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††School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract—According to many scientists and clinicians, ge-

nomics is the “next big thing” in the field of medicine. On
one hand, decreasing costs in genome sequencing has been

paving the way to better preventive and personalized medicine.

On the other hand, genomic data also raises serious privacy
concerns, as it is the ultimate identifier of an individual and

it contains privacy-sensitive data (e.g., disease predispositions,

ancestry information). Thus, it is necessary to find ways of

using genomic data without abusing the genomic privacy of
individuals. To get a more comprehensive medical assessment,

genomic information must be combined with other clinical and

environmental data (such as demographic information, family
history, disease history, laboratory test results, etc.) that are

also privacy-sensitive (e.g., HIV status of an individual) and

need to be treated as such. Focusing on disease risk tests, in
this paper, we propose a privacy-preserving system for storing

and processing genomic, clinical, and environmental data by

using homomorphic encryption and privacy-preserving integer
comparison. We implement the proposed system using real

patient data and reliable disease risk factors. In particular, we

use 23 genetic and 14 clinical and environmental risk factors
to compute the risk of coronary artery disease in a privacy-

preserving way. Finally, we show the practicality of the proposed

system via a complexity evaluation.

I. INTRODUCTION

The field of medicine is in the middle of a radical upheaval:

As a result of the rapid evolution in genomic research and the

dramatic decrease in the costs of sequencing, the paradigm of

classic medicine has been shifting towards a more personalized

approach. Genomic data provides opportunities for substantial

improvements in diagnosis and preventive medicine. In partic-

ular, it has been shown that an individual’s predisposition to

a disease depends on genomic variations. Already now, some

commercial companies (e.g., 23andMe [1] and Counsyl [2])

provide low-cost (genetic) disease risk tests to their customers

for certain diseases. Even though the genome of an individual

tells much about his disease risks, research also shows that the

non-genomic attributes (described here as clinical and envi-

ronmental data) of the individuals also contribute significantly

to their disease risks. The clinical and environmental data of

an individual can include his demographic information, his

family history (e.g., diseases of his family members), the list

of diseases that he carries, the results of his laboratory tests

(e.g., cholesterol level), etc. Thus, such data should also be

considered along with the individuals’ genomic data when

computing their risk for various diseases [3].

The use of individual genomic, clinical, and environmental

data can be of interest for a large variety of healthcare

stakeholders (here described as medical units), such as (i) a

pharmacist checking if a given drug could be harmful (toxicity,

interactions) for a patient, (ii) a pharmaceutical company

categorizing people based on their risk for a particular disease

in order to identify potential clinical trial participants, (iii) a

regional health ministry determining the fraction of people

at high risk for a particular disease in order to optimize

a population-wide preventive medicine effort, (iv) an online

direct-to-consumer service provider offering individual risk

prediction for various diseases, considering genomic, clinical

and environmental data, or (v) a physician, computing the risk

of a patient for a particular disease for early diagnosis.

On one hand, for all the aforementioned examples (with the

exception of the physician), in order to protect the privacy of

his sensitive data, an individual might not want to directly

provide his genomic data and clinical and environmental

attributes to the medical unit. Furthermore, what is important

for the medical unit (with the exception of the physician)

is the end-result (i.e., risk of the patient for a disease or

the compatibility of a person to a drug); not the individual

attributes of the person that lead to the end-result. Even if the

medical unit is embodied in a physician and the computed

disease risk of a patient is low, the patient would not need

to reveal any further (privacy-sensitive) information to the

physician (if the disease risk is high, then the physician can

extend the test and learn more about the cause of the high

risk, with the consent of the patient). On the other hand, such

(sensitive) data might play an important role in a disease risk

test, hence the inaccuracy (or absence) of such data might

cause incorrect (or misleading) results. Therefore, it is crucial

to use the correct and complete data of the individuals for the

accuracy of such disease risk tests, while still protecting their

privacy.

The digitalization of health records has already become

a fundamental modernization of the healthcare system to

store the clinical and environmental data of the individuals.

Furthermore, private storage techniques for such data have

been intensively addressed and deployed (e.g., Indivo [4] or

Microsoft Healthvault [5]). However, the same is not true for

genomic data. Unfortunately, very little progress has been

made for the protection of genomic information, and no



progress has been made for the privacy-preserving integration

and processing of genomic, clinical, and environmental data.

Because of its extremely sensitive nature, genomic data

has an unprecedented impact on privacy [6]. In particular,

because the genome carries information about a person’s

genetic condition and predispositions to specific diseases, the

leakage of such information could enable abuse and threats.

For example, insurance companies might obtain the genomes

of their clients, or employers might (indirectly) test their

applicants; access to this information could lead to genetic

discrimination or other abuses not yet fully understood. On

the other hand, as we discussed before, genomic data includes

invaluable medical information about individuals, hence it

should be accessed and processed by authorized medical units

for healthcare purposes. Thus, it is very important to protect

individuals’ privacy-sensitive genomic data, while enabling the

access to the authorized parties.

In this work, we propose a system for protecting the privacy

of individuals’ sensitive genomic, clinical, and environmen-

tal information, while enabling medical units to process it

in a privacy-preserving fashion in order to perform disease

risk tests. We introduce a framework in which individuals’

medical data (genomic, clinical, and environmental) is stored

at a storage and processing unit (SPU) and a medical unit

conducts the disease risk test on the encrypted medical data by

using homomorphic encryption and privacy-preserving integer

comparison. The proposed system preserves the privacy of the

individuals’ genomic, clinical, and environmental data from a

curious party at the SPU and from a malicious party (e.g.,

a hacker) at the medical unit when computing the disease

risk. We also implement the proposed system and show its

practicality via a complexity evaluation.

The rest of the paper is organized as follows. In Section II,

we summarize the existing work in genomic privacy and

privacy of medical records. In Section III, we give a brief

background on the tools we use in this paper. In Section IV,

we introduce the system and threat models. In Section V, we

describe the proposed solution in detail. In Section VI, we

show the implementation of the proposed system and discuss

its computational complexity. In Section VII, we conclude the

paper.

II. RELATED WORK

We first summarize the efforts for protecting genomic data

and still enabling its functionality in some genetic tests. Private

string searching (on the DNA sequence) by using a finite state

machine is proposed by Troncoso-Pastoriza, Katzenbeisser,

and Celik [7], and then re-visited by Blanton and Aliasgari [8].

To check the similarities of DNA sequences in a privacy-

preserving way, Jha, Kruger, and Shmatikov propose using

garbled circuits [9], while Bruekers et al. propose using

homomorphic encryption [10]. Baldi et al. make use of

private set intersection [11] for privacy-preserving similarity

check on DNA sequences [12]. Furthermore, Eppstein and

Goodrich propose a privacy-enhanced method for comparing

two compressed DNA sequences [13] by using an invertible

Bloom filter [14]. Different from the above string searching

and comparison methods, Kantarcioglu et al. propose using

homomorphic encryption to perform scientific investigations

on integrated genomic data [15]. Canim, Kantarcioglu, and

Malin propose securing the biomedical data by using cryp-

tographic hardware [16]. Finally, in our preliminary work,

we propose a privacy-preserving scheme for medical tests

and personalized medicine methods that use patients’ genomic

data [17].1

There are also several efforts for protecting the privacy of

clinical and environmental data. Many ad-hoc electronic health

record (EHR) systems use cryptographic protocols to store

medical information in a secure fashion and to define the

access rights of the medical units. Both Narayan, Gagne, and

Safavi-Naini [18] and Alshehri, Radziszowski, and Raj [19]

propose encrypting EHRs based on healthcare providers’ at-

tributes or credentials. Benaloh et al. propose a system with

patient controlled encryption that enables patients both to share

partial access rights with others, and to perform searches over

their records [20]. Few works also explore the possibility of

directly processing the encrypted clinical and environmental

data. For example, Barni et al. propose privacy-protecting

protocols for the classification of medical data [21].

As opposed to the aforementioned efforts, in this paper,

we focus on the privacy-preserving storage and processing

of genomic data, together with clinical and environmental

attributes. More specifically, we show how specific disease

risk tests can be done using genomic data, along with clinical

and environmental data, while still preserving the privacy of

the individuals.

III. BACKGROUND

In this section, we briefly summarize the main concepts in

genomics, statistics and cryptography that we use in this paper.

A. Genomic Background

The human genome is encoded in a double-stranded he-

lical DNA molecule, as a sequence of nucleotides. Genome

sequencing techniques record the nucleotides by using the

letters A, T, G and C, and the whole human genome includes

approximately 3 billion letters. Around 99.9% of the entire

genome is identical between any two given individuals. The

remaining part (∼ 0.1%) is responsible for many of our inter-

individual differences, for example, in physical appearance

and in susceptibilities to diseases. Human genetic variation

occurs on many levels from gross alterations in the karyotype

to single nucleotide variants [22]. The latter are also called

single nucleotide polymorphisms (SNPs) when they are found

to be variable in at least 1% of the individuals in a population.

For example, the two short sequences (i) AAGTCG, and (ii)

AATTCG sampled from two different individual’s genomes

differ at the underlined SNP position.

1More information about our activities in this field can be found at:
http://lca.epfl.ch/projects/genomic-privacy/.



In general, two different alleles (nucleotides found at a

genomic position) are observed for each SNP (the alleles

for the SNP in the aforementioned example are G and T ,

respectively). Furthermore, each individual carries two alleles

at each SNP (one inherited from the mother and one from

the father). If an individual receives the same allele from both

parents, he is said to have a homozygous SNP. If, however,

he inherits a different allele from each parent, he has a

heterozygous SNP. So far, approximately 50 million SNPs

have been identified in the human population [23].

Several studies have assessed both the evolutionary sig-

nificance and medical applications of SNPs. In particular,

Genome-Wide Association Studies (GWAS) have investigated

the impact of SNPs on phenotypic traits, such as diseases, and

have demonstrated associations between particular variants

and disease risks. Each SNP has a different impact on the risk;

some of them contribute to the development of the disease,

whereas some are protective.

As we discussed before, two different alleles are observed

for every SNP. In general, for a SNP that is associated

with a disease, one of these alleles carries the risk for the

corresponding disease and the other allele does not contribute.

For example, assume that the SNP in the above example (with

alleles G and T ) is associated with a particular disease X . Also

assume that out of these two alleles, G is the one carrying the

risk for disease X . That is, the presence of G increases the

risk for disease X . Then, the risk for disease X is the highest

(due to the corresponding SNP) if an individual inherits G
from both of his parents (i.e., if he has a homozygous SNP

carrying two risk alleles). Whereas, the risk is weaker if

he inherits one G and one T , and it is the lowest if he

inherits T from both of his parents.2 For simplicity, in this

paper, we represent (i) an homozygous SNP carrying two non-

contributing alleles as 0, (ii) an heterozygous SNP carrying one

risk (or protective) allele and one non-contributing allele as 1,

and (iii) an homozygous SNP carrying two risk (or protective)

alleles as 2.3 In short, each SNP can be in one of the states

from {0, 1, 2}, and we let SNPP
i represent the state (content)

of SNPi (SNP with ID i) for a patient P .

B. Computation of the Disease Risk

The strength of the association between each SNP and a

disease is usually expressed by the odds ratio (OR), where

the odds is the ratio of the probability of occurrence of the

disease to that of its non-occurrence in a specific group of

individuals. Thus, the OR is the ratio of odds in the group

of individuals carrying a genetic variation (exposed) to that

of those who do not carry it (unexposed). In other words, the

OR illustrates by how much the risk of disease is multiplied in

an individual carrying a genetic variation compared to another

individual not carrying the same variation.

When multiple SNPs are associated with a disease, the

overall genetic risk (S) of an individual for the corresponding

2The same holds for protective SNPs.
3The number of alleles carrying the risk is usually called genetic burden.

disease can be computed as a weighted average, based on

the OR of each associated SNP by using a logistic regression

model. This model is currently widely used among the ge-

neticists and medical doctors for disease risk tests. In such a

model, OR of a SNPi (i.e., ORi) is generally represented in

terms of regression coefficient (βi), where ORi = exp(βi).
Then, assuming Prg is the probability that an individual P
will develop a disease X (only considering his genomic data),

his overall genetic risk can be computed as below:4

S = ln(
Prg

1− Prg
) = α+

∑

i∈ϕX

βip
i
j(X), (1)

where pij(X) is the contribution of the SNPi to the genetic

risk (for disease X) when SNPP
i = j (SNPP

i ∈ {0, 1, 2}
as discussed in Section III-A), and α is the intercept of the

model.

For clinical use, the genetic risk, computed in (1) should be

categorized based on its risk group. For this purpose, generally,

the distribution of the potential genetic scores (in a given

population) is divided into smaller parts called quantiles (or

risk groups) as in Fig. 1. In Fig. 1, there are 4 different risk

groups, each with a different genetic regression coefficient.

For example, if S is somewhere between b1 and b2, then we

assign the genetic regression coefficient for the corresponding

individual as β2. For each individual, the genetic score is

computed as in (1), and positioned into its risk group. We

represent the genetic regression coefficient corresponding to

the genetic risk S as βg .

β1 = ln(OR1)

β2 = ln(OR2) β3 = ln(OR3)

β4 = ln(OR4)

b1 b2 b3

25% 25% 25% 25%

Fig. 1. Genetic score distribution partitioned in 4 genetic risk groups.

As discussed in Section I, to compute the overall disease

risk, the genetic information needs to be combined together

with the clinical and environmental factors. For this purpose,

assuming Pr is the probability of disease X (this time con-

sidering genetic, clinical, and environmental information), a

second and final multi-variable logistic regression model is

used to find the final (aggregate) regression coefficient βf as

below:

ln(
Pr

1− Pr
) = βf = β0 + βg +

∑

Ni∈N

β̄iNi, (2)

where β0 is the new intercept, N is the set of clinical and

environmental attributes associated with the disease, and β̄i
is the regression coefficient corresponding to the clinical or

4In general, a logistic regression model is represented as ln( Pr

1−Pr
) =

α+
∑

i

βiXi. In our model, the explanatory variable Xi is pij .



environmental attribute Ni. From (3), the probability (Pr)
that the corresponding individual will develop disease X
(considering all the genomic, clinical, and environmental data)

can be computed as follows:

Pr =
eβf

1 + eβf
. (3)

C. Cryptographic Background

In this section, we briefly describe two cryptosystems along

with their homomorphic properties: the modified Paillier

cryptosystem (described in detail in [24] and [25]) and the

DGK cryptosystem (described in detail in [26]).

1) Modified Paillier cryptosystem: The Paillier cryptosys-

tem is a public key cryptosystem supporting some homomor-

phic operations. The public key is represented as (n, g, h =
gx), where the strong secret key is the factorization of n = zy
(z, y are safe primes), the weak secret key is x ∈

[

1, n2/2
]

,

and g of the order (z − 1)(y − 1)/2. By selecting a random

a ∈ Z∗

n2 , g can easily be computed as g = −a2n.

• Encryption: To encrypt a message m ∈ Zn, we first select

a random r ∈ [1, n/4] and generate the ciphertext pair

(C1, C2) as below:

C1 = gr mod n2 and C2 = hr(1 +mn) mod n2.
(4)

For simplicity, in the rest of this paper, we represent the

Paillier encryption of a message m as [m].
• Decryption: The message m can be recovered from [m]

as follows:

m = ∆(C2/C
x
1 ) (5)

where ∆(u) = (u−1) mod n2

n
, for all u ∈ {u < n2 | u =

1 mod n}.

• Proxy re-encryption: Assume we randomly split the secret

key in two shares x1 and x2, such that x = x1 + x2.

The modified Paillier cryptosystem enables an encrypted

message (C1, C2) to be partially decrypted to a ciphertext

pair (C̃1, C̃2) using x1 as below:

C̃1 = C1 and C̃2 = C2/C
x1

1 mod n2. (6)

Then, (C̃1, C̃2) can be decrypted using x2 with the afore-

mentioned decryption function to recover the original

message.

2) DGK cryptosystem: The DGK cryptosystem is opti-

mized for the secure comparison of integers. The key gen-

eration needs three parameters k, t and L where k > t > L.

The parameter k represents the number of bits of the RSA

modulus n, t is the size of two small primes vp and vq , and

L is the message space size in bits. Assume that p and q are

two distinct primes of equal bit length, such that p − 1 is

divisible by vp and q − 1 is divisible by vq . Then, the public

key is represented as (n, g, h, u), where u is a L-bit prime,

g ∈ Z∗

n with order uvpvq , and h is an integer with order vpvq .

Furthermore, the private key is represented as (p, q, vp, vq).
For simplicity, in the rest of this paper we represent the DGK

encryption of a message m as 〈m〉.

3) Homomorphic properties: Both modified Paillier and

DGK cryptosystems support some computations in ciphertext

domain. In particular, both cryptosystems have the following

properties:

• The product of two ciphertexts is equal to the encryption

of the sum of their corresponding plaintexts.

• A ciphertext raised to a constant number is equal to the

encryption of the product of the corresponding plaintext

and the constant.

These homomorphic operations are used in our proposed

solution (in Section V) to compute the genetic risk and the

overall disease risk in ciphertext domain.

IV. SYSTEM AND THREAT MODELS

In this work, we propose a system for the privacy-preserving

computation of disease risk by using both genomic data and

clinical and environmental factors. In general, this type of

a medical test involves a patient (P ) and a medical unit

(MU). As we discussed in Section I, the medical unit can

be a pharmacist, a pharmaceutical company, a regional health

ministry, an online direct-to-consumer service provider, or a

physician (for early diagnosis).

We assume that the sequencing and the encryption of the

genomic data of the patient are performed at a certified

institution (CI), which is a trusted entity. We note that such

a trusted entity is indispensable in such a system, as the

sequencing has to be done at an institution to obtain the genetic

variation profile of the patient. Furthermore, the clinical and

environmental data of the patient is collected during his doctor

visits (e.g., at the MU) or directly provided by the patient. As

we discussed before, a patient might not be willing to reveal

all his clinical and environmental data to an MU (e.g., his HIV

status or family history). However, this privacy-sensitive data

can play an important role in the accuracy of the computed

disease risk. The proposed system allows the patient to choose

what part of his clinical and environmental data to hide from

an MU and it still involves such hidden data in the computation

of the disease risk.

We assume that the storage and processing of genomic,

clinical, and environmental data is done at a storage and

processing unit (SPU) for efficiency and security. That is,

instead of several MUs storing the same large amount of

genomic data (tens to hundreds of gigabytes per patient), the

genomic data of the patients is stored at a centralized SPU,

and provided to the MUs upon request. Storing the genomic,

clinical, and environmental data at the SPU also makes such

data available to any MU at any given time (e.g., during
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Fig. 2. Proposed system model for the privacy-preserving computation of
the disease risk.

emergencies). Furthermore, as an MU can be embodied in

several entities from a physician to an online service, it would

be unrealistic to assume that all these different entities will pay

high attention to the security of the data they store. It is easier

therefore to provide the security of the genomic, clinical, and

environmental data of the patients at the SPU.5 We note that a

private company (e.g., cloud storage service), the government,

or a non-profit organization could play the role of the SPU.

The general architecture of the proposed system is illus-

trated in Fig. 2. In summary (it will be described in detail in

Section V), the patient provides his sample for sequencing to

the CI. Meanwhile, he also provides his clinical and environ-

mental data to the SPU and the MU.6 The CI is responsible

for sequencing and encryption of the patient’s genomic data.

Then, the CI sends the encrypted genomic data to the SPU.

Finally, the privacy-preserving computation of the disease risk

takes place between the MU and the SPU.

In this study, we consider the following two types of

potential attackers: (i) an attacker at the MU, and (ii) a

curious party at the SPU. The attacker can be represented by

a careless or disgruntled employee at the MU or a hacker

who breaks into the MU and aims to obtain private genomic,

clinical, and environmental information about a patient (for

which it is not authorized). We also assume that the SPU

might be a curious entity (e.g., existence of a curious party

or a disgruntled employee at the SPU), hence all genomic,

clinical, and environmental data should be stored at the SPU

in encrypted form (i.e., the SPU should not be able to access

the contents of patients’ data). Furthermore, patients’ data is

stored using pseudonyms (without revealing the real identities

of the patients) at the SPU, hence SPU cannot associate a

5For similar reasons, we prefer not to leave patients’ genomic, clinical, and
environmental data in their own hands (e.g., by storing it on their personal
devices).

6As we discussed before, depending on the privacy-sensitivity of the
clinical and environmental data, the patient can choose which clinical and
environmental attributes to reveal to the MU, and which ones to encrypt and
keep at the SPU.

medical test to a patient. Other than being potentially curious,

we assume that the SPU is an honest party. That is, it follows

the protocol properly and does not change the integrity of the

stored data. Finally, we assume that the MU and the SPU do

not collude.

V. PROPOSED SOLUTION

A. Initialization

The cryptographic keys of each patient (for the modified

Paillier cryptosystem) are generated and distributed to the

patients during the initialization period. Furthermore, the

patient’s secret key x is randomly divided into x1 and x2
(such that x = x1 + x2 as discussed in Section III-C)

and each share is distributed to the SPU and to the MU,

respectively (i.e., x1 is provided to the SPU and x2 to the

MU). Similarly, public and private keys of the SPU for the

DGK cryptosystem are generated and the public key is shared

with the MU. Finally, symmetric keys are established between

the parties (to protect the communication between the parties

from an eavesdropper). We note that the distribution, update

and revocation of cryptographic keys are handled by a trusted

entity.7

B. Sequencing and Clinical and Environmental Data Collec-

tion

The patient provides his sample for sequencing. The sample

is sequenced by the CI with the consent of the patient. The

sequence is further analyzed and the SNPs of the patient

are extracted. We assume that the non-consented sequencing

of the patients’ genomes is forbidden by law. Furthermore,

even if non-consented sequencing using collected samples

of the patients were possible, this type of an attack would

be both low-scale (in terms of the number of victims) and

more importantly, very costly (due to the cost of sequencing

machines) for the attacker.

At the same time, clinical and environmental data of the

patient is collected during his doctor visits or directly provided

by the patient. For example, data about his cholesterol level

or his blood-sugar level is collected during his doctor visits.

Whereas, data such as his age, weight, height, or family history

is provided by the patient.

In contrast with genomic data, some clinical and environ-

mental data (e.g., cholesterol level) of the patient is subject

to frequent changes over time.8 From here on, we call such

clinical and environmental data as the “variable data”. Thus,

upon collection, the variable data is accompanied with a date

(e.g., date of the collection of the data). By doing so, the MU

can decide whether any variable data should be updated by

the patient before the computation of his risk for a disease.

7In this case, the trusted entity can be the certified institution (CI).
8Genomic data also rarely changes (e.g., via mutations). In such cases, the

patient’s genome might need to be sequenced again.



C. Encryption and Storage of Genomic, Clinical, and Envi-

ronmental Data

Encryption of the contents of the SNPs are done at the CI by

using the modified Paillier cryptosystem (Section III-C). We

assume SNPi represents the position (or ID) of a SNP (on the

DNA sequence). We also assume SNPP
i represents the content

(or state) of SNPi at patient P , where SNPP
i ∈ {0, 1, 2}

(as discussed in Section III-A). After the sequencing and the

extraction of the SNPs of the patient, the CI encrypts the con-

tents of all SNP positions of the patient (to obtain [SNPP
i ]

9)

along with their squared values (to obtain [(SNPP
i )

2]). The

squared values of the SNPs are required for the homomorphic

operations (in Section V-D1). Eventually, the CI encrypts the

contents of around 50 million SNP positions for the patient.

Furthermore, the CI also individually encrypts each clinical

and environmental attribute of the patient by using the modi-

fied Paillier cryptosystem (we will further discuss the contents

of clinical and environmental attributes in Section V-D3).

After encryption, the CI sends the encrypted genomic,

clinical, and environmental data (along with the pseudonym

of the patient) to the SPU for storage. We note that only

the contents of the SNPs are encrypted at the CI; not their

positions (on the DNA). Thus, the SPU stores the positions

(or the IDs) of the SNPs in plaintext, mainly to check the

access rights of the MU for the requested SNPs. Similarly, the

identifiers of the clinical and environmental attributes (e.g.,

“age” or “cholesterol level”) and their dates (i.e., collection

date of the variable data) are stored in plaintext at the SPU.

D. Privacy-Preserving Computation of Disease Risk

The computation of a patient’s disease risk is done at the

MU. In the remaining of this section, we will describe how

the MU obtains the risk of patient P for a disease X . The MU

requests the (encrypted) genomic, clinical, and environmental

data of the patient that will be used for the computation of

the disease risk from the SPU (request is done using the

pseudonym of the patient). The SPU then verifies that the MU

has the required access rights for the requested genomic, clini-

cal, and environmental data for the corresponding computation

and sends the requested (encrypted) data to the MU. Along

with the encrypted genomic, clinical, and environmental data,

the positions (or IDs) of the encrypted SNPs and the identifiers

and the collection dates of the clinical and environmental data

are also sent to the MU by the SPU. Looking at the collection

date, MU can decide if the patient needs to update any of his

clinical and environmental data before the computation of the

disease risk.

The MU first computes the regression coefficient corre-

sponding to the genetic risk of the patient for disease X (as

discussed in Section III-B). Then, it combines this with the

clinical and environmental factors and eventually obtains the

9We represent the encryption of a message m using modified Paillier
cryptosystem as [m].

overall risk of the patient to disease X . Next, we describe this

process in detail.

1) Computing the genetic risk: As before, let SNPi rep-

resent the position (or ID) of a SNP, SNPP
i represent the

content of the corresponding SNP (SNPP
i ∈ {0, 1, 2}), and

βi represent the regression coefficient, thus the strength of the

association between SNPi and disease X . Also, let pij(X) be

the contribution, depending on the content, of the SNPi to

the genetic risk (for disease X) when SNPP
i = j. Then, the

MU computes the (encrypted) genetic risk ([S]) of patient P to

disease X using the encrypted SNPs of the patient as below:

[S] =

[

∑

i∈ϕX

βi

{pi0(X)

χ
(SNPP

i − 1)(SNPP
i − 2) +

pi1(X)

ψ

(SNPP
i )(SNP

P
i − 2) +

pi2(X)

µ
(SNPP

i )(SNP
P
i − 1)

}

]

, (7)

where, χ, ψ, and µ are plaintext normalizing constants.

As we discussed in Section III-B, the MU needs to know on

which genetic risk group (quantile) the above genetic risk is

positioned in order to determine the regression coefficient (βg)

of the computed genetic risk (each risk group contributes the

risk with a different regression coefficient). However, as the

above computed genetic risk is encrypted, to find the regres-

sion coefficient corresponding to the computed genetic risk,

we propose to use a privacy-preserving integer comparison

algorithm [27] between the MU and the SPU.

2) Computing the genetic regression coefficient: The ge-

netic risk distribution consists of ρ genetic risk groups (or

quantiles), each with different regression coefficients (e.g.,

ρ = 4 in Fig. 1). We let bli and bui represent the lower and

upper boundary of the ith risk group of the genetic risk scale,

respectively. In short, MU compares [S] with the boundaries

of the genetic risk scale in a privacy-preserving way, such

that neither the MU nor the SPU learns the value of S or

the result of any comparison. Assume that both S and bji
(j ∈ {l, u}) are L-bit numbers. We summarize the main steps

of the privacy-preserving comparison algorithm below. The

operations in these steps are also illustrated in Fig. 3.

Step 1 (@MU): The MU computes [z] = [2L + S − bji ]. Let

zL−1 represent the most significant bit of z. Then, (i) zL−1 = 0
if S < bji ; and (ii) zL−1 = 1 if S ≥ bji . Thus, the MU needs to

compute [zL−1], where [zL−1] = [z−(z mod 2L)]. However,

the MU cannot compute [z mod 2L] using the homomorphic

properties of the modified Paillier cryptosystem. Thus, the

MU initiates a privacy-preserving comparison protocol with

the SPU to compute [z mod 2L].

The MU generates a random number r and computes [d] =
[z+ r]. Then, the MU partially decrypts [d] using x2 to obtain
˜[d]10 and sends ˜[d] to the SPU.

10Partial decryption using a share of the patient’s secret key is discussed
in Section III-C.



@(MU)

@(SPU)

ii. Generate a “blind factor” r 

and compute [d] = [ z + r ] 

iii. Par!ally decrypt [d] using 

x2 to obtain [ ]

vii. Compute (r mod 2L) and     

[z mod 2L ] =

[d mod 2L - r mod 2L + 2L]

iv. Decrypt [ ] using x1 to 

obtain d

.

.

.

v. Compute (d mod 2L)

vi. Compute [d mod 2L] 

using P’s public key

[ ]

[d mod 2L]

i. Compute [z] = [2L + – bi
j]

Goal: compute [z mod 2L ]

Fig. 3. Privacy-preserving comparison algorithm to determine the risk group
of the genetic score S.

Step 2 (@SPU): The SPU decrypts ˜[d] using x1 to obtain

d. Then, the SPU computes (d mod 2L), encrypts it (via the

patient’s public key using the modified Paillier cryptosystem)

to obtain [d mod 2L], and sends the encrypted value to the

MU.

Step 3 (@MU): The MU computes (r mod 2L) and encrypts

it (via the patient’s public key, by using the modified Pail-

lier cryptosystem) to obtain [r mod 2L]. Then, it computes

[z mod 2L] = [d mod 2L − r mod 2L]. We note that

[z mod 2L] = [z mod 2L] if (d mod 2L) ≥ (r mod 2L).
However, if (r mod 2L) > (d mod 2L), an underflow oc-

curs as the subtraction is done in modulo n (using the ho-

momorphic properties of the modified Paillier cryptosystem).

To avoid this underflow problem, the MU should compute [z
mod 2L] as [z mod 2L] = [z mod 2L + λ2L], where λ = 0
if (d mod 2L) ≥ (r mod 2L), and λ = 1 otherwise. In the

following we describe how the MU computes [λ] with the help

of the SPU.

Computing [λ]: For the efficiency of the protocol, the com-

putation of [λ] relies on the homomorphic encryption scheme

proposed by Damgard et al. [26] (DGK cryptosystem, as

described in Section III-C). Compared to the modified Paillier

cryptosystem, the DGK cryptosystem allows for an efficient

multiplicative masking, as it has a small plaintext space Zu

(where u is a prime number). Similar to modified Paillier,

the DGK cryptosystem also supports the addition of two

ciphertexts and the multiplication of a ciphertext with a

plaintext constant. As discussed before, we represent the DGK

encryption of a message m under the public key of the SPU

as 〈m〉. In the following, we describe the computation of [λ].
We also summarize the main steps in the computation of [λ]
in Fig. 4.

Let d̂ = (d mod 2L) and d̂i represent the ith bit of d̂
(where i ∈ {0, 1, . . . , L−1}). In Step 2 of the above protocol,

the SPU also encrypts the bits of d̂ by its public key by using

the DGK encryption to obtain 〈d̂0〉, . . . , 〈 ˆdL−1〉 and sends

these encrypted bits to the MU.

Similarly, let r̂ = (r mod 2L) and r̂i represent the ith bit

@(MU)

@(SPU)

ii. Encrypt bits of (r mod 2L) 

→

iii. Choose an s randomly

from

iv. Compute as in (8) 

and generate by 

masking and permu!ng 

i. Encrypt bits of  (d mod 

2L) using DGK →

.

.

.

v. Decrypt using DGK 

private key 

vi. Compute  a:

• If ∃! = 0 → a = 0

• If ∀ ≠ 0 → a = 1

vii. Compute [a] via Paillier

viii. Determine [ ]:

• If s = 1 → [ ] = [1-a]

• If s = -1 → [ ] = [a]

.

.

.

Fig. 4. Privacy-preserving comparison protocol to compute [λ] (to determine
whether there is an underflow in the computation of [z mod 2L] in Step 3).

of r̂ (where r ∈ {0, 1, . . . , L − 1}). In Step 3 of the above

protocol, the MU encrypts the bits of r̂ under the public key of

the SPU using the DGK encryption to obtain 〈r̂0〉, . . . , 〈 ˆrL−1〉.
Then, the MU randomly chooses an integer s from the set

{1,−1} and computes C = {〈c0〉, . . . , 〈cL−1〉}, where

〈ci〉 =
〈

d̂i − r̂i + s+ 3

L−1
∑

j=i+1

wj

〉

, (8)

and wj = d̂j ⊕ r̂j . We note that 〈d̂j ⊕ r̂j〉 = 〈d̂j + r̂j −

(2r̂j)d̂j〉, hence it can be easily computed at the MU (using

the homomorphic properties of the DGK cryptosystem), as r̂j
values are available to the MU in plaintext. Next, for each 〈ci〉,
the MU selects a random number αi (from Zu) and computes

〈ei〉 = 〈ciαi〉 in order to multiplicatively mask the 〈ci〉 values.

The MU also permutes the ordering of 〈ei〉 values and sends

them to the SPU.

The SPU decrypts the 〈ei〉 values using its private key and

checks for the following two cases: (i) If all ei values are non-

zero, the SPU sets a = 1, and (ii) if exactly one ei value is

zero, the SPU sets a = 0. Then, the SPU encrypts a using the

modified Paillier cryptosystem under the patient’s public key

to obtain [a], and sends this encrypted value to the MU.

We note that if a = 1 and s = 1 (the number randomly

selected by the MU), then d̂ ≥ r̂ (i.e., λ = 0). Similarly, if

a = 0 and s = 1, then r̂ > d̂ (i.e., λ = 1).11 Thus, if s = 1, the

MU sets [λ] = [1− a] and if s = −1, it sets [λ] = [a]. Using

[λ], the MU can compute [z mod 2L], and hence [zL−1] as

we discussed before.

Let [G(S, bui )] = [zL−1] represent the (encrypted) result of

the comparison between S and bui . Then, (i) G(S, bui ) = 0 if

S < bli; and (ii) G(S, bui ) = 1 if S ≥ bli. Given there are ρ
risk groups in the genomic risk scale, using the above privacy-

preserving comparison algorithm, the MU can determine the

genetic regression coefficient (βg) corresponding to S as

11The opposite holds when s = −1.



SNP Chr Allele Risk allele OR

rs3798220 6 T>C C 1.51
rs4977574 9 A>G G 1.29
rs9982601 21 C>T T 1.18
rs17114036 1 A>G A 1.17
rs17465637 1 C>A C 1.14
rs6725887 2 T>C C 1.14
rs1122608 19 G>T G 1.14
rs964184 11 C>G G 1.13
rs12413409 10 G>A G 1.12
rs2306374 3 T>C C 1.12
rs599839 1 A>G A 1.11
rs579459 9 T>C C 1.10
rs12526453 6 C>G C 1.10
rs11556924 7 C>T C 1.09
rs1746048 10 C>T C 1.09
rs12190287 6 C>G C 1.08
rs3825807 15 A>G A 1.08
rs216172 17 C>G G 1.07
rs12936587 17 A>G G 1.07
rs4773144 13 A>G G 1.07
rs17609940 6 G>C G 1.07
rs2895811 14 T>C C 1.07
rs46522 17 T>C T 1.06

TABLE I
GENOMIC VARIANTS (SNPS) USED FOR THE COMPUTATION OF THE

GENETIC RISK FOR THE CORONARY ARTERY DISEASE (CAD) [3]. “CHR”
IS THE CHROMOSOME ON WHICH THE CORRESPONDING SNP IS LOCATED.

“ALLELE” IS THE SET OF NUCLEOTIDES THAT ARE OBSERVED FOR THE

CORRESPONDING SNP (THE FREQUENTLY OBSERVED ALLELE IS THE ONE

ON THE LEFT). “RISK ALLELE” IS THE ALLELE WHICH CARRIES THE RISK

FOR CAD. “OR” IS THE ODDS RATIO OF THE CORRESPONDING SNP PER

RISK ALLELE (E.G., IF THE PATIENT CARRIES TWO RISK ALLELES OF A

PARTICULAR SNP, THE OR BECOMES TWO TIMES THE VALUE INDICATED

IN THE TABLE). AS WE DISCUSSED IN SECTION III-B, THE RELATION

BETWEEN THE OR AND THE REGRESSION COEFFICIENT (βi) OF A SNP i

CAN BE REPRESENTED AS ORi = exp(βi). THE ASSOCIATIONS OF THESE

SNPS TO CAD WERE IDENTIFIED THROUGH A META-ANALYSIS OF

MULTIPLE GENOME-WIDE ASSOCIATION STUDIES (GWAS).

below:

[βg] =
[

β1(1−G(S, bu1 )) +

(ρ−1)
∑

i=2

βi(G(S, b
u
i−1)−

G(S, bui )) + βρG(S, b
u
ρ−1)

]

, (9)

where βi is the genetic regression coefficient of the ith quartile

(risk group). We note that the above computation can be easily

conducted using the homomorphic properties of the modified

Paillier cryptosystem.

3) Computing the final disease risk: To compute the final

disease risk of the patient, the MU combines [βg] with the

patient’s clinical and environmental regression coefficients to

obtain the aggregate regression coefficient βf . Even though

some clinical and environmental data entries, such as smoking

behavior, can be represented binary (e.g., 1 is the patient

smokes and 0 if he does not), some entries are the results

of medical tests (e.g., cholesterol level) or demographic data

(e.g., age of the patient). To compute the aggregate regression

coefficient of the patient for a particular disease, these en-

tries should be categorized following the requirements of the

medical test. For example, when computing the cardiovascular

disease risk [3] of a patient, the regression coefficient of the

patient’s age takes 2 different values: (i) it gets a higher value if

the patient is over 45; and (ii) it gets a lower value if the patient

is 45 or younger. In this particular example, the encrypted

age of the patient can be compared with 45 to represent this

attribute as a binary value (i.e., 1 if the patient is over 45,

and 0 otherwise). Therefore, similar to before, the MU use a

privacy-preserving integer-comparison algorithm [27] to make

such comparisons for the encrypted clinical and environmental

data, before computing the aggregate regression coefficient of

the patient.12

Let N = {[N1], [N2], . . . , [Nm]} be the set of encrypted

clinical and environmental attributes of the patient (that are

required for the computation of the risk for disease X),

where Ni ∈ {0, 1} for the simplicity of the presentation.

That is, Ni = 1 if the patient has the corresponding clin-

ical or environmental attribute, and Ni = 0 otherwise. As

we discussed before, even if Ni is non-binary, it can be

transformed to a binary number using the privacy-preserving

comparison algorithm (in Section V-D2). Then, the (final)

aggregate regression coefficient of the patient (for disease X)

is computed as below:

[βf ] =
[

β0 + βg +

m
∑

i=1

β̄iNi

]

, (10)

where β̄i is the regression coefficient of the ith clinical or

environmental attribute, and β0 is the intercept (as discussed in

Section III-B). This encrypted aggregate regression coefficient

is then sent back to the SPU, where is it partially decrypted by

using x1 to obtain ˜[βf ]. Then, the SPU sends ˜[βf ] back to the

MU, where is it decrypted using x2 to obtain βf . Finally, the

MU computes the final disease risk of the patient for disease

X as e
βf

1+e
βf

.

We note that this proposed scheme preserves the privacy

of patients’ genomic data relying on the security strength of

modified Paillier cryptosystem and the DGK cryptosystem.

The extensive security evaluation of the modified Paillier

and DGK cryptosystems can be found in [24] and [26],

respectively.

VI. IMPLEMENTATION AND COMPLEXITY EVALUATION

To evaluate the practicality of the proposed privacy-

preserving algorithm, we implemented it, and assessed its stor-

age requirement and computational complexity. We evaluated

the proposed system using real genomic data. In particular,

we encrypted a real individual’s SNP profile from [28], and

we computed the coronary artery disease (CAD) risk by

using real data (i.e., OR values and genetic risk distribution)

from [3]. In summary, CAD risk computation includes (i) 23

SNPs associated with cardiovascular risk (in Table I) for the

12There might be more than 2 categories for some clinical or environmental
attributes. In this case, the MU needs to determine under which category
the patient’s (encrypted) attribute falls using a similar technique discussed in
Section V-D2.



Variable Odds Ratio

Age (>45 years) 3.21
Current smoking 2.25
Family history of CAD 2.00
Lopinavir (> 1 year) 1.74
Diabetes 1.81
Current abacavir exposure 1.62
Past smoking 1.51
Indinavir (> 1 year) 1.28
High cholesterol 1.61
On ART 1.51
Hypertension 1.44
Low HDL cholesterol 1.11
CD4 0.99
HIV RNA 1.00
Genetic score quantile 2 vs. quantile 1 1.12
Genetic score quantile 3 vs. quantile 1 1.33
Genetic score quantile 4 vs. quantile 1 1.62

TABLE II
CLINICAL, ENVIRONMENTAL, AND GENETIC RISK FACTORS USED FOR

COMPUTATION OF THE CORONARY ARTERY DISEASE (CAD) RISK [3].

computation of the genetic risk (S), and (ii) 14 clinical and

environmental factors (in Table II) to compute the overall CAD

risk. Furthermore, the genetic score distribution is partitioned

into 4 genetic risk groups or quantiles (i.e., ρ = 4 in

Section V). We note that in [3], the contributions of genetic,

clinical, and environmental factors to the disease risk are

computed via a logistic regression model on a population of

2078 individuals.

We implemented the proposed system on an Intel Core

i7-2620M CPU with 2.70 GHz processor under Windows 7

Operating System. We set the size of the security parameter

(n in Paillier cryptosystem in Section III-C) to 4096 bits. The

security parameters of the DGK cryptosystem are set to the

following values: L = 16, t = 160, k = 1024. Our imple-

mentation relies on a MySQL 5.5 database managed by the

open source tool MySQL Workbench. To provide a platform-

independent implementation, we used the Java programming

language along with the open-source Integrated Development

Environment, NetBeans IDE 7.1.1., for the implementation of

the Java code.13 In Table III, we summarize the computational

and storage complexities of the proposed solution.

We emphasize that the encryption of the variants at the CI

(using the modified Paillier cryptosystem) is a one-time opera-

tion and is significantly faster than sequencing and analysis of

the sequence. Further, this encryption can be conducted much

more efficiently by pre-computing some parameters, such as

(gr, hr) pairs, for various r values, for each patient. Indeed, by

pre-computing (gr, hr) pairs, we observed that the encryption

takes only 0.168 ms. per attribute at the CI. All these numbers

show that our privacy-preserving algorithm is very realistic and

could be implemented with current computing technology.

Finally, in Fig. 5, we illustrate two screen shots from our im-

plementation in which we illustrate the operations conducted

13We note that our code for the implementation is not optimized, and better
results can be expected with an optimized implementation.

at the patient (P ) and medical unit (MU), respectively.14

VII. CONCLUSION

In this paper, we have proposed a framework in which

patients’ genomic, clinical, and environmental data is securely

stored at a storage and processing unit, and in which a

medical unit conducts disease risk tests on this encrypted

data by using homomorphic encryption and privacy-preserving

integer comparison. We have shown that the proposed system

preserves the privacy of the patients against a curious party at

the storage and processing unit and a malicious party at the

medical unit. We have also implemented the proposed solution

and shown its practicality. We believe that the proposed

privacy-preserving disease risk test would encourage the use

of genomic, clinical, and environmental data in medical tests

by ensuring the patients that the privacy of their sensitive data

will be preserved.
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Complexity of the Proposed System

Encryp!on Storage Computa!on of disease risk
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COMPUTATIONAL AND STORAGE COMPLEXITIES OF THE PROPOSED SYSTEM. THE KEY SIZE FOR THE MODIFIED PAILLIER CRYPTOSYSTEM IS SET TO

4096 BITS. IN THE “ENCRYPTION” PHASE, BOTH GENETIC ATTRIBUTES (I.E., SNPS) AND CLINICAL AND ENVIRONMENTAL ATTRIBUTES ARE

ENCRYPTED. THE DATA IS STORED AT THE SPU. THE TOTAL TIME FOR THE COMPUTATION OF THE DISEASE RISK ALSO INCLUDES MINOR OPERATIONS

SUCH AS PROXY RE-ENCRYPTION AND PAILLIER DECRYPTION.

Fig. 5. Implementation of the proposed system at patient P and the medical unit (MU) for the computation of coronary artery disease (CAD) risk. In
Fig. 5(a), P specifies his clinical and environmental risk factors either directly to the MU, or these attributes are encrypted and stored at the SPU. In Fig. 5(b),
the MU receives the encrypted SNPs and clinical and environmental factors of P (that are associated with CAD) from the SPU, and computes CAD risk.
That is, the MU recovers the probability that P will develop “CAD” in the future based on his genetic variations and clinical and environmental risk factors.
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