threat, we introduce a Switch
Domain (DomS) which runs the software switch, as
shown in Figure 2. In this way, we further decouple
the software switch from the control VM. DomS has the
same privilege as a guest VM. In the runtime, there is
no interaction with Dom0. So even if the DomS is com-
pletely compromised, it does not affect Dom0. Dom0
can easily create a new VM to serve as a switch do-
main. Guest VMs only lose network connection for a
short time, and can gain network connection again after
the new switch domain is created. Compared to native
Xen, our approach greatly improves the availability of
the whole system.

The switch domain here follows the concept of Dom0
disaggregation, though doing it for network functional-
ity has largely been ignored before. The switch domain
handles all VM network traffic. We should notice that
the motivation of the switch domain we propose here is
different from that of a driver domain. The purpose of
the switch domain is to isolate the software switch, while
the purpose of the driver domain is to isolate the physical
device driver.

We also leverage the idea of NoHype to further isolate
DomS from the hypervisor. The function of the hyper-

visor in our architecture is only to pre-allocate resources
for booting VMs and clean the environments after shut-
ting down VMs. The challenge here is that after initial-
ization DomS cannot interact with the hypervisor to set
up shared memory with newly-created guest VMs. After
initialization, we don’t want it to interact with the hyper-
visor any more because that would introduce an avenue
for an attacker that has compromised the switch software
to attack the system software (Dom0 and the hypervi-
sor). If a new guest VM is created, it is difficult to create
a shared memory region between this newly-created VM
and DomS and then inform DomS of this information
without hypervisor involvement.

The approach we use here is to pre-allocate all pages
when booting DomS. These pages can be regarded as a
pool. A FIFO buffer consists of several pages in the pool.
When booting up a new guest VM, it just requests two
FIFO buffers from the pool and maps them into its own
address space. Then it can use these buffers to commu-
nicate with DomS. In this way, DomS does not need to
interact with the hypervisor after it has been set up.

4 Prototype

Our prototype is based on Xen 4.1, Linux 3.1 and Open
vSwitch 1.3. We make use of Xen to boot VMs. But after
that DomS and guest VMs do not interact with the hyper-
visor any more. Incorporating the prototype to NoHype
is part of our future work.

We use the split driver model in our prototype. We im-
plement two drivers, the SecFront driver installed by the
guest VM, and the SecBack driver installed by DomS.
For each VM, we use SecFront and SecBack to create a
pair of connected virtual Ethernet interfaces. The inter-
faces in DomS are connected to the software switch, as
shown in Figure 2. These drivers are kernel modules and
are loaded when booting up a VM. In order to further de-
scribe the details of how our prototype works, we explain
it step by step.

4.1 SecBack in Switch Domain
DomS is created before any guest VMs are created. In
our prototype, we use the function of Xen to create a
DomS. During its initialization, SecBack is loaded and
interacts with the hypervisor. SecBack allocates several
pairs of FIFO buffers which serves as a memory pool.
Each guest VM can request one pair of FIFO buffers,
each of which is used for communication in one direc-
tion. The total size of this pool is configurable, and is
fixed after bootup. Since the maximum number of guest
VMs running on the same physical machine is limited,
the pool does not consume too much memory. SecBack
uses Xen’s grant table mechanism to create a shared
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memory region between the DomS and each guest VM.
After creating the memory pool, SecBack uses hypercalls
to notify the hypervisor of this information. Then DomS
runs on its own and does not interact with the hypervisor
or Dom0 in the runtime.

4.2 SecFront in Guest VM
After initializing DomS, the system can receive re-
quests from customers and dynamically create and de-
stroy guest VMs. Again, we make use of Xen to set up
guest VMs. During the initialization of a guest VM, the
frontend driver, SecFront, is loaded by the guest VM’s
operating system. SecFront makes a request to the hyper-
visor for a pair of FIFO buffers in DomS. Since the FIFO
buffers have all been pre-allocated by DomS, the inter-
action here is only between the guest VM and the hyper-
visor, and does not involve DomS. SecFront also makes
use of the grant table mechanism in Xen to get access to
the FIFO buffers and then maps them into its own address
space. After that the guest VM can use the FIFO buffers
to communicate with DomS. After all these buffers have
been set up, the guest VM can use these buffers to com-
municate and does not need to interact with the hypervi-
sor or Dom0 in the runtime.

4.3 Network Communication
For each guest VM, the SecFront driver handles all net-
work traffic. The SecFront driver creates a virtualized
Ethernet interface in the guest VM. A network packet
in a guest VM is first sent to the SecEnd driver by the
SecFront driver. The SecEnd driver also creates a vir-
tualized Ethernet interface in DomS, and that interface is
connected to the software swtich. The packet received by
the SecEnd driver is then handled by the software switch
in DomS. If the destination is on the same physical ma-
chine, the software switch sends the packet to that VM
by the SecEnd driver. If the destination is on another
physical machine, the software switch sends it out using
physical NICs (or alternatively, to a driver domain when
then sends it out). The transmission between a SecFront
driver and a SecEnd driver is through the shared FIFO
buffers. One driver writes one packet to the buffer, and
the other driver uses polling to detect and receive it. In
this way, their communication does not involve the hy-
pervisor or Dom0.

5 Evaluation

In this section, we present the evaluation of our proto-
type. The test server has an Intel XEON W5580 proces-
sor with 8 cores and 6GB of RAM. We first analyze the
impact of FIFO size on network performance. Then we

analyze the impact of polling period on network perfor-
mance. Finally, we compare the network performance of
our system with native Xen.

In the evaluation, we create a DomS and a guest VM
on the test server, each of which is configured with 1 core
and 1 GB of RAM. We use netperf [10] to measure the
performance of our system.

5.1 Impact of FIFO Size

In this group of experiments, we evaluate the impact of
FIFO size on network performance. We fix the polling
period at 1ms, and vary the number of pages of each
FIFO buffer. A page is 4KB. We use netperf to measure
the throughput between DomS and the guest VM. The
message size is 1KB. The results are shown in Figure 3.

From the figure, we can see that the throughput in-
creases along with the FIFO size. With only 256 pages
(or 1MB of memory), the system effectively reaches the
maximum throughput. This means that even for very
high network performance, the system does not consume
much memory for communication between DomS and a
guest VM.
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Figure 3: FIFO Size vs. Throughput

5.2 Impact of Polling Period

In this group of experiments, we evaluate the impact of
polling period on network performance. We fix the num-
ber of FIFO pages at 256, and vary the polling period.
We also use netperf to measure the throughput between
DomS and the guest VM. The message size is 1KB. The
results are shown in Figure 4.

The figure shows that the throughput of the system in-
creases when the polling period decreases. This is rea-
sonable since when the system checks the shared mem-
ory region for coming packets more frequently, it can re-
ceive more packets at same time. But if the system polls
more frequently, it will consume more CPU resource.

5



Further exploration in the tradeoff between performance
and CPU overhead is part of our future work.
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Figure 4: Polling Period vs. Throughput

5.3 Comparison With Native Xen
Now we compare the networking performance of our
system with that of native Xen. In our system, we still
evaluate the throughput between DomS and a guest VM,
each of which is configured with 1 core and 1 GB of
RAM. We set the FIFO pages to 256. We set the polling
period to 0.05ms and 1ms. In native Xen, we create a
guest VM, and evaluate the throughput between Dom0
and the guest VM. The guest VM is configured with 1
core and 1 GB of RAM. We use different message sizes
to compare the performance of the two systems. The re-
sults are shown in Figure 5.

From the figure, we can see that our system has higher
throughput than native Xen when the message size is
between 64B and 4KB. This is because we simply use
dedicated memory for network communication and VMs
only use polling to check new packets, while in native
Xen, there are many transitions among guest VMs, the
hypervisor, and Dom0, which degrade the performance.
But our system does not outperform Xen when the mes-
sage size is bigger than 8KB. This is because Xen does
some optimization for transmission. It enables “zero-
copy” transmission of network data directly from user-
space buffers. This “zero-copy” optimization greatly re-
duces overhead for large messages sent in user space.
Our prototype does not have that feature now, though we
intend to incorporate it as part of future work. However,
even without that feature, our system still achieves good
performance, and performs even better than Xen on small
messages.

6 Conclusion and Future Work

In this work we improved security in a multi-tenant en-
vironment by enabling the use of a software switch in an
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Figure 5: Comparison With Native Xen

environment without hypervisor involvement. However,
while the attack surface is small, there is an attack sur-
face. While we eliminated the opportunity for damage
to the rest of the system due to a compromised software
switch, the software switch is still an important compo-
nent that guest VMs rely on. As such, for future work,
we intend to further improve the security of the system
with techniques for detecting when the switch has been
compromised and remediation of the vulnerability.
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