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Abstract
We report initial results from the world’s first ISP-scale
field trial of a refraction networking system. Refraction
networking is a next-generation censorship circumvention
approach that locates proxy functionality in the middle
of the network, at participating ISPs or other network
operators. We built a high-performance implementation
of the TapDance refraction networking scheme and de-
ployed it on four ISP uplinks with an aggregate bandwidth
of 100 Gbps. Over one week of operation, our deploy-
ment served more than 50,000 real users. The experience
demonstrates that TapDance can be practically realized
at ISP scale with good performance and at a reasonable
cost, potentially paving the way for long-term, large-scale
deployments of TapDance or other refraction networking
schemes in the future.

1 Introduction
Censorship circumvention tools typically operate by con-
necting users to a proxy server located outside the cen-
soring country [3, 12, 15, 18]. Although existing tools
use a variety of techniques to conceal the locations of
their proxies [5, 9, 13, 17, 19], governments are deploying
increasingly sophisticated and effective means to discover
and block the proxies [7, 8, 20].

Refraction networking [16]1 is a next-generation cir-
cumvention approach with the potential to escape from
this cat-and-mouse game. Rather than running proxies
at specific edge-hosts and attempting to hide them from
censors, refraction works via Internet service providers
(ISPs) or other network operators, who provide censor-
ship circumvention functionality for any connection that
passes through their networks. To accomplish this, clients
make HTTPS connections to sites that they can reach,
where such connections traverse a participating network.
The participating network operator recognizes a stegano-

1Previous works used the term decoy routing, which confusingly
shares the name of a specific refraction scheme. We use refraction
networking as an umbrella term to refer to all schemes.

graphic signal from the client and appends the user’s re-
quested data to the encrypted connection response. From
the perspective of the censor, these connections are indis-
tinguishable from normal TLS connections to sites the
censor has not blocked. To block the refraction connec-
tions, the censor would need to block all connections that
traverse a participating network. The more ISPs partici-
pate in such a system, the greater the extent of collateral
damage that would-be censors would suffer by blocking
the refracted connections.

A variety of refraction networking systems have been
proposed in recent years [2, 6, 10, 11, 21, 22], represent-
ing different trade-offs among practicality, stealthiness,
and performance. The basic idea is to watch all of the
traffic passing through a router, selecting flows which are
steganographically tagged as participating in the protocol,
and then modifying that traffic by extracting and making
the encapsulated request on behalf of the client. While
each of these schemes has been prototyped in the lab, im-
plementing refraction within a real ISP poses significant
additional challenges. An ISP-scale deployment must be
able to:

• Identify client connections on high-speed backbone
links operating at 10–40 Gbps or more. This is at the
limits of commodity network hardware.

• Be built within reasonable cost constraints, in terms
both of required hardware and of necessary rack
space at crowded Internet exchange points.

• Operate reliably without disrupting the ISP’s net-
work or the reachable sites clients connect to.

• Have a mechanism for identifying reachable sites
for which connections pass through the ISP, and for
disseminating this information to clients.

• Coordinate traffic across multiple Internet uplinks or
even multiple ISPs.

To demonstrate that these challenges can be solved,
we constructed a large trial deployment of the TapDance
refraction scheme [21] and operated a trial deployment
in partnership with two mid-sized network operators: a



Figure 1: Station Traffic—Our four stations processed
mirrored traffic from 10- and 40-Gbps ISP upstream links
in order to detect connections from TapDance clients.
We show traffic processed over one week, which peaked
above 55 Gbps.

regional ISP and a large university. Our goal was to un-
derstand: (i) the scale of traffic a refraction system built
within reasonable constraints today can realistically pro-
cess, (ii) the experience for users of refraction in contrast
to traditional proxy-based circumvention, and (iii) the
impact on ISPs of operating refraction infrastructure.

This paper presents initial results from that deployment.
We discuss the design and engineering considerations that
we dealt with in its construction, and we present the first
data supporting the real-world practicality of refraction at
ISP scale. Our client and station code is publicly available
at https://refraction.network.

2 Deployment Overview
Over the years, several refraction schemes have been pro-
posed. The initial generation includes Cirripede, Curve-
ball, and Telex [10, 11, 22]. Each of these schemes em-
ployed an inline blocking element located at an ISP that
could observe network flows, look for tagged connections,
and selectively block flows between the censored client
and the reachable server. This style of system is diffi-
cult to deploy, as it introduces a high-risk inline blocking
device into an ISP’s network.

We chose to implement a second generation refraction
networking scheme, called TapDance [21], which was
designed to be easier for ISPs to deploy than earlier pro-
posals. TapDance operates by co-locating a “station” at
each of the ISP’s Internet uplinks. Unlike with previous
schemes, the TapDance station does not need to alter or
drop any traffic on the link; rather, it merely needs to be
able to passively inspect a copy of the traffic and to inject
new packets. This can be accomplished using either an
optical splitter or a router port configured to mirror the
link. TapDance clients send incomplete HTTPS requests
to reachable sites, which are chosen so that the client’s
route to the site passes by the TapDance station. Clients
tag the ciphertext of these connections in a way that is
observable to the TapDance station, but not to a censor.
Since the HTTPS request is incomplete, the reachable site
will not respond. Meanwhile, the TapDance station will

impersonate the server and covertly communicate with
the client.

We partnered with two network operators: Merit Net-
work, a medium-sized regional ISP and University of
Colorado Boulder, a large public university. We worked
with each to deploy TapDance stations in a configuration
that would have visibility into most of the traffic entering
and exiting their respective autonomous systems. In all,
we deployed four stations, with three at Merit and one at
the University of Colorado.

In order to achieve a large user base in a short time, we
partnered with Psiphon [15], a widely used proxy-based
circumvention tool. We implemented a TapDance client
as a modular transport, and it was distributed to a frac-
tion of Psiphon’s user base during the trial, as a software
update to the Android version of the Psiphon application.
From users’ perspective, our client was invisible; it sim-
ply provided another method of reaching circumvention
service. This arrangement also helped ensure user privacy,
since data was encrypted end-to-end from the clients to
servers operated by Psiphon.

Our successful at-scale deployment of TapDance for
censored users provides strong evidence that the tech-
nique operates well within the bandwidth, latency, and
middlebox constraints that are typical of heavily censored
network environments. The scale and duration of the de-
ployment were small enough that we do not believe we
came to the attention of censors, so we do not claim to
have obtained evidence about TapDance’s resistance to ad-
versarial countermeasures. However, the trial did exercise
our system’s operational behavior and ISP logistics.

The trial took place during the spring of 2017. We have
decided not to disclose the precise time window of the
trial, in order to mitigate risks to end-users and the people
supporting them.

3 Scaling TapDance
TapDance was designed to be easy for ISPs to deploy, and
it proved to be neither technically difficult nor expensive
for either network operator to provide the required traffic
visibility. This was accomplished by configuring gateway
routers to mirror traffic on a port that was attached to our
station hardware. For packet injection, we simply used
the stations’ default network interfaces, which were not
subject to any filtering that would prevent spoofing.

Bandwidth and traffic volume varied by station loca-
tion, with two of the stations (both at Merit) operating
on 40 Gbps links and the other two on 10 Gbps links.
Figure 1 shows the traffic processed by each of the four
stations during one week of the trial.

Space constraints at the peering locations limited each
TapDance station to a single commodity 1U server. This
limited the amount of CPU, RAM, and network hardware
available to each station and required us to engineer for
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efficiency. Station 3, which handled the most traffic, was
provisioned with an 8-core Intel Xeon E5-2667v3 CPU
(3.20 GHz), 64 GB of RAM, and a quad-port Intel X710
10GbE SFP+ network adapter. The hardware specifica-
tions of other stations varied slightly.

3.1 Handling 40Gbps Links
We reimplemented the TapDance station from scratch,
primarily in Rust. Rust is an emerging low-level systems
language that provides compile-time guarantees about
memory safety, which lowers the risk of remote com-
promise. To efficiently process packets at 40 Gbps line
rates, our implementation is built on the PF RING library
and kernel driver [14], operating in zero-copy mode. By
splitting incoming traffic onto multiple cores we were
able to handle full line rate traffic with only occasional
dropped packets, which, due to the design of TapDance,
do not interfere with the normal operation of an ISP. Our
experience demonstrates that, even in large installations, a
software-based implementation of TapDance can be prac-
tical, avoiding the need for costly specialized hardware.

The station uses C in three main areas. First, it uses
a C implementation of the Elligator [1] tagging scheme
for better performance during initial detection of Tap-
Dance flows. Next, it uses OpenSSL to handle TLS
work, including manually assembling TLS connections
from secrets extracted from TapDance tags. Finally, it
uses forge socket, a Linux kernel module that allows
a userspace application to create a network socket with
arbitrary TCP state, in order to utilize Linux’s TCP imple-
mentation while pretending to be the server.

Handling multiple TapDance users is highly paralleliz-
able, so the station is designed to use multiple cores by
running multiple processes with absolutely no communi-
cation among them. However, a single TapDance session
typically spans multiple TLS flows. This means that,
once a user has begun a TapDance session on a particu-
lar station process, that same process must see all future
TLS flows in that session. To achieve this, we configure
PF RING to spread flows based on the IP pair, rather than
the full TCP 4-tuple, so that the client’s changing source
port will not send the traffic to a different process.

Our four stations ran on a total of 34 cores (excluding
a dedicated PF RING core per station), with the most
loaded station using 14 cores. These 34 cores were able
to comfortably handle a peak of close to 14,000 new
TLS connections per second, with each connection being
checked for a TapDance-tagged request.

3.2 Client Integration
We implemented a from-scratch TapDance client in Go, a
language that can be integrated in mobile applications and
that, like Rust, guards against memory corruption vulner-
abilities. Our client was integrated into Psiphon’s existing
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Figure 2: TCP Window Size of Candidate Hosts—We
measured the TCP window size for each candidate reach-
able host, in order to find ones suitable for TapDance.
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Figure 3: Timeouts of Candidate Hosts—We measured
how long (up to a limit of 120 seconds) candidate reach-
able hosts would leave open an incomplete HTTP request.

circumvention application as a library presenting a new
reliable transport interface—that is, the same interface
that Go programs see when using TCP or TLS.

Through the trial, we logged only a minimal amount of
information from users due to privacy concerns. For ex-
ample, we did not log the source IP address of clients nor
the destination page they requested. Instead, we logged
a connection identifier generated by the client and used
for a session duration, as well as the aggregate number of
bytes uploaded and downloaded in the session.

3.3 Selecting Reachable Sites
Unlike previous lab-scale prototypes, our implementation
required a mechanism by which clients could discover
reachable, uncensored sites with our stations on-path. We
achieved this by compiling a list of potential sites and
shipping it with the client. We updated the list daily and
pushed updates to clients the first time they connected
each day.

To construct a list of candidate sites, we started by using
Censys [4] to retrieve the list of all hosts serving HTTPS
with browser-trusted certificates from within the AS or a
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customer AS of our participating network operators. This
initial set was typically around 5500 sites, although there
was a small amount of churn.

Next, we retrieved robots.txt from each site. Sites
could decline to be used by our clients by adding a specific
entry to this file. To advertise this, we included a URL in
the client’s User-Agent string that led to a site explaining
how TapDance works and how to opt out. No websites
chose to be excluded during our month-long trial.

A server’s suitability also depends on its TCP window
size and HTTP timeout duration. In TapDance, a client
can only send up to one TCP window of data before the
server will respond with stale ACK packets. Similarly,
a TapDance connection can only be used until the point
where the real server would respond with an HTTP time-
out or otherwise attempt to close the connection.

Maximizing these parameters enables connections to
last longer and transfer more data. We measured them
for each site and included them in the list sent to clients.
CDFs of these measurements are shown in Figures 2 and 3.
Requiring a minimum 15 KB TCP window eliminated
24% of candidate sites, and a 30 second HTTP timeout
eliminated 11%. Together, these minimums reduced the
number of viable sites by 34%. Additionally, for sites to
be suitable, they need to support the TLS ciphersuites that
our client implements (the AES 128 GCM family). This
requirement eliminated an average of 32% of candidates.

Finally, we made a test connection to each candidate
using an automated version of our client that was po-
sitioned so that a station was guaranteed to observe all
traffic. If this was successful, we added the host to the list
of potential reachable sites sent to clients.

These tests ensure that a client’s connection to a server
will be usable for TapDance as long as the client’s connec-
tion passes by a station. However, routing is in general
difficult to predict, and so this last condition is not guaran-
teed to hold. We located our stations so that most traffic
from international hosts in the operators’ networks would
be observed. Since some connections would not be visible
to the stations, the clients were programmed to select sites
from their lists at random, and to retry with a different
site if one did not work.

During the trial, we released only half of the viable
hosts to clients, in order to better test the load on individ-
ual hosts and to retain backup hosts should the censors
begin to block the hosts by IP address. A daily median of
450 hosts were available, with an average overlap of 366
from the previous day.

3.4 Handling Multiple Stations
Since we had multiple stations within the same ISP, we
needed to account for the possibility that a connection
would switch from being observed by one station to an-
other mid-flow, due to routing instability. What we found

was that individual client-to-reachable site routes were
stable and generally only passed by a single station, but
that it was common for two different clients to get to
the same reachable site using routes that passed by two
different stations.

In our design, we decided to minimize communication
between stations in order to simplify the implementation
and reduce latency. However, this means that for a client
to have an uninterrupted session with the proxy, it must
communicate with only a single station. During the ses-
sion, multiple connections must be made to reachable
sites, with the client-to-proxy traffic being multiplexed
over them. Therefore, to ensure that these flows all use
the same station, we had clients pick a single reachable
host for the lifetime of a given session.

3.5 Managing Load on Reachable Sites
In our tests with our own Nginx and Apache servers,
we noticed that under default configurations, these web
servers limited the number of simultaneous connections
they would allow. For example, after 150 connections,
a default Apache webserver will stop responding to new
connections until one closes. Since a client will continue
using a chosen reachable site for a long period, we were
concerned that “hot spots” could develop where particular
hosts received disproportionate load.

We addressed this potential issue by attempting to limit
the number of concurrent users to any individual site.
Because users may reach a site through multiple stations,
this requires coordination between stations to track how
many active clients are using a particular site.

We added support in our stations to allow a central
collector to inform a station that a particular site was
overloaded and it should turn away additional clients at-
tempting to use that site. We initially set the per-site limit
to 30 concurrent connections to prevent inadvertent over-
load, and the site load remained well below our expected
threshold for the duration of the trial.

In addition to this change, we also gave clients that
failed to connect to a site an increasing timeout before
trying the next site. This exponential back off ensured
that, if a station or other failure occurred, the load clients
pushed on sites or other network infrastructure would
decrease rapidly.

4 Trial Results
We present an initial analysis of the results from our trial
deployment in the spring of 2017.

4.1 At-Scale Operation
A major goal of this deployment was validating the hard-
ware and operational requirements for running TapDance
in a production setting. We were able to run our system
while processing 40 Gbps of ISP traffic from commodity
1U servers. The observed traffic over our measurement
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Figure 4: Concurrent Sessions—This plot shows the number of active TapDance user sessions, which peaked at 4,000.

Figure 5: User Traffic (Downstream)—This plot shows how much user traffic our deployment served to clients. In
response to the saturation of the 100 Mbps link on Station 2, we took steps on Day 3 to migrate user load to Station 3.

week is shown in Figure 1, showing a cumulative pro-
cessing peak of 55 Gbps across stations, and a single
station processing more than 20 Gbps. During our trial,
the CPU load on our stations remained below 25%, al-
though this figure alone is not representative of achievable
performance, which is heavily dependent on scheduling
between the processors and network card.

4.2 User Traffic

Over the trial, we served over 50,000 unique users, ac-
cording to Psiphon statistics. For privacy reasons, we did
not track identifying information of users during our trial.
Instead, Psiphon clients reported the last successful con-
nection time, whenever they reconnected. This allowed
Psiphon to query for connections with a last connect time
before the current day to get a unique daily user count, as
shown in Figure 7. Figure 4 shows the number of concur-
rently active users over the trial week. At peak, TapDance
served over 4,000 users simultaneously, with peaks on a

single station over 3,000 concurrent users. Interestingly,
we see two peaks per day, which is not explained by user
timezone distributions.

On day four of the trial, we discovered a bottleneck
that was limiting use on the most popular station (Station
2). At this station, the injection interface was misconfig-
ured to be over a 100 Mbps management interface. This
link was saturated by the amount of traffic being injected
by our station, making downloads noticeably slower for
users of this station. The station was at a remote facility
where it was impractical to reconfigure the network, so
we worked with our Merit to shift traffic headed to a large
subset of reachable sites so that it passed a different sta-
tion (Station 3) with a 1 Gbps injection interface. This
solution improved download performance considerably,
reflected in the observed usage in Figure 5.

Figure 6 shows a lower-bound estimate on the band-
width available to users. The average throughput of
5 KB/s shown in this CDF does not reflect users’ actual
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Figure 6: Session Throughput—This CDF shows the
average downstream throughput achieved by the fastest
sub-flow during each client session. Note that this is a
lower-bound for actual throughput, as it is possible that
sub-flows were not actively used for their entire duration.
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Figure 7: Unique daily users—The number of unique
connected clients over each day of our measurement week.
At peak, we handled over 57,000 unique users.

experience, as many sessions included in the CDF did
not see real usage. The structure of our deployment was
such that a users’ entire device’s internet traffic would be
tunneled through a single, long-running TapDance ses-
sion. These sessions must be occasionally restarted, due
to network instability or other problems (see Figure 8).
Therefore, many of the observed sessions happened en-
tirely while the user was not using their device at all.

Figure 8 shows the distribution of client session dura-
tions. The median individual session length to a station
was on the order of a few minutes. We reviewed logs to
determine that about 20% of sessions ended in a timeout
(where the client was not heard from for over 30 seconds).

4.3 Impact on Reachable Sites
During the trial, we measured the impact of multiple
clients using the same site to reach TapDance. As de-
scribed in Section 3.3, we are attentive to the number of
clients simultaneously using a given site, as large numbers
of clients could lead to resource exhaustion.
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Figure 8: Session Length—This CDF shows client ses-
sion durations over our trial, i.e., the time each client
stayed continuously connected to a station without inter-
ruption. When sessions were interrupted (due to network
failures or timeouts), the client automatically reconnected.

Figure 9: Clients per Site—This plot shows how many
clients were connected to the average, 90th-, and 99th-
percentile reachable site during our trial deployment.

Figure 9 shows the load on the median, 90th, and
99th percentile sites over the trial. The median load re-
mained generally evenly spread, with the typical site see-
ing around 5 clients connected simultaneously, with only
10% of sites ever having more than 20 simultaneous users.

Mid-week, we shifted more users toward Station 4 by
increasing how often clients picked sites that were likely
to be served by that station. We simultaneously increased
the maximum simultaneous connections allowed to each
site from 30 to 45. This is reflected in the 99th percentile
site load, which peaked at 37 concurrent users to a single
site.
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6 Conclusion
Refraction networking offers a new path forward in the
censorship arms race, potentially shifting the balance in
favor of Internet freedom. At the same time, real-world
deployment poses significant challenges. In this paper, we
presented initial results from the first real-world refraction
networking deployment. Our experience demonstrates
that refraction can operate at ISP-scale and support tens
of thousands of real users. Through this trial, we have
identified and overcome several challenges related to scal-
ing, operation, and maintenance of refraction networking.
The lessons of our experience are likely to be useful for
future research and deployment efforts. We hope that this
first success paves the way for wider refraction network-
ing deployments in the near future.
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