
Synergy2Cloud: Introducing Cross-Sharing of Application Experiences Into

the Cloud Management Cycle

Florin Dinu T. S. Eugene Ng

Rice University; Houston, TX

Abstract

Automatically managing collocated cloud applica-

tions for improved performance is a hard problem due

to the unprecedented scale and the dynamics of the mul-

tiplexed cloud environment. Compounding the problem,

today’s approaches to cloud application management are

too limited in the way they acquire information. Mon-

itoring performed by the operator is too low level and

application agnostic while monitoring performed by ap-

plications in isolation is too restricted. In this paper 1

we propose sharing of application experiences as a cloud

and application management building block. To achieve

this level of sharing, the current state-of-the-art towards

increased isolation among cloud applications needs to be

re-thought. Focusing on isolation overlooks and poten-

tially impedes the substantial benefits obtainable through

sharing application experiences. We explore the benefits,

challenges and incentives associated with sharing appli-

cation experiences and argue why sharing is a winning

proposition for both operators and applications. We also

propose a web portal synergy2cloud.com that we hope

will serve as a stepping stone for making cross-sharing

cloud application experiences a reality.

1 Introduction

The case for sharing experiences in the cloud

Multiplexed, public cloud environments are popular to-

day for economical reasons. They allow cloud operators

to maximize infrastructure utilization by collocating ap-

plications belonging to multiple tenants. The prevalence

of virtualization technologies further encourages collo-

cation by facilitating the use of state-of-the-art hardware

that offers unprecedented parallelism.

1This research was sponsored by NSF CAREERAward CNS-0448546, NeTS

FIND CNS-0721990, NeTS CNS- 1018807, by an Alfred P. Sloan Research Fel-

lowship, an IBM Faculty Award, and by Microsoft Corp. Views and conclusions

contained in this document are those of the authors and should not be interpreted

as representing the official policies, either expressed or implied, of NSF, the Al-

fred P. Sloan Foundation, IBM Corp., Microsoft Corp., or the U.S. government.

However, managing the multiplexed cloud environ-

ment and the applications in order to achieve the best ap-

plication performance is challenging. The task is already

made difficult by the highly dynamic cloud environment,

its unprecedented scale and the large number of hosted

applications. Unfortunately, today’s approaches to cloud

application management are also limited in the way they

acquire information. The operator either performs mon-

itoring in isolation [12] or shares only some basic in-

frastructure performance data with the applications [1].

The expressiveness of the operator’s data is limited by

the overhead of monitoring and it is typically low-level,

application agnostic data. Applications are also limited

in their self-management capabilities by the operator’s

tenant isolation mechanisms which only allow a highly

abstracted view of the environment.

Our position is that multiplexed cloud environments

give applications a unique opportunity to cross-share

their experiences for potential improvements in perfor-

mance, security and scalability. Experiences is a catch-

all term that refers to any information that an application

can collect as part of its execution and can be leveraged

by other applications. Instead of preventing experience

sharing as is the case today, the cloud operator should ar-

bitrate, facilitate and even participate in the exchanges.

We argue that this is a win-win situation for both parties:

the performance of both the applications in particular and

that of the cloud in general is improved. To briefly ex-

emplify the benefits of cross-sharing application experi-

ences, consider compute node failures which are com-

mon occurrences in the cloud [3]. Typically, failure de-

tection is performed separately by each cloud applica-

tion. The unfortunate consequence is that an application

can spend an unnecessarily long amount of time detect-

ing node failures that were already detected by other ap-

plications. This translates into unnecessarily inflated job

running times and consequently extra-cost incurred by

the user. Sharing such failure information allows appli-

cations to learn from other application’s recent experi-

1



Figure 1: Three similar applications are collocated.

They apportion inter-rack network, inter-data center

links, compute nodes and access to dedicated storage.

Thus, sharing their experiences benefits the other ap-

plications.

ences and respond to the failure faster. As a result, the

overall efficiency of the cloud is also improved.

A primary concern when sharing application experi-

ences is whether information shared by one application

is applicable to another. The danger is that even small

differences among applications can significantly influ-

ence perceived performance [20]. Fortunately, the cloud

presents us with a unique opportunity. Many cloud ap-

plications are built on top of a few general purpose large

scale computing frameworks (e.g. MapReduce) which

provide the basic functionality of interacting with the

environment and managing running jobs. Additionally,

the cloud computing environment (i.e. OS, hardware) is

completely known to the operator and is usually limited

in diversity (e.g. small number of OS instances). Conse-

quently, our position is that many cloud applications have

substantial functionality in common thus making sharing

experiences in the cloud a promising direction. Figure 1

depicts a sample cloud environment where sharing expe-

riences can be beneficial for applications.

Importantly, operator monitoring alone is not as pow-

erful as sharing application experiences. First, for the

shared information to be meaningful, the design, con-

figuration and implementation of the measuring compo-

nent needs to be similar, if not identical. While this may

be the case for two MapReduce applications the opera-

tor cannot provide different implementations for its mea-

suring infrastructure to suit every application. Second,

it is hard for an operator to provide framework specific

information (e.g. throughput from dedicated storage to

multiple concurrent readers). Third, any large operator

monitoring effort uses valuable resources and potentially

degrades user perceived performance.

Hurdles to overcome for introducing sharing

Sharing application experiences exists today in only a

rudimentary form, totally insufficient for dynamically in-

forming applications at runtime. Today, a cloud tenant

configures his application through a series of trial and

error runs and then measures the performance of the ap-

plication and/or that of the infrastructure. Subsequently,

the tenant shares the accumulated knowledge on the

web [4, 19, 2] or writes a research article [14, 18]. The

interested reader then learns from this past experience

and applies it to his own cloud applications. This ap-

proach, however, is vastly insufficient for today’s highly

dynamic cloud environment where performance data can

quickly become outdated and applications can scale to

many different sizes. We argue that cross-sharing of

application experiences should also be automatic and

should occur at the timescale of the application’s execu-

tion and not at that of a human being’s curiosity to learn

or willingness to impart experience.

To enable cross-sharing of application experiences the

current trend towards providing increased isolation for

collocated cloud applications needs to be re-thought.

This trend hurts applications by severely restricting the

possibility for legitimate information sharing. Applica-

tions either cannot communicate at all or the information

they can exchange abstracts too many environmental de-

tails to make sense in the context of another application.

The drive towards isolation is a strong one. Isolation

is important because it can improve application perfor-

mance and security. For example, isolation allows pre-

dictable network performance. Performance predictabil-

ity stimulates cloud adoption and enables cloud opera-

tors to offer SLAs. Concerning security, malicious ap-

plications could be found exploiting side-channels to de-

tect collocation and obtain access to a collocated appli-

cation’s private data [16]; applications can negatively in-

fluence each other by unilaterally using multiplexed re-

sources such as processor caches [15]. Consequently, the

current trend is to develop ironclad isolation technologies

at every level from network [17, 10] to compute-node

resources such as disk, CPU and memory [15]. From

an isolation centric point of view, the ideal scenario is

that each application is provided with the illusion of a

private data center [10]. Compared to this pro-isolation

trend, the problem of cross-sharing application experi-

ences in the cloud has remained largely unexplored by

the research community.

This paper articulates the benefits (§2), incentives

(§3) and research challenges (§4) associated with cross-

sharing application experiences. We also briefly present

initial ideas towardsmaking sharing in the cloud real. We

hope this work will inform the direction of the research

on isolation mechanisms in order to encourage legiti-

mate information sharing while still protecting applica-

2



tions from each other. We also propose a web portal syn-

ergy2cloud.com that we hope will provide the commu-

nity initial information useful for making cross-sharing

cloud application experiences a reality.

2 Benefits: What to Share and Why

In this section we explore the benefits obtainable from

sharing application experiences. We give concrete ex-

amples of shareable information and argue for its useful-

ness. This paper focuses on public, multiplexed cloud

environments. Their diversified tenant base as well as

the client-provider relationship makes them more com-

plex and more challenging. Nevertheless, our findings

can also be applied to private clouds that allow applica-

tions to coexist. This is often the case today [11].

Any information measured and subsequently shared

by cloud applications is not absolute information but

rather the cloud and the application’s performance seen

through the lens of the application’s implementation and

design. Therefore, the danger is that information shared

by one application may not be representative for others

because of differences among applications. Take for ex-

ample two identical cloud applications, the sole differ-

ence being the use of delayed ACK. This can lead to sub-

stantial performance differences even for basic perfor-

mance information such as latency and bandwidth [20].

In the general case it is very difficult to establish the rel-

evance of shared information for unrelated applications.

Fortunately, recall that the cloud provides a unique op-

portunity: many cloud applications have significant func-

tionality in common because they are built on top of a

few large scale computing frameworks and are deployed

in environments that have limited diversity (e.g. small

number of OS instances).

Nevertheless, there exists a trade-off: the more com-

plex or application specific the information is, the harder

it is to assess the similarity of the sharing applications.

Moreover, the amount of additional information nec-

essary to verify similarity increases dramatically. For

example, if configuration information is shared, details

about job parameters and workload are needed to assess

the relevance of the configuration for another application.

With the following examples we argue that the cloud al-

lows reasonably complex information to be shared.

2.1 Examples of Shareable Information

Performance Information

Understanding the performance of the environment is

a first step towards ensuring good application perfor-

mance. Following are a few examples:

• Latencies in accessing local or dedicated storage

• Data transfer throughput inside a data center or be-

tween operator’s data centers.

• Local compute node usage counters (e.g. CPU load,

memory use)

Sharing performance information can benefit schedul-

ing. If there shared information of poor throughput from

the dedicated storage, a scheduler may choose to post-

pone the execution of network-intensive operations for

a suitable later time when shared information describes

good throughput. Importantly, applications can obtain

this benefit without paying the monetary and perfor-

mance costs of detecting poor performance themselves.

As another example consider a heterogeneous environ-

ment. Sharing performance information can guide the

decisions on which resources to use without actually try-

ing to run the application on all types of resources.

Scalability Information

Scaling decisions can also benefit from sharing. One ex-

ample is determining how fast the application can scale

out. This can be achieved by sharing the time to spawn a

number of VMs of a certain type. Consider the example

of an application that suddenly needs to scale out because

of an exceptional situation such as a flash crowd. There is

no time for it to perform trial and error work. Moreover,

the application’s own past may be momentarily irrele-

vant since the sudden scale out may require exceptional

resources to which the application is not accustomed un-

der typical use. For example, if the VM type typically

used by the application is in short supply at the moment

of the flash crowd, any type of VM may be acceptable as

long as it can offer some processing power. Alternatively,

the application may choose to trade-off some processing

power for scaling speed, thus choosing a VM type that

can be allocated faster when requested in large numbers.

Failure Information

Failure detection, oftentimes a lengthy and involved pro-

cess in the cloud, can significantly benefit from sharing

application experiences. In experiments involving inject-

ing single TaskTracker failures in Hadoop, studies show

tasks often stall for 480s even though the failure was al-

ready detected and reacted upon by other tasks [7]. Fail-

ure information can be shared live as failures are de-

tected. This can greatly cut down failure detection time

for applications that cannot quickly detect the failures

themselves because they have few vantage points.

Straggler Information

Oftentimes compute nodes in the cloud do not com-

pletely fail but rather continue to run at dreadful perfor-

mance levels. This can lead to straggler tasks which can

significantly delay job completion [21, 5]. Sharing strag-

gler information is useful for scheduling and speculative

3



execution decisions. An application would ideally avoid

under-performing nodes for spawning new tasks. More

importantly, existing stragglers should not be re-executed

on under-performing nodes.

Security Information

Sharing application experiences also helps application

security. Applications could share emerging signs of at-

tacks against compute nodes. This may help the other

applications in avoiding the compute nodes that are vul-

nerable or more likely to be attacked. Moreover, the op-

erator can use this information to attempt to localize the

source of the attack.

3 Incentives

Our position is that sharing application experiences is a

win-win situation for both the applications and the oper-

ator. Following we describe incentives for each party to

adopt sharing.

Incentives for the Operator

First, if applications perform better this is an economic

advantage for the operator. This attracts more users to

switch to the operator’s cloud thus bringing additional

revenue for the operator. Part of this increased revenue

will likely translate into infrastructure upgrades thus fur-

ther increasing the benefit to the applications.

Second, the operator can view the applications as a

huge monitoring platform and can use the information

obtained from them for managing or improving the in-

frastructure. This is a monitoring platform of far greater

size, complexity and information throughput than the

operator can ever assemble alone because of the dan-

ger of interfering with running applications and because

of the large demands on the infrastructure. Moreover,

because the cloud can host many applications concur-

rently, shared data is expected to be always fresh and

have strong statistical significance.

Third, the operator can even monetize sharing by pro-

viding access to it for a small fee, which the application

owner would be happy to pay if there is a good chance of

performance improvement.

Fourth, the operator cannot stop application level shar-

ing because many applications need to be able to legiti-

mately talk to a third party. Allowing the applications

to come up with inefficient and cumbersome methods

of sharing can prove to be detrimental to the applica-

tion performance and transitively to the cloud’s perfor-

mance. Instead, for the operator it is better to actively

provide a sharing platform so it can retain a degree of in-

fluence over what is being shared and in what form. For

example, the operator can hide potentially sensitive in-

formation (e.g. topological details) while still providing

applications with the relative location information useful

for sharing. The operator can also anonymize the shared

information.

Incentives for Applications

A first question is why would applications participate in

sharing information. If sharing leads to performance im-

provements, this is an important incentive in itself. In

addition, the burden that sharing puts on an application

is minimal. There is much shareable information that can

be obtained as part of an application’s typical run.

Furthermore, while one application can do some

amount of measurement and trial and error work on its

own it is impractical for it to reach the amount of infor-

mation that can be offered by the rest of the collocated

applications. This is important especially when decisions

need to be made quickly, for example when an applica-

tion needs to quickly scale to accommodate a flash crowd

event. It has no time to perform measurements, but may

obtain useful information from the other applications.

Another incentive is that sharing enables applications

to receive information about resources not yet in their

possession. This, for example, can be used to intelli-

gently guide the scaling process. Applications can also

receive shared information about events they have not yet

encountered. For example, one application can share the

failures it encountered and this may help other applica-

tions be proactive about failure detection and recovery.

Even more, one application can benefit from the infor-

mation shared by a second application which is simply

better suited to discover certain events because of prop-

erties like greater scale. For example, one application

may discover network hotspots faster because its scale

requires it to deploy tasks in multiple racks.

A second question is what are the incentives for a par-

ticipating application to behave properly and not share

false information or try to game the system. Assuming

the operator can anonymize the information, a misbehav-

ing application cannot direct its maliciousness at any spe-

cific target. Additionally, the misbehaving application

cannot be sure its information will be used at all. Even

more, as we shall discuss in (§4), the operator should be

able to verify part of the shared information.

4 Challenges

We next outline a number of challenges and point out

several opportunities for future work. We view operator

involvement as central in addressing these challenges.

Increasing Information Expressiveness

In order to share more expressive information, a first

challenge to overcome is the limiting effect of increased

isolation. The result of increased isolation is that the

4



shared information may sometimes only be meaningful

to a specific application. This is the case with quotas.

If an application has reached its bandwidth quota it does

not necessarily mean another one will have the same quo-

tas. As an intermediary, the operator can identify when

quotas are reached and can differentiate this from appli-

cation level bottlenecks.

A second challenge is the limited knowledge applica-

tions have about the infrastructure (e.g. topology). To-

day, an application usually observes a highly abstracted

view of the physical infrastructure which may be only

relevant to itself (e.g. separate IP address spaces). Con-

sider an application A sharing the information that the

path between location D1 and D2 has been overloaded

for minutes. Unknowing to A which uses a specific path

between D1 and D2, there is multipath connectivity be-

tween D1 and D2. From A’s experience another appli-

cation may incorrectly believe that all paths between D1

and D2 are overloaded. The future research challenge is

providing means for the operator to offer an abstracted

view of the environment that encodes relative position-

ing and connectivity information while still safeguarding

sensitive details.

A third challenge involves granularity. It should be

possible to break down or combine shared information

in order to satisfy the needs of applications that are in-

terested in different granularity levels. The operator can

provide such conversions.

Ensuring Information Authenticity

It is challenging to identify fake information. Seemingly

fake shared information may be the result of incorrect

parameter settings, bad application design (e.g. prone to

incast collapse) or contention. Ideally, the system would

not flag this information as malicious. In fact, such in-

formation could be useful to applications having similar

design flaws to the sharer.

To mitigate the chance of fake shared information, fu-

ture work could enforce verifiable experience exchanges.

While the operator cannot verify all shared information it

is in the position to verify ownership claims. An applica-

tion should not be allowed to advertise information about

resources it does not even hold. If verification cannot be

driectly performed as it is the case for performance data,

statistical approaches could potentially be used to cull

obvious outliers or consensus protocols could be used by

multiple applications to detect and reject malicious ap-

plications. Applications should also have the option to

filter the set of sources from which experiences are re-

ceived. In this manner, trust groups can be formed by

applications that belong to mutually-trusting users.

Assessing Similarity Among Applications

Ideally sharing should occur between very similar ap-

plications. However, assessing similarity is challeng-

ing. Different applications versions or modified applica-

tion code could still share substantial functionality. Con-

versely, the same application could behave differently on

different hardware. Future work should consider quan-

tifying similarity on a per-component basis. This would

be similar to obtaining hashes of the specific code objects

responsible for a particular measurement. On top of this

the operator can add an identification mechanism for the

underlying hardware and software platform.

Design

Additional challenges are related to system design. Fu-

ture work may consider providing sharing using mid-

dleware libraries, thus minimizing code changes. This

library could at least ensure that applications transmit

their experiences unmodified by leveraging the fact that

many cloud applications routinely log detailed perfor-

mance data. In order to design a scalable and efficient

lookup mechanism for the shared data, future work on

this topic may benefit from the rich body of past research

work devoted to publish-subscribe systems [8].

5 System Functionality Description

In this section we present a short description of the build-

ing blocks and the flow of shared information in our en-

visioned sharing system.

• Applications publish information and tag it with an

identifier that describes the application components

involved in measuring the information.

• An operator-managed publish-subscribe system

connects sharing and receiving applications.

• The operator anonymizes the data and converts it to

an abstracted view of the environment that preserves

relative positioning.

• The operator adds an identifier describing the hard-

ware and OS.

• If possible, the operator verifies the information.

• The operator performs conversion of granularity if

requested by any receiving application.

• Subscribing applications receive the information

and decide on its use. The operator uses the infor-

mation for his own management needs.

6 Discussion

Isolation and Sharing

Throughout this paper we argued that isolation should

not unnecessarily limit sharing. We see both isolation

5



and sharing as part of the foundation of an application’s

performance and scalability. As such, the way forward

is for the two to complement and not exclude each other.

Isolation ensures that application performance is main-

tained at reasonable levels, while sharing brings an extra-

boost by providing supplementary information. Simi-

larly, isolation ensures a level of predictability for scal-

ing an application while sharing provides the extra-boost

with information about where to scale. Therefore, it

makes sense to combine the advantages of sharing and

isolation, to obtain the best of both worlds.

Active Collaboration

The type of sharing described so far can be deemed as

passive collaboration because one application receives

information published by another. One can also envi-

sion active collaboration in the cloud: an application asks

for the involvement of another. For example, an applica-

tion’s failure detection algorithm may require that lack

of connectivity be reported by three vantage points, but

it currently has only two such vantage points running. It

may prove considerably faster to ask another application

to attempt a connection on its behalf. Future work may

consider defining a set of substitutable operations that ap-

plication A1 can do on behalf of A2. An example of such

substitutable operations are TCP connection attempts.

Related Work

Sharing of information can already be encountered in dif-

ferent forms. At end-hosts, flows can learn from each

other and share information about the state of congestion

along common network paths [6]. At the level of large

enterprise networks, route redistribution allows routers to

exchange routes between different routing domains [13].

Web caches can cooperate and serve each other’s misses,

thus reducing overall bandwidth usage [9].

The uniqueness of sharing experiences in the cloud

stems from the richness of the shareable information.

Performance, scalability and failure information can all

be shared and in different granularities. Also, the cloud

environment is more dynamic and this makes it challeng-

ing to always use fresh information. Lastly, the impact of

sharing in the cloud is significant. Both the operator and

cloud applications win from sharing.

7 Conclusion

We hope that our discussion on sharing application expe-

riences reveals the richness of this research direction and

the promising outlook for improving the performance,

scalability and security of cloud applications. With this

paper we also hope to call attention to the downside of

the direction towards strong application isolation which

data center design is currently embracing. While we ac-

knowledge the importance of isolation mechanisms we

argue that isolation and the sharing of experiences need

not restrict each other but can actually complement each

other for the benefit of both cloud operators and applica-

tions.

References

[1] Amazon CloudWatch. http://aws.amazon.com/cloudwatch/.

[2] Cloud Harmony. http://cloudharmony.com/.

[3] Failure Rates in Google Data Centers.

http://www.datacenterknowledge.com/archives/2008/05/30/

failure-rates-in-google-data-centers/.

[4] Rackspace Cloud Servers versus Amazon EC2: Perfor-

mance Analysis. http://www.thebitsource.com/featured-

posts/rackspace-cloud-servers-versus-amazon-ec2-performance-

analysis/.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris. Reining in the outliers in map-reduce

clusters using mantri. In OSDI, 2010.

[6] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated conges-

tion management architecture for internet hosts. In SIGCOMM,

1999.

[7] F. Dinu and T. S. E. Ng. Hadoop’s overload tolerant design exac-

erbates failure detection and recovery. In NETDB, 2011.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec.

The many faces of publish/subscribe. ACM Comput. Surv., 35,

June 2003.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:

A scalable wide-area web cache sharing protocol. In IEEE/ACM

Transactions on Networking, 1998.

[10] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,

and Y. Zhang. SecondNet: a data center network virtualization

architecture with bandwidth guarantees. In CONEXT, 2010.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,

R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-

grained resource sharing in the data center. In NSDI, 2011.

[12] M. Isard. Autopilot: Automatic data center management. In Op-

erating Systems Review, 2007.

[13] F. Le, G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding light on

the glue logic of the internet routing architecture. In SIGCOMM,

2008.

[14] A. Li, X. Wang, S. Kandula, and M. Zhang. CloudCmp: Com-

paring public cloud providers. In IMC, 2010.

[15] H. Raj, R. Nathuji, A. Singh, and P. England. Resource manage-

ment for isolation enhanced cloud services. In CCSW, 2009.

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you,

get off of my cloud: Exploring information leakage in third-party

compute clouds. In CCS, 2009.

[17] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Shar-

ing the data center network. In NSDI, 2011.

[18] G. Wang and T. S. E. Ng. The impact of virtualization on network

performance of amazon EC2 data center. In INFOCOM, 2010.

[19] J. S. Ward. A performance comparison of clouds: Amazon EC2

and ubuntu enterprise cloud. SICSA DemoFEST, 2009.

[20] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan, S. Kandula,

and C. Kim. Profiling network performance for multi-tier data

center applications. In NSDI, 2011.

[21] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.

Improving MapReduce performance in heterogeneous environ-

ments. In OSDI, 2008.

6


