
Building Access Oblivious Storage Cloud for Enterprise

Hyunseok Chang Murali Kodialam T. V. Lakshman Sarit Mukherjee Limin Wang
Bell Laboratories, Alcatel-Lucent

Murray Hill, NJ, USA

Abstract

An enterprise uses VPNs, leased from a service provider,
to interconnect multiple sites that are geographically
apart. The service providers, as they start provid-
ing cloud-based services, are finding themselves well-
positioned to providing storage services in the cloud for
an enterprise, and make the service accessible through
the existing VPN connections. Enterprise users, how-
ever, are used to fast, ubiquitous and guaranteed access to
the storage from any enterprise location. This is achieved
by having network attached storage (NAS) connected to
the enterprise network. In order to maintain the same
level of service, when the enterprise storage is moved
into the cloud, the service provider must ensure that the
storage is accessible from all the enterprise locations as
if it is connected to the enterprise network itself, regard-
less of the actual user or the file. In this paper, we present
a system that enables cloud storage service with guaran-
teed performance from all published access locations of
an enterprise. Knowing only the limits on users access
rates or their access bandwidth limitations, we develop
an access oblivious storage provisioning and placement
strategy. Our system uses a combination of chunking,
data replication and intelligent data placement to guaran-
tee performance to accessing the storage in an access in-
dependent manner without significant over-provisioning.

1 Introduction

A typical enterprise of today manages its computing,
storage and networking needs, i.e., IT services, in-house.
It procures all the computing, storage and networking
that its users require, and maintains them within the en-
terprise in one or a few geographically distant locations.
All the enterprise locations are usually interconnected
using VPN connections leased from a service provider.
This model allows the enterprise to make the resources
available to any user from any location using the enter-
prise network, and gives the enterprise complete control
on the resources. This model, however, is both capital
and operational expense intensive. Moreover, since the

demand for IT resources is not known a priori, appro-
priate sizing of the resources is extremely difficult. To
make the matter even worse, the demand for resources
could vary widely at different time of the day or days
of the month. Cloud computing, on the other hand, pro-
vides a flexible model in allocating computing and stor-
age resources so that resources can be added or removed
depending on the demand.

As mentioned before, an enterprise is used to the
VPN outsourcing model to interconnect multiple loca-
tions over a service provider’s geographically distributed
network. The service providers’ desire to expand their
footprint into the compute and storage cloud business fits
very well with enterprise’s logical choice for outsourc-
ing its compute and storage resources into the cloud. In
such a scenario, an enterprise may maintain a skeletal
enterprise IT services at its location(s), and outsource
the bulk, along with the VPN, into the cloud maintained
by the service provider. Access to the cloud-based com-
pute and storage resources is enabled by the leased VPN
connections into the service provider’s distributed cloud.
The biggest challenge for the enterprise IT services in
this case is how to leverage the service provider’s cloud
services to satisfy the computing, storage and networking
needs of its users. Several aspects of user expectations
from IT services must be satisfied when virtual resources
in the cloud become part of the enterprise:

• Isolation: The enterprise’s virtual resources in the
cloud must be isolated from the other users of the
cloud, and must be accessible by the users of the en-
terprise in question only.

• Location independence: The enterprise users must
be able to connect to the virtual resources in the cloud
from any enterprise location.

• Seamlessness: An enterprise user must not see any
difference between accessing an in-house resource
vs. accessing one in the cloud, and access resources
as if they are connected to the enterprise network.

In this paper we focus on using virtual storage re-
sources in the service provider cloud to satisfy an en-
terprise’s storage needs. Traditionally an enterprise con-



nects NAS equipment to its LAN to enable a shared file-
based storage for its users. The enterprise LAN provides
enough bandwidth to each user to ensure fast file access,
which emulates the experience of a directly connected
storage. When an enterprise outsources the storage into
the cloud, it must ensure the same level of isolation, lo-
cation independent and seamless access to the storage.
Different techniques have been proposed [4, 8] to extend
an enterprise LAN into the cloud with all the security
and isolation of a LAN. In this paper we assume that
storage isolation is provided by hooking up the (virtual)
storage device for the enterprise to its emulated LAN in
the cloud, and propose a solution to ensure location in-
dependent and seamless access to the storage.

1.1 Our Contribution

We present a novel architecture and a prototype sys-
tem for storage provisioning and placement in a service
provider’s cloud that augments service provider’s VPN
service with enterprise grade storage services. It enables
a bandwidth guaranteed, seamless and location indepen-
dent file system in the provider’s cloud. By using a com-
bination of data chunking, data replication and intelligent
data placement, it handles the access uncertainty in file
system access and thereby provides seamlessness and lo-
cation independence. We develop a linear programming
formulation and a primal-dual algorithm for the access
oblivious placement of enterprise data that achieves the
placement without significant over-provisioning of the
cloud resources. To the best of our knowledge, this is the
first approach for designing a cloud storage that provides
guaranteed performance without prior knowledge of file
access patterns. The proposed architecture has several
advantages over traditional distributed file systems. First,
its access obliviousness allows data placement to not
change with dynamic file access patterns. New users can
join easily at any location and new data can be ingested
into the cloud so long as the bandwidth demands remain
within the VPN service limits. The static data placement
also translates into a significantly reduced operating cost
of running a storage cloud, by eliminating the need for
monitoring and constantly shuffling the data in the cloud
to meet performance requirements with changing access
patterns. Finally, it is easy for the storage cloud to deter-
mine if an enterprise’s request can be accepted into the
system with the required performance guarantees, which
makes admission control decisions straightforward.

2 Enterprise Storage Cloud Architecture

Fig. 1 shows the overall architecture of a distributed stor-
age cloud augmented to the VPN service enabled by the
service provider. At the edge of the cloud there are edge

Figure 1: Architecture of the storage cloud.

nodes through which different sites of the enterprise con-
nect to avail the VPN service. At the time of leasing
the VPN service, the enterprise specifies the bandwidth
for the VPN connection, which is also used to access the
storage in the cloud. The architectural details of the VPN
service is beyond the scope of this paper.

The distributed storage cloud is an interconnection of
geographically dispersed storage nodes. It shares the
same edge nodes as the VPN service. The enterprise
accesses the storage using the pre-negotiated VPN con-
nections from its different sites. Thus, the bandwidth to
access storage is limited by the negotiated bandwidth of
a VPN connection. The service provider provisions some
of the storage nodes to create virtual storage for the sole
use of the enterprise. From then onwards the storage
cloud guarantees that any user of the enterprise is able
to access any data of the enterprise from any of the en-
terprise sites using the corresponding VPN connections.
This qualifies the service as an enterprise grade service.

The crux of the problem is to select a set of storage
nodes from a distributed cloud, for housing the enter-
prise data in such a way that provides guaranteed ac-
cess to the data without a priori knowledge of user ac-
cess pattern, access location and actual accessed files.
One solution for the service provider is to track the ac-
cess pattern of the data and move data around the stor-
age nodes so that access can be guaranteed. However,
this is not a very practical solution as it involves move-
ment of a large amount of data in real-time within the
storage cloud. Another option would be to significantly
over-provision the network so that there is no bottleneck
in the delivery capacity. This is of course not an attrac-
tive option when revenue-per-bit is amongst the lowest
for the service provider network. Ideally, a storage cloud
must have the following characteristics:

• The delivery network must scale with the number of
users and the amount of data.

• There should be no bottleneck at the storage nodes
independent of the files being accessed.

• There should be no bottlenecks at the network links
independent of the accessed files.



Figure 2: An example of enterprise storage provisioning
and file access.

Meeting these requirements essentially will give each
user the perception that all files are stored on a local
server. So the best policy is to provision and place the
storage in a way that is oblivious to the access pattern of
the users. This type of service contract has several advan-
tages for the enterprise. First, the service contract effec-
tively eliminates the access uncertainty problem for the
enterprise and mitigates the location uncertainty problem
significantly. The service model also makes it easy for
the enterprise to renegotiate, explicitly or implicitly, its
contract by either augmenting or cutting back the access
rate at the different edge nodes.

2.1 Storage Provisioning and File Access

If there is only one copy of every file at some single stor-
age node, and if this file is popular, then the network
close to this storage node usually becomes a bottleneck
for data delivery even if there is enough server capacity
at the storage node for serving out the data. Two different
mechanisms can be employed to avoid these congestion
bottlenecks in the network.

• Data Replication:Data replication is the most com-
monly used method to distributing the network load
across various links and thereby reducing the load on
any individual link.1 Multiple copies of each file are
stored at different storage nodes and a request for the
file is served from any one of the nodes that has a
copy of the file. A commonly used strategy is to pick
the closest storage node that has the file.

• Data Chunking: In data chunking each file is split
into several smaller chunks which may be stored at
different storage nodes. When a file is requested,
all the chunks are simultaneously downloaded to the
user, assuming their locations are known. Chunking
enables the load to be distributed across the network.

With data replication and chunking, we now focus on
how an enterprise with multiple sites accesses the out-

1While data replication can also be used for handling storagenode
redundancy, we do not consider storage fault tolerance in this paper.

sourced cloud storage using the VPN connection. We
depict an example scenario in Fig. 2 where an enterprise
subscribes to the VPN and the storage service at three lo-
cations, L1, L2 and L3. Each site connects to the cloud
at the close-by edge nodes, U1, U2, and U3, respectively,
via the VPN connection. Assume that storage for the en-
terprise is provisioned into four storage nodes, C1, C2,
C3 and C4. All data belonging to the enterprise is split
into two chunks, and all chunks are replicated twice. In
the figure, we show how two files P and Q can be stored
in the storage nodes. When a user from a site L1 ac-
cesses either file, the request goes through the VPN con-
nection to the corresponding edge node U1. It is the edge
node that acts as a gateway into the file system and hides
all the provisioning details from the users. In this case,
U1 maintains a table per enterprise that directs it to get
two chunks, one from C1 and another from C2 for any
file accessed by the enterprise in question from site L1.
Similarly U2 and U3 get the chunks from (C3, C4) and
(C3, C2), respectively. To keep the cloud resource usage
limited, we assume that an edge node selects the closest
storage nodes to retrieve the chunks. However, it is easily
extensible to other strategies like tunneling into a specific
storage node which may be farther away. After an edge
node retrieves the chunks of a file, it delivers them to the
user of the enterprise. Typically the edge node runs a
network file system proxy that the user mounts. To make
the architecture scalable, an edge node does not partake
in any file system operations, other than proxying for the
storage nodes in the cloud. The storage nodes are respon-
sible for all file system operations including maintaining
multiple copies consistent.

Note some of the features of the example storage pro-
visioning. The storage nodes that an edge node accesses
for a particular enterprise is always fixed regardless of
the file being accessed. Moreover, if we keep the chunk-
ing ratio uniform across the files, i.e., size(P1)/size(P2)
= size(Q1)/size(Q2) =r (say), then the ratio of traffic be-
tween the edge node and storage node paths remains atr,
i.e., traffic(U1, C1)/traffic(U1, C2) =r. This makes the
storage provisioning oblivious to the actual file per se. In
the following section we describe our access oblivious
provisioning methodology in more detail.

3 Access Oblivious Storage Provisioning
and Placement

We model the storage cloud of Fig. 1 to consist of a set
of storage nodesC, a set of edge nodesU and a set
of E links interconnecting them. Enterprise data, i.e.,
files etc., is stored and delivered from the storage nodes
whose locations are fixed and known. While both data
uploads and downloads (i.e., write and read operations



into the file system, respectively) are handled by the stor-
age cloud, for simplicity we describe the case of down-
load in the rest of the paper. Note that upload can be
handled in a similar fashion.

The enterprise connects to the cloud at one of the edge
nodes. All the data in the cloud flows from the nodes
in C to the nodes inU and then to the enterprise site.
We assume that the maximum rate at which data can be
downloaded at the edge nodeu is upper bounded. Typ-
ically, this upper bound is the capacity of the VPN con-
necting the enterprise site into the cloud at edge nodeu.
Let Du be the maximum permitted download rate atu.
We useF to represent the set of files currently present in
the cloud that can be accessed by an enterprise user. The
set of files in the system is, therefore, dynamic, andF
just represents the current snapshot of the set of files. A
file is stored in one or more storage nodes belonging to
C. Upon a request from the user, the file is delivered to
the user at an edge node using the shortest path routing
within the cloud. The currently available capacity of a
link e is denoted asc(e) which is the original link capac-
ity reduced by the bandwidth reservations made on the
link for all accepted enterprise customers. An enterprise
is admitted by the cloud service provider only if there is
sufficient bandwidth available to process any access pat-
tern for the files. Once an enterprise is admitted, the re-
maining bandwidth on the network links are updated. In
order to compute the bandwidth requirement for down-
loading the file, we assume that there is some quality of
service agreement between the enterprise and the cloud
storage provider where the cloud storage provider guar-
antees the minimum rate at which a file will be down-
loaded from the storage nodes to the edge node where
the enterprise site’s VPN connects to. LetRf denote the
download rate for filef . Let N f

u (t) represent the number
of requests for filef being transmitted to edge nodeu at
time t. The total bandwidth requirement atu at timet is
then∑ f∈F N f

u (t)Rf . Since the maximum download rate
at u is Du, we know that

∑
f∈F

N f
u (t)Rf ≤ Du ∀u, t. (1)

As stated earlier, chunking and replication are two mech-
anisms that can be used for efficient dissemination of
data in network. We use both these mechanisms in or-
der to devise an access oblivious scheme. We assume
that each file in the network is chunked into at mostp
chunks, and that each of these chunks of each file is repli-
catedr times. We now consider the problem of design-
ing an access independent cloud based storage service
mechanism. The decisions that have to be made are: (1)
the size of each chunk, (2) the storage nodes where each
replicated chunk is placed, and (3) the storage node from
which each chunk of a requested file is to be downloaded

by a given enterprise edge node. We assume that all files
are split into the same number of chunks. Letβk repre-
sent the fraction of each file that is in chunkk. We im-
pose the constraint∑k βk = 1 to ensure that the entire file
is chunked. In addition we impose the constraintβk ≥

1
p

in order to ensure that each file is split into at mostp
chunks. (This also ensures that none of the chunks is
too small). Note that chunkk is replicatedr times. We
place replicaj of chunkk of all files in the same loca-
tion. The decision variables are the size of the chunks
and where each replica of each chunk is placed. Since
there are|C| storage nodes and each chunk is replicated
r times, there areq =

(

|C|
r

)

replication choices. We call
each of these sets areplication group. We useG j to rep-
resent the set ofr nodes in replication groupj. If chunkk
is stored in replication groupG j , theneachnodec∈ G j

stores chunkk of everyfile. In order to keep notation
simple, we assume that the chunk id and the replication
group id are the same. In other words, we assume that
chunk j is stored in replication groupG j . When an edge
nodeu downloads a fractionβ j of a file from replica-
tion group j we assume that the download is done from
some nodec ∈ G j that is closest tou. In other words,
nodeu downloads a fractionβ j from nodec ∈ G j such
that|SP(c,u)| ≤ |SP(c′,u)| for all c′ ∈ G j , whereSP(., .)
denotes the shortest path between two nodes. We use
SP(G j ,u) to denote the set of links inSP(c,u) where
c is closest node inG j to nodeu. This assumption of
download from the closest replicate is done purely for
convenience of implementation. The solution technique
can be extended easily to solve for the case where the
file can be downloaded from multiple nodes in the same
replication group. Since each node downloads a frac-
tion β j of every file from replication groupj, the total
flow rate from replication groupj to a nodeu at timet
is ∑ f∈F β jN

f
u (t)Rf whereN f

u (t) represents the number
of copies of file f being transmitted to nodeu at timet.
From Equation [1] we can write:

∑
f∈F

β jN
f
u (t)Rf = β j ∑

f∈F

N f
u (t)Rf

≤ β jDu ∀u,t.

Therefore, the amount of capacity to be provisioned from
replication groupj to nodeu is upper bounded byβ jDu.
Let H(e) denote the set of (replication group, edge node)
pairs that use linke to download data. In other words,
H(e) = {(G j ,u) : e ∈ SP(G j ,u)}. The maximum flow
on link e will then be ∑(Gj ,u)∈H(e) β jDu. We can now
formulate the problem of determining the the optimum
chunking and replication as a linear programming prob-
lem. The objective of the linear programming problem is
to determine how the files are chunked and where these
chunks are replicated in order to minimize the maximum
link utilization represented byλ .



The linear programming problem to determine the op-
timal chunking parameters is the following:

minλ

∑
(Gj ,e)∈H(e)

β jDu ≤ λ c(e) ∀e∈ E.

∑
j

β j = 1

β j ≥
1
p

∀ j.

If the optimal solution value to this problem isλ ≤ 1,
then the enterprise can be admitted with the access obliv-
ious service guarantee. Ifλ > 1, then the enterprise
can be admitted if the maximum download rate is scaled
down toDu/λ at each enterprise edge nodeu. If there
are storage amount constraints at the any of the storage
nodes, it can be easily incorporated into the linear pro-
gramming formulation. It is also possible to solve a re-
formulation of the above linear programming problem
using a simple primal dual algorithm. This is omitted
due to lack of space.

4 Prototype Implementation and Experi-
mentation

We have implemented a prototype enterprise storage
cloud with guaranteed performance using our access
oblivious provisioning and placement solution. Our pro-
totype system takes enterprise’s service level agreement
(SLA) inputs when admitting a new customer. These
SLAs include enterprise’s storage capacity requirement,
VPN edge locations and more importantly, expected
guaranteed access rates at different edge sites. Next, our
access oblivious provisioning algorithm devises a place-
ment plan for the enterprise based on the SLAs. This
plan then gets executed in our storage cloud, and ac-
cess to the cloud data is made available to the enterprise
through proxies running on the edge nodes. Currently,
these proxies expose an NFS interface.

Our storage cloud prototype, shown in Fig. 3 is built
on top of Ceph [7]. Ceph is an open source, scalable,
high-performance object-based distributed network file
system. In Ceph, files are striped onto multiple ob-
jects that are independently and synchronously stored
and replicated to Object Storage Devices (OSDs). It
decouples data and meta data management through de-
ploying separate (distributed) metadata server(s) (MDS).
Ceph handles data migration, replication, failure detec-
tion and recovery natively.

We choose Ceph due to its open source nature and
its support in the Linux community. Ceph’s separation
of meta data and data operations makes it easier to em-
ploy customized data placement strategies. We use Ceph

Figure 3: Prototype implementation.

OSDs to hold user data, and leverage MDS to implement
our access oblivious provisioning and placement algo-
rithm by modifying Ceph’s data placement logic. We
make the location of a given object uniquely determined
by (1) the owner of the object, and (2) the gateway lo-
cation, i.e., the edge node proxy, at which the owner is
mounting her remote share. All the modifications are
built into the Linux kernel supporting Ceph. We modify
some of the replication strategies in Ceph to create repli-
cation group for each enterprise. Our edge node prox-
ies then export the enterprise’s data in OSDs as an NFS
share. A full-blown description of the implementation
details is not included due to space restriction.

The whole storage cloud connecting multiple storage
nodes and edge nodes is deployed in our lab data cen-
ter. Dedicated laptops are used as enterprise customers,
and are connected through VPN tunnels to designated
edge nodes based on enterprise SLAs specified at cus-
tomer admission time. Enterprise user requests are then
made from these laptops. There is also a web based con-
trol interface for admitting new enterprise customers and
monitoring storage cloud in real time. The system has
been fully functioning, and has been used in experimen-
tal cases such as video streaming from enterprise sites,
providing needed performance guarantees.

Besides prototype implementation, we have also con-
ducted a simulation experiment of our access-oblivious
storage provisioning scheme to compare its bandwidth
resource usage against that ofaccess-awarecounter-
parts. In the latter, information on file access patterns
(e.g., what file is accessed by which edge nodes, and
when) is explicitly taken into account to derive thetime-
dependent, per-file chunking and replication strategies.
In our experiments, we consider two such schemes: (1)
bandwidth-aware (BA) provisioning and (2) proximity-
aware (PA) provisioning. The BA provisioning deter-
mines the optimal chunking and replication per-file such
that the maximum link utilization remains minimized
with changing access patterns. The PA scheme, on the
other hand, splits and places files as close as possible (in
terms of network hops) to the edge nodes accessing them,
without considering link capacity constraints.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

       

M
ax

im
um

 L
in

k 
U

til
iz

at
io

n 
(M

bp
s)

Access-Oblivious Bandwidth-Aware Proximity-Aware

Figure 4: Maximum link utilization.

We test three provisioning scenarios driven by access-
oblivious, BA, and PA schemes, respectively. In all sce-
narios, the same number of customers are admitted to the
system, who then generate the same file access traffic on
storage network.2 We compare three schemes in terms
of the maximum link utilization of the network. Fig. 4
shows that the access-oblivious provisioning results in
25% higher maximum link utilization compared to the
BA provisioning, which implies that the access-oblivious
provisioning could be achieved without significant over-
provisioning. Also, note that 25% savings on bandwidth
resources with the BA scheme is actually achieved with
added complexity of monitoring instantaneous file ac-
cess patterns and dynamically relocating individual file
chunks on the fly, and without considering additional
bandwidth required for file relocation. The PA provi-
sioning exhibits significantly poorer performance than
the other schemes. This comes as no surprise because,
when files are placed only in network proximity in mind,
well connected storage nodes could host most requested
files, and so the adjacent links of such nodes would be-
come heavily congested.

5 Related Work

There are multiple commercial vendors in the online
storage market. For example, major cloud providers
such as Amazon, Google and Rackspace offer storage
service as part of their Infrastructure as a Service offer-
ings. Online file hosting providers deliver various value-
added services such as online backup (e.g., Dropbox)
and sharing (e.g., Slideshare, SkyDrive) on top of avail-
able cloud storage infrastructure, through user-friendly
interfaces. Storage solution providers such as NetApp,
EMC, Hitachi Data Systems, IBM target enterprise cus-
tomers with proprietary NAS devices that enable rapid
provisioning of private enterprise storage systems. In all
these solutions, however, customers have no precise con-
trol over how the data is stored in the cloud, and what
level of quality of service is expected.

2Our simulation is performed using GTNetS, a discrete-eventnet-
work simulator which is driven by YouTube access traces [9] on top of
RocketFuel’s router-level ISP maps with uniform link capacity.

Several researchers proposed new distributed network
file systems optimized for scalability and access perfor-
mance. The Swift [2], Zebra [5], PVFS [6], Ceph [7] file
systems leverage the mechanism of striping files across
different storage servers, thereby distributing the load
and achieving high access throughput. The Google File
System [3] was designed to meet the demand of a typi-
cal data center environment where data-intensive appli-
cations run off of a large pool of commodity hardware.
While these file systems have extensive architectural sup-
port for file chunking and replication, the focus is not on
designing effective file chunking and placement strate-
gies. Our scheme addresses this latter issue. Cloud stor-
age services can migrate client data in response to dy-
namic access patterns and client locations, using an iter-
ative optimization algorithm such as [1]. However, they
typically need heavy duty data collection and computa-
tion, and thus cannot sustain fine granular time scales.

6 Conclusions

We presented the design of an enterprise grade storage
cloud that can augment a service provider’s VPN service
offer to an enterprise. The storage cloud offers a perfor-
mance guarantee for access to data stored in the cloud
that is independent of the data being accessed and the lo-
cation it is accessed from, and gives users the perception
that their data of choice is stored locally. We developed
algorithms for the design of such access-oblivious guar-
anteed performance storage cloud. We outlined a lin-
ear programming formulation for deciding how the data
is placed across different nodes, and described a proto-
type system that implements the storage architecture in
the Linux kernel on top of Ceph.

References
[1] AGARWAL , S., ET AL. Volley: Automated Data Placement for Geo-

Distributed Cloud Services. InNSDI (2010).

[2] CABRERA, L., AND LONG, D. D. E. Swift: Using Distributed Disk Striping
to Provide High I/O Data Rates.Computing Systems 4, 4 (1991).

[3] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google File Sys-
tem. ACM SIGOPS Operating Systems Review 37, 5 (2003).

[4] HAO, F., LAKSHMAN , T., MUKHERJEE, S., AND SONG, H. Secure Cloud
Computing with a Virtualized Network Infrastructure. InHotCloud(2010).

[5] HARTMAN , J. H., AND OUSTERHOUT, J. K. The Zebra Striped Network
File System.ACM Transactions on Computer Systems 13, 3 (1995).

[6] L ATHAM , R., MILLER , N., ROSS, R., AND CARNS, P. A Next-Generation
Parallel File System for Linux Clusters.LinuxWorld(Jan 2004).

[7] WEIL, S. A., ET AL. Ceph: A Scalable, High-Performance Distributed File
System. InOSDI (2006).

[8] WOOD, T., SHENOY, P., RAMAKRISHNAN , K., AND MERWE, J. The Case
for Enterprise-Ready Virtual Private Clouds. InHotCloud(2009).

[9] Z INK , M., SUH, K., GU, Y., AND KUROSE, J. Characteristics of YouTube
network traffic at a campus network - Measurements, models, and implica-
tion. Computer Networks 53, 4 (2009).


