NaaS: Network-as-a-Service in the Cloud

Paolo Costa’ Matteo Migliavacca*

TImperial College London

Abstract

Cloud computing realises the vision of utility comput-
ing. Tenants can benefit from on-demand provisioning of
computational resources according to a pay-per-use model
and can outsource hardware purchases and maintenance.
Tenants, however, have only limited visibility and control
over network resources. Even for simple tasks, tenants
must resort to inefficient overlay networks.

To address these shortcomings, we propose Network-
as-a-Service (NaaS), a framework that integrates current
cloud computing offerings with direct, yet secure, tenant
access to the network infrastructure. Using NaaS, ten-
ants can easily deploy custom routing and multicast pro-
tocols. Further, by modifying the content of packets on-
path, they can efficiently implement advanced network
services, such as in-network data aggregation, redundancy
elimination and smart caching.

We discuss applications that can benefit from NaaS,
motivate the functionality required by NaaS, and sketch
a possible implementation and programming model that
can be supported by current technology. Our initial sim-
ulation study suggests that, even with limited processing
capability at network switches, NaaS can significantly in-
crease application throughput and reduce network traffic.

1 Introduction

Most cloud applications are distributed by nature and of-
ten involve significant network activity to perform their
operations. Yet, in today’s cloud computing offerings,
tenants have little or no control over the network. Tenants
can accurately select the number and types of computa-
tional and storage resources needed for their applications,
but they cannot directly access and manage the network
infrastructure (i.e., routers or switches). This means that
all packet processing must occur at the end hosts. Even
some relatively common communication operations, such
as a multicast, are not supported, requiring tenants to im-
plement them using inefficient application-level overlays.

Peter Pietzuch® Alexander L. Wolf"

*University of Kent

Triggered by lowering costs and increasing perfor-
mance, there has been a growing interest in software-
[19L20L 25,31} |32] and FPGA-based [29] programmable
routers. These proposals aim to replace the traditional
switches’ and routers’ operations (e.g., IPv4 forwarding)
with a custom implementation. We argue to go one step
farther: the flexibility provided by these implementations
should be offered to tenants to implement part of the ap-
plication logic in the cloud network.

In this paper, we motivate and describe Network-as-a-
Service (NaaS), a new cloud computing model in which
tenants have access to additional computing resources
collocated with switches and routers. Tenants can use
NaaS to implement custom forwarding decisions based
on application needs, for example a load-balancing any-
cast or a custom multicast service. They can process
packets on-path, possibly modifying the payload or cre-
ating new packets on the fly. This enables the design of
efficient in-network services, such as data aggregation,
stream processing, caching and redundancy elimination
protocols, that are application-specific as opposed to tra-
ditional application-agnostic network services.

In the next section we consider some existing appli-
cations that would benefit from NaaS. Based on this, in
Section [3] we discuss the functional requirements that we
see for NaaS and sketch a possible NaaS architecture and
programming model. In Section] using large-scale sim-
ulations, we show that a modest processing capability at
switches is sufficient to significantly increase performance
and overall data centre throughput. Finally, in Section [3]
we conclude with brief remarks on the future of NaaS.

2 Applications

The traditional model offered by cloud providers rigidly
separates computation in the end hosts from end-to-end
routing in the network. We argue that this separation hurts
both performance in the data plane and flexibility in the
control plane of the network fabric.

For example, applications that try to disseminate or

collect information using a black-box network can waste
bandwidth. Broadcast/multicast [14133|, content-based
networking [13] and content-centric networking [22] ser-
vices must send multiple copies of packets to all inter-
ested parties. By instead operating within the network,
they can conserve bandwidth by duplicating packets for
multiple destinations as late as possible. Applications that
perform complex event processing, stream processing [|15]]
or specialised data aggregation [4,|35] can compute in-
network aggregates incrementally, avoiding the collection
of all data at the destination end host, thereby greatly re-
ducing network traffic. Similarly, applications that use
caching mechanisms, such as redundancy elimination [8|]
and memcached [3|], can improve their efficiency by oper-
ating at internal network nodes instead of at end hosts.

Some applications address these issues by inferring the
physical data centre network topology and creating an
overlay network that is optimised for the communication
patterns of the application [[14]. Discovering the network
topology at the application level, however, is imprecise
and introduces probing overhead. More fundamentally, a
perfect mapping cannot be achieved. For instance, rack-
level aggregations cannot be computed directly by top-of-
rack (ToR) switches, but instead require computation by
an end host in a rack, leading to increased latency and
lower throughput due to the limited network capacity.

The current cloud model also struggles to provide
application-specific services that require flexibility in the
control plane. It forces tenants to circumvent limitations,
thus increasing development effort. For example, firewalls
and intrusion detection systems cannot be customised to
the set of applications deployed by tenants; traffic engi-
neering requires control over the scheduling of packets;
and multipath flows require steering of packets across dif-
ferent paths. Implementing such features in current data
centres is challenging. For instance, Orchestra [14] uses
multiple TCP flows to mimic traffic reservation policies,
and multipath TCP [30] relies on VLAN tags or ECMP to
exploit multiple paths between end hosts.

Table [T] summarises the applications mentioned above.
The second column lists the current solutions used by
those applications to work around network limitations. In
the remaining columns, we analyse the requirements that
these applications have in terms of their in-network mem-
ory footprint, packet-processing order dependencies, and
required functionality.

Applications vary as to the amount of in-network mem-
ory that they require. In-network caching, complex event
processing and stream processing typically have a large
memory footprint (MBs or GBs) because they must main-
tain application data for long periods of time. Data aggre-
gation, firewalls, and content-based networking need less
memory, only storing temporary results or rule policies
(MBs). Packet scheduling, multipath routing and multi-
cast have the lowest need for memory because they only

Application Current g Per- Packet
PP approach = packet operation
Broadcast/multicast [14/33] overlay KBs X duplicate
Content-based netw. [|13] overlay MBs X duplicate
Content-centric netw. [22] overlay MBs X duplicate
Complex event processing overlay GBs v modify
Stream processing [|15] overlay GBs v modify
Data aggregation [4,35] overlay MBs v modify
Deduplication [8] end-to-end GBs v modify
Distributed caching [3] end-to-end GBs v modity
Information flow control [28] middlebox KBs X forward
Stateful firewalls/IDS middlebox MBs v forward
Packet scheduling [|14] network KBs v forward
Multipath [30] network KBs X forward
Load-aware anycast various KBs v forward

Table 1: Taxonomy of data centre applications that
would benefit from in-network processing.

maintain comparatively small routing tables and per-flow
statistics. To support the most demanding applications a
NaaS facility must be provided with adequate memory re-
sources and the ability to manage their allocation.

NaaS implementations should exploit hardware paral-
lelism when processing packets within the network. Ap-
plications that make use of stateless packet operations,
such as multicast, multipath routing, or filtering (i.e.,
content-based networking and stateless firewalls) are eas-
ily parallelised by processing packets on multiple cores.
On the other hand, applications that update state on each
packet are more challenging to support.

Applications pose various demands on the network in
terms of supported packet operations, as shown in the last
column of Table[I] A first class of applications wants con-
trol over packet forwarding, potentially deciding on the
prioritisation of the output packets. Content dissemina-
tion (i.e., multicast and content-based networking) must
duplicate packets. The most general class of applications
needs the ability to process incoming packets arbitrarily
by modifying them or creating new packets. An archi-
tecture for realising a NaaS model must therefore support
these different in-network functions.

3 NaaS Overview

The goal of the NaaS model is to enable tenants to use
the network infrastructure in a data centre (DC) more effi-
ciently, addressing the shortcomings discussed in the pre-
vious section. In this section, we first motivate the func-
tionality that the NaaS platform should offer, then out-
line the requirements that the implementation should ful-
fil, and finally discuss our proposed architecture and pro-
gramming model.

3.1 Functionality

For simplicity, we present the three functions of NaaS sep-
arately, although in practice they are used together.

F1: Network visibility. Many of the applications pre-
sented in Section [2] are built on top of overlay networks.
To achieve high performance, great effort must be made
to optimise the mapping between the logical and physical
topologies. Since existing DCs are characterised by high
degrees of over subscription [10], taking into account rack
locality in the overlay layout can have a significant impact
on performance. Several solutions for inferring network
locality have been proposed. For example, Orchestra [|14]]
uses a sophisticated clustering protocol to discover the DC
topology and leverages this information to efficiently lay
down its tree-based overlay.

While black-box approaches are necessary in an open

environment such as the Internet, the DC provider has
an accurate knowledge of the topology and could make
this information available to tenants at no extra cost. This
would allow tenants to efficiently allocate overlay nodes
to VMs, without requiring expensive and often inaccurate
probing solutions.
F2: Custom forwarding. Network visibility would yield
a significant performance improvement for overlay-based
applications. However, there are some fundamental lim-
its to the performance achievable using overlay networks.
Since servers have usually only one NIC, even a simple
multicast tree with a fan out greater than one cannot be
optimally mapped to the physical network.

Therefore, the second functionality that NaaS should

provide is the ability to control packet forwarding at
switches. This would allow the implementation of cus-
tom routing protocols. All the applications in Table [T]that
are tagged as duplicate or forward would greatly benefit
from this functionality. Examples include content-based
and content-centric networking, but also tenant-specific
firewalls, packet scheduling and load-aware anycast.
F3: In-network processing. The main benefits of NaaS
come from providing in-network packet processing capa-
bilities as part of the cloud computing platform. For in-
stance, distributed computing platforms, such as MapRe-
duce [17] and Dryad [21]], as well as real-time streaming
systems and search engines [1}/2,/4,|11]] operate on large
amounts of data that are often aggregated between stages.
By performing in-network aggregation, it is possible to
significant reduce the overall traffic sent over the network,
thereby greatly reducing execution times. Note that these
aggregation functions are application-specific and, hence,
could not be provided as a traditional network service.

Another application that would benefit from this func-
tionality is a distributed caching service, similar to mem-
cached [3]]. For example, by leveraging the ability to in-
tercept packets on-path, it would be possible to implement
opportunistic caching strategies based on how many times

network
switch

Figure 1: NaaS architecture in a data centre.

a packet (or a collection of packets representing a given
item) has been seen by a given switch.

3.2 Requirements

For a NaaS model to be used in DCs, we believe that the
following requirements must be satisfied:

R1: Integration with current DC hardware. Exist-
ing DCs constitute a significant investment. The use of
commodity networking equipment, which typically lacks
programmability features, reduces the cost of large DC
deployments. For NaaS to become successful, it must not
require expensive, non-commodity, networking hardware.
R2: High-level programming model. NaaS should ex-
pose a programming model that is natural for software de-
velopers to use, hiding low-level details of network packet
processing and not exposing the full complexity of the
physical network topology in the DC.

R3: Scalability and multi-tenant isolation. Compared
to existing software-based router solutions [[19420,25}31}
32], NaaS must be able to support a multitude of different
applications, written by different organisations and run-
ning concurrently, unaware of each other. Therefore, to
be successful, a NaaS model requires strong isolation of
the different network resources offered to tenants.

3.3 Architecture

Figure |I| shows an example of the NaaS architecture.
Compared to existing cloud data centres, NaaS requires
that network devices be able to (efficiently) execute tenant
code. To logically separate the functionality of traditional
packet switching from the more advanced NasS function-
ality, we colloquially refer to the component responsible
of executing tenant code as a NaaS box. NaaS boxes can
be implemented as separate devices connected via high-
bandwidth links to the switches or could be integrated into
the same switch hardware.

NaaS boxes host instances of in-network processing el-
ements (INPEs) that carry out application-specific pro-
cessing of the packets that flow through them. For a given
application run by a tenant, each INPE executes the same
application logic on a subset of all NaaS boxes, i.e., the
ones along the routing paths between the tenant’s VMs in
the physical network topology.

Implementation. A seemingly natural choice to imple-
ment NaaS boxes would be to use OpenFlow switches.
However, OpenFlow typically assumes that only a tiny
fraction of the packets (e.g., only SYN packets) are
processed in software. Therefore, most commercially
available switches support very low bandwidth to the
OpenFlow controller (e.g., the HP 5406z1 supports only
17 Mbps [16]). Also, the expressiveness of OpenFlow fil-
ters is too limited to implement complex matching such as
that required by content-based networking [13]] and their
usage is typically restricted to packet headers.

NetFPGA [29] is at the other extreme in terms of packet
processing performance. By taking advantage of hard-
ware programmability, NetFPGA can support fast packet
processing (up to 40 Gbps in the latest release). How-
ever, the programming languages used by NetFPGA, e.g.,
VHDL or Verilog, are quite low level and require con-
siderable implementation expertise in order to achieve
high-performance custom packet processing. Further-
more, sharing FPGAs among tenants is currently not sup-
ported and remains an open research problem [27].

A more promising technology is represented by soft-
ware routers [[19,[20L/25,31]]. They have reportedly been
able to support rates of tens of Gbps and could be used
either alone, as a replacement for traditional hardware-
based switches, or in combination with them as in Side-
Car [32]. The NaaS model, however, introduces new chal-
lenges. First, rather than a handful of services as is typ-
ically the case with software routers [18]], NaaS-devices
must be able to support up to two orders of magnitude
more tenant applications. Second, these applications are
competing with each other for resources and are written
by different parties. This is critical because, contrary to
previous proposals on software routing, which assume co-
operating and trusted services, a NaaS model exposes in-
network processing to tenants. Hence, we must be able
to execute malicious or poorly written code without im-
pacting the performance of other tenants. Given the high
scalability requirements, traditional virtualisation tech-
nologies cannot be used but more lightweight and scal-
able solutions must be developed, possibly coupled with
network-level isolation mechanisms, e.g., [9)]. Addressing
these challenges is part of our current research agenda.

Network topology. We assume that network switches
are interconnected in a standard fat-tree topology [6]. We
chose the fat-tree because it provides full bisection band-
width and has reportedly been widely adopted in data cen-
tres [5]]. In addition, this topology requires only 1 Gbps
switches with a limited port count (e.g., for a 27,648-
server cluster, only 48-port switches are needed). This is
important for our design because it means that the worst-
case processing rate that the NaaS boxes must support
is limited to tens (instead of hundreds) of Gbps (e.g.,
48 Gbps for a 27,648-server cluster).

3.4 Programming Model

To implement INPEs we are investigating different pro-
gramming models, ranging from rather low-level and
highly expressive languages (e.g., Click [23] and those
based on the Active Network model [12}|34]]) to higher-
level languages (e.g., based on declarative [24] or func-
tional [26] models), which may be easier to use.

Our current approach is to expose a constrained pro-

gramming model to tenants. By limiting the program-
ming model, we simplify implementation (R2), while sup-
porting efficient execution of INPEs on NaaS boxes (R3).
In particular, our goals are (1) to improve concurrency
when executing an INPE by dividing processing into dis-
tinct pipelined phases; (2) to increase parallelism by ex-
ecuting multiple instances of an INPE on different pro-
cessor cores, while permitting out-of-order processing of
data chunks; and (3) to reduce the memory footprint of an
INPE so that the efficiency of L2/L.3 cache of a processor
core can be improved.
NaaS API. VMs and NaaS boxes exchange data streams,
which are split into application-specific data chunks. For
legacy applications, which are unaware of NaaS, data
chunks may simply map to standard Ethernet frames.
Each NaaS box and VM have a unique NaaS ID per ten-
ant. An application running in a VM can use a send_chunk
NaaS API call to send a data chunk of an arbitrary size ei-
ther to a specific NaaS box or to another VM.

A tenant registers an INPE on all NaaS boxes for a spe-
cific application by calling the reg_chunk_inpe function,
passing a filter expression and the callback to be asyn-
chronously executed when a data chunk is receivedﬂ

All the traffic that does not match any of the above fil-
ters is forwarded directly by the switch as in the current,
non-NaaS setup. Therefore, no additional overhead is in-
troduced for non-NaasS flows.

NaasS topology. At deployment time, the cloud provider
passes the network topology that interconnects NaaS
boxes and VMs to INPEs. This allows INPEs to change
their behaviour based on their location within the network.

Since the topology is only exposed to INPEs at run
time, the implementation of an INPE cannot depend on a
particular topology. This gives the cloud provider the flex-
ibility to change the topology or expose a simplified net-
work topology to tenants, with only a subset of all avail-
able NaaS boxes in the DC. We assume that the topology
does not change at run time and therefore INPEs do not
support updates to the topology once instantiated.

INPE API. To reduce contention and enable efficient
pipelining, we propose to divide the processing logic of
an INPE into a set of phases. When a new data chunk
is received in a network stream bound to an INPE, the
NaaS box triggers a callback to the process_chunk func-

! Data chunks can be batched to improve performance, similar to what
is done with interrupt mitigation.

tion of the INPE instance. This function is implemented
by application developers as a sequence of four phases:
(1) In the Read phase, for each received chunk, the INPE
can inspect the NaaS ID of the source that originally sent
the data chunk and the ID of the previous NaaS box that
processed the chunk. (2) INPEs can use a fixed amount of
memory that is maintained by the NaaS box as a key/value
store in the State phase. For example, to support aggrega-
tion across multiple chunks, the INPE can read and up-
date an aggregation value. (3) In the Transform phase, the
INPE can modify the received chunk data or create new
chunks. (4) Finally, the INPE forwards the chunks on the
network to the next NaaS ID using a call to send_chunk in
the Forward phase.

The INPE processing state is explicitly managed by the
NaaS box through a key/value store and can only be ac-
cessed during the State phase. This allows scheduling
phases to reduce synchronisation costs for memory ac-
cesses to shared structures and to benefit from prefetching,
allowing INPEs to maximally exploit L2/1.3 caches.

If the application tolerates out-of-order processing of
data chunks, multiple data chunks can be processed in par-
allel by instantiating several INPEs instances on different
processor cores.

4 Feasibility Analysis

We use simple flow-level simulations to evaluate the ben-
efits and the performance requirements of the NaaS boxes.
Albeit preliminary, our results suggest that a relatively
modest processing capability of the NaaS boxes is already
sufficient to significantly improve tenant applications per-
formance. Further, we show that, since the overall traffic
is reduced, the performance of non-NaaS users increases
too, due to the higher bandwidth available in the cluster.
Simulation setup. We adopted a setup similar to the one
used in [30]. We use a 8,192-server fat-tree topology [6],
which uses only 32-port 1 Gbps switches. Each switch
is equipped with a NaaS box. In this experiment, we
want to quantify the trade-off between the performance
increase and the processing resources needed by a NaaS
box. Therefore, in our simulator, we assume that the rate
at which the NaaS boxes can process packets is bounded
by a parameter R,,,. Depending on the actual implemen-
tation of the NaaS box and its bottleneck, R,,,, can be in-
terpreted in different ways, e.g., the bandwidth of the bus
connecting the switch to the processing unit like in Server-
Switch [25]], the capacity of the links connecting the NaaS
server to the switch like in SideCar [32] or, ultimately, the
maximum processing rate achieved by the CPU. Here, we
are not interested in comparing different implementations
but just in understanding the minimum requirements that
any NaaS implementation must fulfil.

We use a synthetic workload, consisting of approx-
imately 1,000 flows. We assumed that 80% of these

2000 T T T T T T T
1600
1200

Completion time (s)
oo
o
o

No NaaS 1 2 4 8 16 32
NaaS maximum processing rate R,,, (Gbps)

(a) Completion time.

T 08 e
2 06 No NaaS —— 8 Gbps ---- |
w04 1 Gbps 16 Gbps -~]
8 0.2 ¢ 2 Gbps - 32 Gbps -
P ‘ _ 4Gbps |
0 200 400 600 800 1000

Flow completion time (s)
(b) CDF of flows’ completion time for different R,;4y.

Figure 2: Total completion time and flows’ individual
completion time against different values of R,,,,,.

belong to non-NaaS aware applications (e.g., standard
TCP flows), and, therefore, their packets are routed only
through switches, not through NaaS boxes. Based on the
traces presented in [10]], we modelled the flow inter-arrival
times using a Poisson process with mean of 1 ms. The
size of each flow is drawn by an exponential distribution
with mean equal to 500 MB. The rest of the traffic is a
mix of NaaS-aware applications, which include a multi-
cast service [33]], an aggregation service, inspired by the
partition/aggregation pattern used by search providers [7],
and a caching application, akin to the one used in [25].

We varied R, from 1 Gbps to 32 Gbps. Since we used
only 32-port 1 Gbps switches, 32 Gbps is the highest rate
at which packets can be received by the NaaS box. We
also run an additional configuration, No NaaS, which we
use as baseline. In this configuration, no NaaS boxes are
used and the multicast and aggregation traffic is routed
using tree-based application-level overlays.
Simulation Results. The graph in Figure 2(a)| shows
the total (simulated) completion time of our experiment.
This is measured from the start of the simulation until
when the last flow completes. Across all values of Ry
the use of NaaS significantly reduces the experiment com-
pletion time. NaaS-aware applications are able to reduce
the number of packets sent over the links and, hence, im-
prove the overall network utilisation. Interestingly, even
if the processing throughput of the NaaS box is limited
to 1 Gbps, the completion time is reduced by 65% (re-
spectively 96.7% for R, = 16 Gbps). The reason is
twofold. First, only a small fraction of the total traffic is
NaaS-aware, and, hence, the bandwidth required to pro-
cess NaaS-aware traffic is lower. Second, in many cases,
the benefits deriving from reducing the traffic compensate
for the slower processing rate.

In Figure we plot the cumulative distribution of
individual completion time of all flows, including non-
NaaS ones. The graph shows that NaaS is not only bene-

ficial for NaaS-aware tenants but also for the rest. Indeed,
by reducing the number of packets sent over the links, not
only NaaS-aware applications’ performance improves but
also the overall data centre throughput increases because
more bandwidth is available to non-NaaS users. For in-
stance, with R,,, = 1 Gbps, the median flow comple-
tion time is reduced by 63.18% (respectively 93.07% for
Ryax = 16 Gbps).

5 Conclusions

Although we are aware of the admittedly simple model
used in the simulations, the results in the previous sec-
tion are encouraging. Recent work [19,[20,31] showed
that achieving rates equal to or higher than 10 Gbps on
a commodity PC is possible. This makes us believe that
implementing NaaS on existing hardware is feasible.

However, before we can expect to see more widespread
adoption of NaaS, a range of research challenges have to
be overcome. These include scalability, performance iso-
lation and programmability.

Also, cloud providers will require new pricing mod-
els for NaaS offerings. It is yet unclear if simple cost
model based on processor cycles used and network bits
transferred is appropriate to meter the execution of IN-
PEs. However, we observe that, as shown in the previ-
ous section, NaaS does not need a widespread adoption
to be cost-effective. Indeed, providing a small-fraction of
applications with more fine-grained control over network
resources allows a more efficient usage of the network,
which results in improved performance for every tenant.

Acknowledgements. This work was supported by grant EP/F035217
(“DISSP: Dependable Internet-Scale Stream Processing”) from the UK
Engineering and Physical Sciences Research Council (EPSRC), and by
the U.S. Army Research Laboratory and the U.K. Ministry of Defence
under Agreement Number W911NF-06-3-0001. The views expressed
are solely those of the authors and not of the supporting organisations.

References

[1] Big Data in Real Time at LinkedIn. http://goo.gl/60zCN.

[2] Google Tree Distribution of Requests . http://goo.gl/RpB45.
[3] Memcached. http://memcached.org,

[4] Twitter Storm. http://goo.gl/Y1AcL.

[5] James Hamilton’s Blog, 2011. http://bit.1ly/e3LVu8,

[6] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable,

Commodity Data Center Network Architecture. In SIGCOMM
(2008).

[71 ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J.,
PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN,
M. Data Center TCP (DCTCP). In SIGCOMM (2010).

[8] ANAND, A., SEKAR, V., AND AKELLA, A. SmartRE: An Archi-
tecture for Coordinated Network-Wide Redundancy Elimination.
In SIGCOMM (2009).

[9] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROWSTRON,

A. Towards Predictable Datacenter Networks. In SIGCOMM

(2011).

BENSON, T., AKELLA, A., AND MALTZ, D. A. Network Traffic

Characteristics of Data Centers in the Wild. In IMC (2010).

BORTHAKUR, D., GRAY, J., SARMA, J. S., MUTHUKKARUP-

PAN, K., SPIEGELBERG, N., KUANG, H., RANGANATHAN, K.,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

MoLKovV, D., MENON, A., RASH, S., SCHMIDT, R., AND
AIYER, A. Apache Hadoop Goes Realtime at Facebook. In SIG-
MOD (2011).

CALVERT, K. L., GRIFFIOEN, J., AND WEN, S. Lightweight
Network Support for Scalable End-to-End Services. In SIGCOMM
(2002).

CARZANIGA, A., AND WOLF, A. L. Forwarding in a Content-
Based Network. In SIGCOMM (2003).

CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M. I., AND
STOICA, I. Managing Data Transfers in Computer Clusters with
Orchestra. In SIGCOMM (2011).

CRANOR, C., JOHNSON, T., SPATASCHEK, O., AND
SHKAPENYUK, V. Gigascope: A Stream Database For Net-
work Applications. In SIGMOD (2003).

CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., YALAGAN-
DULA, P., SHARMA, P., AND BANERJEE, S. DevoFlow: Scal-
ing Flow Management for High-Performance Networks. In SIG-
COMM (2011).

DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI (2004).

DOBRESCU, M., ARGYRAKI, K., AND RATNASAMY, S. Toward
Predictable Performance in Software Packet-Processing Platforms.
In NSDI (2012).

DOBRESCU, M., EGIL, N., ARGYRAKI, K., CHUN, B.-G., FALL,
K., TANNACCONE, G., KNIES, A., MANESH, M., AND RAT-
NASAMY, S. RouteBricks: Exploiting Parallelism To Scale Soft-
ware Routers. In SOSP (2009).

HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader: A
GPU-Accelerated Software Router. In SIGCOMM (2010).

ISARD, M., BuDIU, M., YU, Y., BIRRELL, A., AND FETTERLY,
D. Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks. In EuroSys (2007).

JACOBSON, V., SMETTERS, D. K., THORNTON, J. D., PLASS,
M. F., BRIGGS, N. H., AND BRAYNARD, R. L. Networking
Named Content. In CoNEXT (2009).

KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click Modular Router. TOCS 18, 3
(2000).

Loo, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P.,
ROSCOE, T., AND STOICA, I. Implementing Declarative Over-
lays. In SOSP (2005).

Lu, G., Guo, C., L1, Y., ZHOU, Z., YUAN, T., WU, H., XIONG,
Y., GAO, R., AND ZHANG, Y. ServerSwitch: A Programmable
and High Performance Platform for Data Center Networks. In
NSDI (2011).

MADHAVAPEDDY, A., HO, A., DEEGAN, T., SCOTT, D., AND
SOHAN, R. Melange: Towards a "functional” Internet. In EuroSys
(2007).

MADHAVAPEDDY, A., AND SINGH, S. Reconfigurable data pro-
cessing for clouds. In FCCM (2011).

MIGLIAVACCA, M., PAPAGIANNIS, 1., EYERS, D. M., SHAND,
B., BACON, J., AND PIETZUCH, P. DEFCon: High-Performance
Event Processing with Information Security. In USENIX ATC
(2010).

NAous, J., GIBB, G., BOLOUKI, S., AND MCKEOWN, N. NetF-
PGA: Reusable Router Architecture for Experimental Research. In
PRESTO (2008).

RaIciu, C., BARRE, S., PLUNTKE, C., GREENHALGH, A.,
WISCHIK, D., AND HANDLEY, M. Improving Datacenter Perfor-
mance and Robustness with Multipath TCP. In SIGCOMM (2011).
R1zz0, L., CARBONE, M., AND CATALLI, G. Transparent Ac-
celeration of Software Packet Forwarding Using Netmap. In IN-
FOCOM (2012).

SHIEH, A., KANDULA, S., AND SIRER, E. G. SideCar: Build-
ing Programmable Datacenter Networks without Programmable
Switches. In HotNets (2010).

VIGFUSSON, Y., ABU-LIBDEH, H., BALAKRISHNAN, M., BIR-
MAN, K., BURGESS, R., L1, H., CHOCKLER, G., AND TOCK, Y.
Dr. Multicast: Rx for Datacenter Communication Scalability. In
EuroSys (2010).

WETHERALL, D. Active Network Vision and Reality: Lessons
from a Capsule-Based System. In SOSP (1999).

YU, Y., GUNDA, P. K., AND ISARD, M. Distributed Aggregation

for Data-Parallel Computing: Interfaces and Implementations. In
SOSP (2009).

http://goo.gl/6OzCN
http://goo.gl/RpB45
http://memcached.org
http://goo.gl/Y1AcL
http://bit.ly/e3LVu8

	Introduction
	Applications
	NaaS Overview
	Functionality
	Requirements
	Architecture
	Programming Model

	Feasibility Analysis
	Conclusions

