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Abstract

We introduce the notion of a Personal Cloud — a collec-
tion of Virtual Machines (VMs) running on unused com-
puters at the edge. The Personal Cloud provides an ideal
solution for the secure sharing of compute and storage re-
sources across peers in a resource and application agnos-
tic manner, and facilitates new computational paradigms
such as datacenter-less, distributed virtual clouds. We
provide and implement solutions for the challenges of
managing a Personal Cloud, such as IP address sharing,
bandwidth sharing and isolation from local home net-
work traffic. We also propose and implement a prov-
ably optimal solution to the resource management prob-
lem, allowing peers to share VMs across their individual
Personal Clouds by specifying their resource offers and
requests, and verify its performance via detailed simula-
tions.

1 Introduction

Each endpoint of the Internet represents resources such
as CPU, storage and bandwidth which are the exclusive
property of the owner of the endpoint. There are ben-
efits, however, in sharing unused resources, for exam-
ple, two peers could agree to do a mutual backup, or a
group could get together to create a shared repository
by using unused computers. A fundamental challenge
in resource sharing, however, is the security and privacy
needed for hosting remote jobs on local resources. In
this paper, we describe an architecture which we call the
Personal Cloud, which packages unused edge resources
into a standard Infrastructure as a Service (IaaS) Cloud
such that arbitrary VMs and applications can be safely
run locally and accessed remotely.

Since the birth of the Internet, there have been nu-
merous attempts to create platforms for remote and dis-
tributed computation. Today, we have Grid comput-
ing which seeks to harness unused enterprise resources,

Planetlab [1] to exploit academic computing resources,
edge computing platforms like BOINC [2] and Seat-
tle Open P2P Computing project [3] and applications
like SETI@home [4] which seek to harness unused
home computing resources. The Nano Data Centers
Project [14] is an EU FP7 project to explore the notion
of a distributed datacenter built out of unused edge re-
sources like settop boxes, internet gateways and Wifi ac-
cess points. The Personal Cloud concept differs from all
the above. First, the Personal Cloud takes unused x86
based computers (not settop boxes) at home and converts
the collection into a standard IaaS cloud hosting arbitrary
VMs, rather than a restricted application level virtualiza-
tion environment. Second, unlike a Grid, or a Commu-
nity Cloud [5] which pools unused resources into a com-
mon Cloud, the user hosting the Personal Cloud does not
do so to run VMs on his own Personal Cloud, though the
user is free to do so. The goal of the Personal Cloud is
to instead host VMs of others safely in the user’s home
network — the motivation for hosting being either ac-
cess to the Personal Clouds of others, or credit in virtual
or financial form. Finally, when a user runs VMs on a
remote Personal Cloud, the VMs are isolated in a Vir-
tual Private Cloud(VPC) [6] such that they share a com-
mon address space, which allows them to communicate
directly amongst themselves, but are isolated from both
the home network address space and the VPCs of other
users who are running VMs on the same Personal Cloud.

We expect three distinct use cases of the Personal
Cloud. The first use case, on which we focus in this
paper, is for individual users to create Personal Clouds
and use them to run cloud based applications such as on-
line backup and file sharing, bypassing traditional public
clouds for reasons of cost or personal preference. The
second use case is to federate the individual Personal
Clouds into a single distributed virtual data center cloud,
at a cost that is a small fraction of traditional clouds. The
final use case is in universities and enterprises, where de-
partmental and lab resources can be packaged into indi-
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Figure 1: High Level Overview of a Personal Cloud

vidual Personal Clouds, which can then be combined to
meet requirements.

The Personal Cloud lifecycle follows four steps. First,
the user creates a Personal Cloud by installing the Per-
sonal Cloud software onto unused computers using stan-
dard install media like a CD or Flash Drive. Second,
the user trades VMs by offering VMs from his cloud,
and requesting VMs from other clouds. A key contri-
bution of this paper is the concept of matchmaking, or
matching the VM requests and VM offers of each user
in an optimal manner such that the maximal number of
requests are satisfied. Third, the VM assignments of the
matchmaking algorithm are used by each user to instanti-
ate and allocate local VMs to remote users, and to access
remote VMs assigned to the user. Lastly, as participat-
ing computers, users, requests and offers change, there
is an incremental change to the VM assignment. We ex-
pect all steps to be simple enough for laymen to partic-
ipate in the lifecycle. The initial sections of the paper
present the concept of the Personal Cloud and explain its
architecture and implementation, while the later sections
describe the Matchmaking algorithm and its simulation.

2 Architecture of the Personal Cloud

Assumptions A detailed view of the Personal Cloud is
shown in Figure 1. VMs run on the subset of home
computers that is dedicated to the Personal Cloud and
are assumed to be always powered on and static. All
these home computers are connected to a home net-
work, which is in turn connected to the Internet via a
Home Router and a broadband modem. The home router
obtains at least one public IP address (not necessarily
static), uses DHCP to distribute private IP addresses to
computers in the home network, and uses NAT (Network
Address Translation) to share the public IP address(es)
amongst all the home computers. We assume that the
vast majority of Personal Clouds will consist of a small
group of computers, hence scalable intra cloud network-
ing is not an issue. The architecture we present is hy-
pervisor agnostic and complementary to existing cloud
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Figure 2: Virtual Networks inside the Personal Cloud

management solutions such as Amazon EC2 [7] and Eu-
calyptus [8]. We highlight that functionality needed for
a Personal Cloud that is missing in conventional cloud
management solutions.

Some of the principal technical challenges addressed
in our current implementation of the Personal Cloud are:

Security and Privacy of the VMs running on the Per-
sonal Cloud, VM Network isolation, Bandwidth (BW)
sharing, IP Address sharing and NAT Traversal.

It is important to isolate and secure the hosting user
from the VMs in the Personal Cloud and prevent mali-
cious snooping, Denial of Service attacks or excessive
bandwidth consumption from these VMs. In this paper,
we focus on this issue, and show how we isolate users of
the Personal Clouds into individual VPCs with capped
bandwidth limits. We rely on a key VM called the Man-
agement VM (Mgmt VM) which is installed on each ma-
chine in the Personal Cloud. These VMs, and their in-
ternal architecture is show in Figure 2. One of the Mgmt
VMs becomes the Chief Management VM (Chief Mgmt
VM) through an automatic election process. The Mgmt
VMs are lightweight enough to impose minimal over-
heads, and can be folded into the hypervisor for those
hypervisors which provide the requisite interfaces, e.g.,
the Dom0 domain in Xen or the Linux host in KVM.

Management The Chief Mgmt VM acts as the gate-
way for Internet traffic to and from the Personal Cloud.
It runs a web portal which manages the Personal Cloud
VMs. Amongst its tasks are Personal Cloud automation
including the instantiation and deletion of VMs, assign-
ment of VMs to users, assignment of VMs to virtual net-
works, isolation and security of inter VM traffic, QoS
restrictions on network traffic to and from the Personal
Cloud, and IP address sharing and application proxying
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across multiple VMs.
VM Networking The main goal of VM networking in

the Personal Cloud is to provide each user of the cloud
with a separate, fully isolated virtual network, while
shielding the local user traffic from the Personal Cloud
traffic. Unlike existing cloud networking schemes like
Seattle [12] or NetLord [13] which focus on creating a
scalable L2 infrastructure within a data center, our goal
for VM networking is creation of a large number of
virtual networks without any assistance in the form of
VLANs or custom firmware or IP level forwarding from
any switch or router since no such capability can be as-
sumed for home networks. All VMs belonging to the
same user are put in the same virtual network, each with
an address space distinct from the home network address
space. For example, Figure 2 shows VM1 to VM8 run-
ning inside a Personal Cloud. VM1, VM6 and VM7 are
assigned to the same remote user, and hence are in the
same virtual network. VM2, VM3 and VM5 belong to a
different user, and are part of a different virtual network.
Each Mgmt VM maintains a separate virtual network for
each of the different users running VMs on that physi-
cal machine. Effectively, the VMs of each remote user
are put in separate Virtual Private Clouds (VPCs). These
Virtual networks are bridged across physical machines
to the Chief Mgmt VM, so that VMs belonging to the
same user, but on different physical machines can still
belong to the same virtual network, and the Chief Mgmt
VM is able to address all VMs in the Personal Cloud.
The Mgmt VMs have a separate virtual network for man-
agement communications. Since the Chief Mgmt VM is
connected to all virtual networks, it assigns IP addresses
out of a private address space to each VM via DHCP.
Each virtual network is disjoint, so even if the same ad-
dress range is used for different virtual networks, there is
no network address collision.

Figure 2 also shows several different traffic flows.
Traffic flow 1 is traffic from VM3 to the Internet. Since
the Chief Mgmt VM acts as the default router for the
Personal Cloud, all exiting traffic is routed via it. Here
the traffic is NATed to the address assigned by the home
router and is forwarded to the home router (not shown)
for transmission to the Internet. Traffic flows 2 and 3
represent L2 tunnels maintained between the two Mgmt
VMs to forward traffic belonging to the two virtual net-
works in the Personal Cloud.

The TC box in each Mgmt VM represents the Traffic
Conditioner. This is used to rate limit the traffic from
each VM, in order to regulate the BW usage both inside
the home network, and into the Internet. Note that while
the NAT module is only present in the Chief Mgmt VM,
the TC module is present in all Mgmt VMs, since it is
necessary to regulate the Personal Cloud traffic not only
to and from the Internet, but also within the home net-

work.
Address Sharing and NAT Traversal One major net-

working issue with Personal Clouds is the sharing of the
limited public address space (usually just one) with the
multiplicity of VMs such that each remote user can ac-
cess his or her VM independent of other users. Note that
the problem lies with traffic coming from the Internet
to the Personal Cloud. Outgoing traffic from the Per-
sonal Cloud is NATed as normal by the home router, and
does not have any reachability problems. It is possible
to create a reverse tunnel from the VMs to a public IP
address to allow external access, and this is the usual so-
lution for external access to NATed systems. However,
this can lead to inefficient triangular routing, and there-
fore, we incorporate an optional, innovative, two stage
approach to providing authenticated access to individual
VMs inside the Personal Cloud. Our solution to man-
aging incoming traffic is to forward incoming Internet
traffic to the Chief Mgmt VM, which then uses its web
portal to map incoming traffic to the appropriate VM. In
the first stage, the remote user accesses the web portal
in the chief Mgmt VM over the Internet. After suitable
authentication, the user is then directed to a set of links
representing the VMs that the remote user is running in
the Personal Cloud. By clicking on a particular link and
selecting the appropriate protocol type, subsequent user
traffic of that particular protocol type is redirected to the
selected VM. This technique provides an authenticated,
safe mechanism for direct inbound access to VMs from
arbitrary IP addresses without any triangular routing.

Instead of this two stage approach, if each VM were
to be accessed only via the web, then the web portal in
the Chief Mgmt VM can run as a web router. This is
because each HTTP request uniquely identifies the DNS
hostname it is addressed to. Since each VM can have a
different DNS name while sharing the same IP address,
this allows for a one stage demultiplexing at the portal.

3 Matchmaking Problem and Algorithm

A key aspect of the Personal Cloud is the matchmak-
ing or resource sharing aspect, in which individual users
express the number of VMs they are willing to host in
their Personal Cloud, and the number of VMs they wish
to use in other Personal Clouds. We assume that the
matchmaking algorithm runs in a central entity called the
Matchmaker to which individual Personal Clouds sub-
mit their individual requests and offers. Note that the
matchmaking algorithm presented can be used for any
edge computing scheme which relies on P2P resource
sharing, such as BOINC. Also note that the Matchmaker
functionality only does VM assignments and can be run
on one of the Personal Clouds. The P2P nature of the
Personal Cloud, the requirement that a given user’s VM
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request not be satisfied by its own VM offer and the long
term nature of the assignment precludes the use of ex-
isting VM assignment solutions. Conventional VM as-
signment and provisioning solutions either rely on bin
packing algorithms, or focus on the challenges in assign-
ing short term jobs to VMs in a conventional data cen-
ter [9] or focus on policy based scheduling, e.g., energy
efficient VM assignment [10]. In this section, we present
a mathematical formulation of the VM resource sharing
problem, and an algorithm for finding optimal resource
assignments. Due to space considerations, we omit most
formal details and proofs.

Specification of Offers and Requests While we ap-
ply our algorithm for the purpose of sharing VMs, our
formulation of the resource sharing problem is agnostic
to the kind of resource that is shared (e.g., CPU, band-
width, storage or VM) — we simply assume that there is
a “resource unit” standing for some granularity at which
any size/amount of interest of that resource can be repre-
sented as a discrete multiple of such resource units. We
then assume that each node in the personal cloud is ca-
pable of “hosting” some number of such resource units
and requests a certain number of such resource units to
be hosted at other nodes. The resource units requested
by each node may be distributed across the other nodes
in the cloud. We allow the requesting node to constrain
the distribution by specifying, for each remote node, an
upper bound on the number of resource units placed at
that remote node in any acceptable distribution.

Following the above intuitions, an instance of the
matchmaking problem M is given as (n,O,R,U), with
n specifying the number of peer nodes in the Personal
Cloud, O specifying an offer vector with O(i) giving the
total number of resource units that node i is willing to
host (on behalf of all other nodes), and R specifying the
request vector with R(i) giving the total number of re-
source units that node i desires to be hosted (across all
remote nodes). Finally, U is the upper-bound matrix with
U(i, j) giving the maximum number of resource units
that node i is willing to have hosted (on its behalf) at
node j.

Upper bound constraints are general enough to specify
many resource sharing scenarios of interest. For exam-
ple, allowing an arbitrary distribution of a request across
remote nodes can be specified by using upper bounds
of infinity. Specific peer nodes can be disallowed from
hosting a request by specifying an upper bound of 0 for
them. Finally, fault-tolerant replication so that replicas
are hosted at distinct remote nodes can be achieved by
specifying an upper bound that is the size of the replica
for acceptable remote nodes (e.g., those that are at a suf-
ficiently large geographic distance from the requesting
node) and an upper bound of 0 for all other nodes.

Matchmaking Problem We are interested in finding
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Figure 3: Reduction of the Matchmaking problem to the
Maximum flow in a graph

an allocation of resource requests across the nodes in the
Personal Cloud. We call such an allocation a match-
making assignment and represent it as a matrix A with
the value A(i, j) giving the number of resource units of
node i that are hosted on node j. For an instance of the
matchmaking problem M = (n,O,R,U), a matchmak-
ing assignment A is said to be feasible if it respects the
constraints embodied in the instance. Specifically: (a)
the total number of resource units assigned by A to any
node i must not exceed the corresponding offer O(i), (b)
the total number of units hosted on behalf of any node
i must not exceed its corresponding request R(i), and
(c) the upper-bound constraints must be respected, i.e.,
A(i, j)≤ U(i, j) for all i, j.

Define the cumulative request-assignment of a match-
making assignment A to be the total number of units
hosted on behalf of all nodes. A request-optimal as-
signment A for an instance M of the matchmaking
problem is a feasible assignment for M whose cumu-
lative request-assignment is maximum among all feasi-
ble assignments. A matchmaking assignment is request-
satisfying if each node’s request is fully met by the
assignment. It can be shown that if an instance of
the matchmaking problem admits a feasible request-
satsifying assignment then a request-optimal assignment
for it has to be request-satisfying. Furthermore, while
some instances of the matchmaking problem may have
no request-satisfying assignments, all instances have a
request-optimal assignment. We therefore consider the
matchmaking problem to be the more general optimiza-
tion problem of computing request-optimal assignments.

Definition 1 (Matchmaking Problem). Given an in-
stance of the matchmaking problem M , compute a
request-optimal assignment A for M .

Optimal Matchmaking Algorithm Our algorithm for
the Matchmaking Problem (Definition 1) is based on a
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reduction to the maximum flow problem. Specifically,
for any instance M = (n,O,R,U) of the matchmaking
problem, we construct the flow-graph G(M ) illustrated
in Figure 3. In addition to a source node s and a sink
node t, it has “request” nodes r1, . . . ,rn and “offer” nodes
o1, . . . ,on. There are edges from s to each of the request
nodes with capacities taken to be their corresponding re-
quests. There are cross-edges from request nodes to offer
nodes except when they correspond to the same node (re-
flecting no self-hosting) and have capacities given by the
upper-bound constraints. Finally, there are edges from
the offer nodes to the sink node with capacities taken to
be their corresponding offers.

We can establish a correspondence between feasible
assignments for the matchmaking instance M and inte-
gral flows in the constructed flow-graph G(M ). Specif-
ically, for any integral flow f in the flow-graph, we
can construct a corresponding matchmaking assignment
A( f ) by using the values of the flow f on the cross-
edges. We can show that the assignment A( f ) is feasible
if and only if f is a valid flow, and that the cumulative
request-assignment of A( f ) is exactly equal to the value
of the flow f . Finally, the flow-graph G(M ) has the
property that all capacities are integral. A well-known
result on maximum flow is that for any graph with inte-
gral capacities, there is a maximum flow that is integral.
Consequently, we can establish the following reduction
of the Matchmaking Problem to the maximum flow prob-
lem.

Theorem 1. Let M = (n,O,R,U) be an instance of the
matchmaking problem and f be an integral maximum
flow for G(M ). Then A( f ) is a request-optimal assign-
ment for M .

Our algorithm for computing optimal matchmaking
assignments, based on Theorem 1, is then as follows.
For any input instance M of the matchmaking problem,
we construct the flow graph G(M ), compute its max-
imum flow f , and return the matchmaking assignment
A( f ). The construction of the graph G(M ) takes time
linear in the size of the input M with number of vertices
being O(|M |1/2) and number of edges being O(|M |).
The maximum flow can be computed using any stan-
dard maximum flow algorithm such as Edmunds-Karp
in polynomial time. It is also possible to extend the re-
source sharing algorithm to allow hosts to charge per re-
source costs, and to incrementally adjust optimal assign-
ments.

4 Simulation Results

We have extensively simulated the Max Flow (MF) re-
duction of the Matchmaking algorithm described in the
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Figure 4: Percentage of total request met by the Max
Flow and the Greedy Algorithms as the number of users
are varied— Requests between 0 and 4

previous section using an off the shelf MF implementa-
tion, while baselining it with a Greedy (GR) version of
the Matchmaking algorithm. The Greedy version simply
runs linearly through the set of requests, allocating the
current request from the first available offer. The sim-
ulations vary both the offers and requests of each user,
as well as the number of users. The key result is that
the MF algorithm consistently outperforms the GR algo-
rithm, especially when the size of individual requests is
large compared to the total number of users. Our defini-
tion of the Matchmaking algorithm is general enough to
allow many different semantics to be associated with the
sharing of resources. For example, a request for 3 VMs
can either be a request for 3 unique replicas, one per Per-
sonal Cloud, or allow for arbitrary distribution, in which
multiple VMs can be located in a single Personal Cloud.
We refer to the first case as the Replicated Request (R)
case, and the second as the Unconstrained Request (U)
case. We plot the performance of both the U and the R
versions for both the MF and GR algorithms.

Figure 4 plots the percentage of the total request met
as the number of users are varied. Due to the conver-
gence of results as the number of users increases beyond
20, we only show the results for up to this many users.
The cases considered are the Max Flow Unconstrained
case (MF-04-U), the Max Flow Replicated case (MF-04-
R), the Greedy Unconstrained case (GR-04-U) and the
Greedy Replicated case (GR-04-R). Given that the re-
quests and the offers are randomly generated, we expect
that in 50% of the cases, the requests cannot be satisfied.

As the number of users increases, the percentage of
total request that is met approaches the limiting value of
50% for the MF versions. We see that in this scenario,
where the requests and offers are comparable to the num-
ber of users, once the number of users increases past
4, the MF versions quickly converge to the 50% limit,
while the GR versions take considerably more users to
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Flow and the Greedy Replicated Algorithms as the num-
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approach the limit. Also seen is that the U case always
achieves a higher success rate than the R case for both the
MF and GR version. This is as expected, since the R case
requires each request to be replicated uniquely, but that
is not possible if the number of users is small compared
to the individual requests.

When individual requests are large compared to the
number of users, it is expected that a naive approach like
GR would underperform the MF algorithm. We exam-
ine cases where the individual requests are for for upto
31 VMs, rather than for upto 4 VMs. This is plotted in
Figure 5, which shows the percentage of runs requests
were met for the GR and MF replicated versions. As ex-
pected, until the number of users exceeds 31, both the GR
and the MF versions are unable to satify the requests us-
ing unique replicas, but once the number of users crosses
31, the MF version is quickly able to reach the expected
50% match of requests, while the GR version is unable
to converge to this value even with a hundred users.

5 Conclusion

In contrast to existing application sharing and virtual-
ization approaches, the Personal Cloud model builds an
IaaS cloud that provides the necessary NAT , Virtual Net-
working and Traffic Conditioning support needed to run
VMs securely inside the home network. By building the
Personal Cloud and by simulating the Matchmaking al-
gorithms, we have verified that both combined provide a
scalable and viable technique for sharing edge compute
resources on the Internet.

There still exist many challenges involved in moving
from the prototype to the operational stage. One open
research issue (applicable for any cloud deployment not
just the Personal Cloud) is securing the cloud user from

the cloud provider. It is important to create a secure,
tamperproof environment for the VMs in the Personal
Cloud which prevents the hosting provider from snoop-
ing on the contents of the VMs’ memory, storage or net-
work traffic. We are exploring a tamperproof VM hosting
framework based on secure bootloading of hypervisors
and VMs for memory protection, encrypted filesystems
and tunnels for disk and traffic protection, and distributed
task and storage scheduling to limit exposure from se-
curity breaches. Given the consumer grade equipment
involved, providing reliability is another open issue. Ex-
isting commercial cloud deployments based on off the
shelf equipment, such as the Google File system [11],
still rely on carrier grade data centers and networking,
both of which are absent in the Personal Cloud. Finally,
it would be necessary to adapt existing cloud middle-
ware, like MapReduce/Hadoop to the heterogeneous dis-
tributed environment of the Personal Cloud, so that the
Personal Cloud can run not just raw VMs, but also stan-
dard cloud middleware based services.
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