
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

Stash in a Flash
Aviad Zuck, Technion—Israel Institute of Technology; Yue Li and Jehoshua Bruck,

California Institute of Technology; Donald E. Porter, The University of North Carolina
at Chapel Hill; Dan Tsafrir, Technion—Israel Institute of Technology

and VMware Research Group

https://www.usenix.org/conference/fast18/presentation/zuck

https://www.usenix.org/conference/fast18/presentation/zuck

Stash in a Flash

Aviad Zuck1, Yue Li2, Jehoshua Bruck2, Donald E. Porter3, and Dan Tsafrir1,4

1Technion–Israel Institute of Technology 2California Institute of Technology
3University of North Carolina at Chapel Hill 4VMware Research Group

{aviadzuc,dan}@cs.technion.ac.il, {yli,bruck}@caltech.edu, porter@cs.unc.edu

Abstract
Encryption is a useful tool to protect data confidential-
ity. Yet it is still challenging to hide the very presence of
encrypted, secret data from a powerful adversary. This
paper presents a new technique to hide data in flash
by manipulating the voltage level of pseudo-randomly-
selected flash cells to encode two bits (rather than one)
in the cell. In this model, we have one “public” bit in-
terpreted using an SLC-style encoding, and extract a pri-
vate bit using an MLC-style encoding. The locations of
cells that encode hidden data is based on a secret key
known only to the hiding user.

Intuitively, this technique requires that the voltage
level in a cell encoding data must be (1) not statistically
distinguishable from a cell only storing public data, and
(2) the user must be able to reliably read the hidden data
from this cell. Our key insight is that there is a wide
enough variation in the range of voltage levels in a typ-
ical flash device to obscure the presence of fine-grained
changes to a small fraction of the cells, and that the vari-
ation is wide enough to support reliably re-reading hid-
den data. We demonstrate that our hidden data and un-
derlying voltage manipulations go undetected by support
vector machine based supervised learning which per-
forms similarly to a random guess. The error rates of
our scheme are low enough that the data is recoverable
months after being stored. Compared to prior work, our
technique provides 24x and 50x higher encoding and de-
coding throughput and doubles the capacity, while being
37x more power efficient.

1 Introduction
The ability to successfully hide data is becoming in-
creasingly important for modern computer users, who
often store private and sensitive data on their personal
devices. These devices are often stolen or misplaced,
jeopardizing confidentiality of sensitive data [1–5]. Al-
though encryption can hide data contents, encryption
alone cannot hide the presence of encrypted data. Over
time, flaws in encryption techniques can be discovered.
Moreover, law enforcement agencies, intelligence agen-
cies, and other potent adversaries are increasingly ca-
pable of forcing users to submit the decryption keys or
passphrases for their devices [6–9]. Thus, for highly-
sensitive data, there is value in hiding the very presence

of the data.
Commercial forces also drive the need to hide small

amounts of data within larger data sets. Economic es-
pionage [10] is forcing companies to find ways to pro-
tect and safely circulate sensitive data. Hidden data can
also be used to identify copyright infringement, using
techniques such as digital watermarking [11]. Hardware
validation and fingerprinting is also gaining traction as
manufacturers seek cheap and efficient ways to validate
products and authenticate their components so they can-
not be copied and faked [12,13]. Thus, both privacy and
commercial concerns drive the need for additional data
hiding tools, both for users and corporations.

This paper presents a new approach for hiding sensi-
tive data within a larger data set on a NAND flash device.
This larger data set can be public, or encrypted with a
standard encrypted storage system, like Bitlocker [14] or
FileVault [15]; we refer to this larger set as public data
for brevity. Within this public data set, our technique en-
codes hidden data using small manipulations of voltage
levels in a subset of the flash cells storing public data.

This paper focuses on NAND flash memory, for both
practical and technical reasons. On the practical side,
flash is ubiquitous in embedded systems, mobile phones,
USB thumb drives, and in solid-state disks (SSDs) on
personal laptops—precisely the type of devices that are
most likely to be lost, stolen, or confiscated. SSDs are
also significant in data centers and servers, which could
also be the subject of search or seizure.

From a technical perspective, flash is well-suited for
data hiding because it offers high-density, fast random
access, and non-volatile storage, but with an abundance
of internal randomness [16] that is typically masked by
on-device firmware. Internally, flash stores data by elec-
trically charging arrays of floating gate transistors/mem-
ory cells to a predefined voltage. To read the data
back, the stored voltage levels are coarsely discretized
into a one or a zero. This discretization process is
noisy—the voltage levels across cells in the device vary
widely. Even within one device, the charge levels in
flash cells have a high variance, attributable to the in-
herent noisiness of the programming process, variations
created in the manufacturing process, and voltage inter-
ference inherent to flash cell transistor technology (see
§4). Because the flash programming process is impre-

USENIX Association 16th USENIX Conference on File and Storage Technologies 169

V

SLC programming
%

 o
f c

el
ls

SLC '1' SLC '0'

(a)

V

%
 o

f c
el

ls

MLC programming

MLC '11' MLC '10' MLC '01' MLC '00'

(b)

Figure 1: Typical voltage level distributions of cells in
SLC (a), and MLC (b) flash memories. Leftmost curves
are for programmed cells in the erased state, which are
negatively charged. MLC distributions are typically nar-
rower.

cise, flash manufacturers face a trade-off between pro-
gramming time and storage density, as well as reduced
lifetime [17, 18]. The opportunity we see is that there is
enough natural variation to hide data in a typical flash ar-
ray without leaving telltale statistical anomalies— even
with an attacker powerful enough to measure the voltage
level or other physical characteristics of each cell and
run data analysis tools on the voltage level distributions.

The trade-off between write time and precision in
flash encoding is well-known, and we leverage this in
our design. By taking multiple fine-grain charging and
sensing steps, one can more precisely and gradually in-
crease the voltage to a desired level [19]. Single-level
cell (SLC) flash can store only one bit selected from one
of two voltage levels, whereas multi-level cell (MLC)
flash uses four voltage levels and can store two bits,
three-level cell (TLC) flash uses eight voltage levels,
etc. [20]. Fig. 1 illustrates typical cell voltage distri-
butions for SLC, and MLC. Devices commonly transi-
tion cells between SLC and MLC/TLC mode dynami-
cally [21–30]. In other words, the number of bits stored
in any given cell can be changed dynamically within a
wider range than is commonly used—the only differ-
ences are that writing more bits is slower and one needs
to know how to interpret the voltage levels of the cell
when it is re-read.

In this work we store hidden data by transparently in-
creasing the densities of select flash cells, but without
creating a detectable deviation in the overall cell volt-
age distribution. In our model, a user can access hidden
data according to normal methods; the user can hide data
with a secret key, that selects certain cells to program
with finer-grained variation in the voltage level. Thus,
an important part of this work is measuring the expected
variance in a faster and coarser charging process (e.g.,
SLC), and then ensuring that the result of a finer-grained
charging process is within this distribution.

Our data hiding scheme, called VolTage-HIde

(VT-HI), selects a small number of cells to store an ex-
tra bit, from a a larger field of cells not storing hidden
data. VT-HI uses a slower charging process to more pre-
cisely charge selected cells to a voltage range that repre-
sents the logical state of a public and a hidden bit (e.g.,
converting from SLC to MLC). The cells not selected
for hiding data are programmed using standard, widely-
available programming operations to store normal data.
Public data in VT-HI is assumed to be encrypted with
one key, and a second key is used to locate and decrypt
hidden data.

The closest related work to ours (Program-Time-
HIde, or PT-HI), hides data in flash memory by encod-
ing hidden bits using the different programming times
of groups of cells. VT-HI, on the other hand, directly
stores data in flash cells, by mimicking the incremental
storage technique internally employed by flash vendors.
Our straightforward approach has several advantages:
• Encoding is 24x faster in VT-HI and 37x more

energy-efficient.
• Decoding of hidden data requires a single, non-

destructive, read operation. This makes the decod-
ing process 50x faster. Hidden data can also be read
multiple times, while maintaining the integrity of
public data.
• Copying hidden data without knowledge of the rel-

evant secret key is impossible, while erasing hidden
data (e.g., when in fear of device confiscation) is al-
most instantaneous.
• The generic nature of VT-HI makes it applicable to

multiple chip models from different vendors.
VT-HI is feasible in existing flash-based devices with-

out any hardware modifications, although firmware sup-
port would be helpful. For current devices, we approxi-
mate the required firmware support on real devices using
a sequence of partial programming (PP) [16] operations,
where a normal program operation is aborted midway.
Using this method, the level of additional charge stored
in a cell is roughly correlated with the relative time that
the program operation is executed before being aborted.
We note that PP steps require only standard flash inter-
face commands [31] (i.e., PROGRAM and RESET).

Hidden data is read using a vendor-specific com-
mand that shifts the reference threshold voltage for read-
ing. This command is used in modern flash chips by
all vendors to measure voltage distributions and to im-
prove retention [32–35]. Storing and reading public data
in VT-HI requires only standard flash operations (e.g.,
PROGRAM and READ) in order to read data in coarse-
grain voltage ranges. Notably, over time flash technol-
ogy increasingly supports reading in ever finer granular-
ities (e.g., up to four bits per cell [36, 37]).

We evaluate the effectiveness of VT-HI by measuring
several issues:

170 16th USENIX Conference on File and Storage Technologies USENIX Association

1. Does VT-HI detectably perturb the voltage lev-
els on the device? Using the methodology in
prior data hiding work [38], we find that, under
the most favorable circumstances, a Support-Vector
Machine (SVM) can only achieve 50–53% accu-
racy, or roughly equivalent to random.

2. Does VT-HI encode data faster than the current
state of the art technique? VT-HI is 24x faster and
37x more energy-efficient than PT-HI, the closest
related work.

3. Does VT-HI induce faster wear on the device?
Yes, writing hidden data amplifies writes to hid-
den cells by a factor of ten; this is an order-of-
magnitude reduction compared to the state of the
art (PT-HI requires 625). This also only applies to
the small fraction of cells storing hidden data.

4. What is the capacity of VT-HI? Our implementa-
tion uses about 0.02% of the bits to hide data on un-
modified devices; with firmware support, this could
be increased to 0.2%, or double the capacity of the
current state-of-the-art.

In total, these results indicate that the naturally-
occurring variability in a flash device creates enough
noise to form a useful substrate for data hiding tech-
niques. As part of a larger steganographic system or wa-
termarking system, VT-HI has the particular advantage of
creating a variable number of bits; a long-standing chal-
lenge for data hiding systems is that the number of bits
on a device or in a file is a zero-sum game. Moreover,
although the building blocks for VT-HI are not exported
to users by most flash vendors, this paper makes the case
that VT-HI would be feasible in current flash controllers
or firmware.

2 Related Work

Exploiting the Noisiness of Flash to Hide Data. The
closest related work to ours is PT-HI [38], which creates a
covert channel from the programming time of flash cells.
PT-HI applies several hundreds-to-thousands of normal
programming cycles to groups of cells, which in turn
lengthens the programming time of some cells. Hidden
data is encoded based on which cells are slower or faster
to program. In other words, the technique creates sub-
tle yet hard-to-detect variations in programming times
of each group. A particular advantage of this design, not
present in our proposed design, is that these variations
persist even if co-located public data persists.

A particular disadvantage of PT-HI is performance:
both writing hidden data and reading it requires between
dozens, up to hundreds, of programming steps. De-
coding in PT-HI is not only time consuming but also a
destructive process that destroys any public data stored
on the device, and reduces the device’s overall lifetime.
In addition, the error rate of the hidden payload signif-

icantly increases after only a few hundred public data
Program/Erase Cycles (PEC), severely limiting the num-
ber of times a user can store hidden as well as public data
on the device. When combined, these limitations poten-
tially disqualify PT-HI as a building block for a long-
lived, steganographic SSD.

Low-level variation in flash has also been used to cre-
ate a unique fingerprint of flash-based devices [16, 39].
Such fingerprints can be used to authenticate a device’s
origin. Others suggested to use flash for approximate
storage [40].

Hiding Information through Steganography. Our
work continues the theme of past research in the field
of steganography. Embedding hidden data unto dig-
ital objects such as image, audio, and video files is
typically achieved by applying small unnoticeable dis-
tortions [41–43], abusing existing transmission proto-
cols [44, 45], or in a visible transmission channel [46–
49]. A common theme is using inherent noisiness to dis-
guise data hidden within the noise. These solutions of-
ten face challenges with mutable data, as data like pho-
tographs are typically not expected to change.

Steganographic file systems [50–55] hide data in lo-
cations known only to the user, using a hash function
on a file name and password. Plausible deniability solu-
tions masquerade hidden data as random content visibly
stored alongside regular content [56, 57].

A key limitation of many steganographic file systems
is that the total number of bits is fixed. Any bits that
are not available to the file system are potential tell-
tale signs of hidden data, and require alternative expla-
nations, like free space, that can fail to hold up if an
attacker takes multiple snapshots of the device. Flash
firmware can thwart such traditional solutions by leaving
multiple copies of data on the device. Several works pro-
posed to solve these and other problems on flash-based
devices by openly inserting random-content, undecrypt-
able blocks to the system as part of the system’s normal
operation [58–60]. However, such solutions still give
away the steganographic nature of the system, which
may void any claim for the user’s innocence for some
potent attackers (e.g., intelligence officer in an authori-
tative regime).

Thus, an advantage of our proposed solution (VT-HI)
and PT-HI as building block for a steganographic solu-
tion is that they can create hidden bits of storage that
do not necessarily reveal the presence of hidden data on
the device. In our proposed work (VT-HI) in particular,
changes to cells that store both hidden and public data
can be excused as routine firmware maintenance (§9.2).

3 NAND Flash Background
NAND flash memories store data using floating gate
(FG) cells [61]. Flash packages are divided into blocks,

USENIX Association 16th USENIX Conference on File and Storage Technologies 171

0

0.1

0.2

0.3

0.4

0.5

0.6
0.7

10 20 30 40 50 60 70

%
 o

f c
el

ls
 in

 b
lo

ck

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(a)

0.0

0.5

1.0

1.5

2.0

120 130 140 150 160 170 180 190 200 210

%
 o

f c
el

ls
 in

 b
lo

ck

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70

%
 o

f c
el

ls
 in

 p
ag

e

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
3.5

120 130 140 150 160 170 180 190 200 210

%
 o

f c
el

ls
 in

 p
ag

e

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(d)

Figure 2: Voltage level distributions of charged cells in
four sample 1x-nm MLC chips of the same model. Dis-
tributions exhibit significant noisiness at the block level
for both non-programmed (a) and programmed (b) cells.
(c) and (d) show the distributions at the page level, which
exhibit even greater noisiness.

typically 256–2048 KB in size. Blocks are further di-
vided into pages, typically 4–16 KB in size. Pages are
stored on physical wordlines, which are serially con-
nected FG cells. When data is written, the cells are
electrically charged using small incremental charging
steps to a predefined voltage, which traps electrons in
the floating gate. The logical value of a cell is read
by comparing its voltage to predefined reference thresh-
old voltages placed between relevant voltage intervals.
When the flash memory is in MLC/TLC mode, the same
cell stores several logical bits by comparing to multiple,
smaller voltage intervals. In such cases, several logical
pages are stored in a single physical wordline.

An important constraint of flash memories is the lack
of support for in-place updates. Once a cell is charged,
its level of voltage can only be increased [62, 63]. Volt-
age is only lowered with an erase operation, which is
applied at the granularity of a block (256–2048 KB).
Blocks in modern MLC chips can typically endure up to
3K Program/Erase Cycles (PEC). Thus, most SSD ven-
dors include a flash translation layer (FTL), which dy-
namically remaps logical addresses onto different phys-
ical pages [61]; this indirection facilitates rewriting data
onto new blocks, garbage collecting old versions of data,
and migrating “cold” data onto new blocks for erasure
and wear leveling.

4 Flash Variability
The basis for this work is that variability in voltage level
distributions of flash cells can be used to hide data. This

section gives the reader a sense of the typical range and
sources of variation, using measurements from a sample
flash chip. The next section explains how we leverage
this variability for data hiding.

The inherent variability of flash manifests in three
ways relevant to our goals, described and characterized
in prior work [16, 35, 64–66]. First, there is significant
noise in the programming process. Second, the variabil-
ity in the chip manufacturing process creates noticeable,
naturally-occurring differences in the cell voltage distri-
butions from different NAND flash samples, even from
the same vendor, batch and chip model. Finally, there
are significant variations in the Bit Error Rate (BER) of
different hardware units. VT-HI leverages this inherent
noisiness of the charge levels in flash cells, by apply-
ing tiny manipulations within the margin of naturally-
occurring variations.

We measure the range of these variations in a repre-
sentative 1x-nm NAND flash memory model from a ma-
jor vendor (not listed because of an NDA, see §6.2 for
details) , using the following procedure. First, we pro-
grammed pseudorandom data to select blocks from four
flash chip samples from the same model, and measured
the cell voltage distributions for each sample [35,67,68].
On each run, a new random data pattern was used. We
repeated this process for 0 to 3000 PEC.

Figure 2 shows some1 of the voltage distributions of
the non-programmed/erased cell state and the full distri-
bution of a programmed state (used to represent data bits
“1” and “0”, respectively) measured from four blocks
(Figures 2a and 2b) and four pages (Figures 2c and 2d),
each from a different sample that carries the same num-
ber of PEC. We note that 99.99% of cells are concen-
trated between levels [0, 70] and [120, 210], for non-
programmed and programmed cells respectively. No-
tably, these are essentially SLC distributions. For more
fine-grain distributions, such as MLC, TLC, and QLC,
the voltage ranges are narrower [17, 32].

Figures 2a and 2c demonstrate a known phenomenon
where non-programmed cells become partially charged
due to interference from programming nearby cells [69].

In Figure 2, the long tails and general width of these
curves indicate a wide range of valid voltage levels, and
the nonsmoothness of the voltage distributions indicates
that a uniformly random bit pattern does not generate
uniform distributions of voltage levels. At the page-level
the variability is even greater, due to disturbances from
neighboring pages, and from having a smaller sample
relative to blocks. Furthermore, there are noticeable
variations in the distributions of different samples. Note

1The current NAND flash interface only allows measurement of
positive voltage (V) in discrete normalized units (0-255 in this model),
indicating that the programming process is noisy. Therefore, the distri-
butions of erased cells that have negative voltage were not measured.

172 16th USENIX Conference on File and Storage Technologies USENIX Association

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

10 20 30 40 50 60 70

% o
f ce

lls i
n b

lock

Normalized voltage level

PEC 0 PEC 1000 PEC 2000 PEC 3000

(a)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

120 130 140 150 160 170 180 190 200 210

% o
f ce

lls i
n b

lock

Normalized voltage level

PEC 0 PEC 1000 PEC 2000 PEC 3000

(b)

Figure 3: Voltage level distributions tend to shift to the right over the lifetime of cells. The figures show distributions
for (a) non-programmed and (b) programmed cells with increasing PEC.

that our measurements were taken from blocks in differ-
ent physical areas of the same chip.

Figure 3 illustrates variation in voltage levels due to
aging. The figure shows the block-level voltage distri-
butions in a flash sample after different numbers of pro-
gram/erase cycles (PEC). As cells with higher PEC are
more easily overprogrammed, their voltage distributions
tend to have higher means compared to those of cells
with lower PEC.

Finally, we measured variation in BER across hard-
ware units in the same package, normalized to the same
PEC count. Commensurate with the other results, and
prior studies [65, 66], variations in BER of programmed
data in flash exist regardless of PEC (as well as an ex-
pected increase in BER as PEC increases).

The measurements in this section establish the range
of expected voltage levels in a flash device that is pro-
grammed with encrypted data, which should roughly ap-
pear as a uniformly-random bit pattern. VT-HI stores hid-
den data with a special, additional flash programming
pass. If the overall voltage distribution stays indistin-
guishable from measurements on the same chip, there
will be no telltale anomalies on the device that would
indicate additional data is hidden in those cells. This
section indicates that there is a wide berth for reliably
hiding data within flash voltage levels.

5 Hiding Data
In this section, we describe how users utilize VT-HI to
hide data, the relevant threat model and specific VT-HI
techniques for a user to hide data on a flash chip; the
data flow of VT-HI is illustrated in Figure 4. .

5.1 Usage Overview
Given a flash device, we model the problem as two users,
normal user (NU) and hiding user (HU). These can also

Secret
Data

Public
Data

Secret
Data

Public
Data

hiding
encoder

ECC
(encode)

Hiding User
(HU)

Normal User
(NU)

ECC
(encode)

Flash

hiding
decoder

ECC
(decode)

Hiding User
(HU)

Normal User
(NU)

ECC
(decode)

Adversary

Figure 4: Flow of hiding data on flash in a mobile de-
vice.
be thought of as two “modes” or “roles” for the same
human user, such as writing to a day planner in normal
mode (as NU), but editing sensitive data in hidden mode
(as HU). The NU wants to store her public data in flash
memory. The HU wants to hide her data inside the data
of the NU on the same device, and provides a private, se-
cret, key to VT-HI, which determines the locations in the
normal data device where the HU’s data will be hidden
as extra hidden bits in the chosen cells.

The NU need not be aware of any private keys to cor-
rectly read her data. With the secret key, HU’s data can
also be located and read, without altering the state of
public data. Special care must be taken to avoid destroy-
ing HU data when the public NU data containing it is
migrated or invalidated. The HU must either re-embed
the hidden data in a new location (e.g., a page containing
newly written NU data), before the old NU page con-
taining it is permanently erased, or apply redundancy a
scheme (e.g., parity encoding) to provide some protec-
tion for hidden data.

5.2 Threat Model
We assume an adversary who does not know the secret
key used to select cells containing hidden data, but has
access to the flash device and the capabilities to write
and read flash as well as to probe the voltage levels of ev-
ery cell. We assume that the adversary only gains access

USENIX Association 16th USENIX Conference on File and Storage Technologies 173

Algorithm 1: Encoding algorithm for VT-HI.
The main loop is repeated m times.

1 VT-HI (Page,Key,P,H,Vth);
Input: Flash page number, secret key, two sets of

bits to store, and a threshold voltage. P is
public data and H is hidden data.

2 Use PRNG(Key,Page) to select |H|
non-programmed public bit offsets to store
hidden bits;

3 Program P to Page;
4 Encrypt H using Key and apply ECC;
5 repeat
6 Read cell voltage levels in Page;
7 Partial program all hidden “0” bits with

Voltage <Vth;
8 until all hidden “0” bits have Voltage≥Vth;

to the device after the hidden payload was stored (see
Figure 4). We further assume that the device is spyware-
free and that the adversary cannot compare snapshots of
the device state over time (we discuss multiple snapshot
adversaries in §9). Probing cell voltage levels is widely
supported by modern NAND flash memories [35,67,68],
and was used as a tool for NAND characterization in this
work. An adversary who suspects that the user is hiding
data with our technique, can try to detect the existence
of such data, as indicated by unexpected charge distribu-
tions in a subset of cells. We assume that the VT-HI ca-
pability is either added and removed at will by the user
or is omnipresent (see §9), and therefore does not raise
suspicion in itself.

However, even with perfect knowledge of charge
distributions and the exact configuration parameters of
VT-HI (e.g., hidden bits per page), there will be no tell-
tale aberrations in the voltage levels indicating the pres-
ence of hidden data. In other words, judging by state
of the art indicators [38] (see §7) we show it is equally
plausible that a given device does or does not hold hid-
den data.

Finally, we assume that flash block wear in the device
is not entirely equal, as is the case in many flash wear
leveling policies [70–72].

5.3 Hiding Techniques
We now describe the data hiding algorithm in detail.

Normal data and hidden data are stored by two sepa-
rate programming passes. The normal data is first pro-
grammed into a flash page, using standard flash opera-
tions. The hidden data will be programmed to the same
pages in a second programming pass. First, a subset of
the cells in a given page are selected to store hidden data,
then a second encoding pass is done to store the hidden
bits. Algorithm 1, as well as the following text, describe

our encoding process.

Hidden cell selection. To select cells to store hid-
den data, we use a pseudo-random number generator
(PRNG), such as SHA-256, that produces a set of ran-
dom numbers based on a key—in our case, a key known
only to the HU. We note that the HU does not explicitly
persist the location of cells containing hidden data, but
rather uses a deterministic PRNG function to calculate
the map during boot time. In order to ensure an equal
distribution of bit values, VT-HI encrypts hidden data,
not unlike standard SSD controller data scrambling [32].

We only select non-programmed (i.e., “1”) bits from
the public data in a page to store hidden data. We remind
the reader that flash cells typically use low voltage levels
to store a “1”, and raise the voltage to store a “0”. We
found that it is easier to reliably make small adjustments
to the voltage levels of non-programmed cells than pro-
grammed cells; we believe that a flash vendor could use
either type of cell in a production prototype.

In selecting a cell, the PRNG gives a page-dependent
offset, such as the 3rd non-programmed bit in a spe-
cific flash page (e.g., by combining the secret key with
the page number). This bit is then selected to be pro-
grammed with hidden data.

In order to store Error Correcting Codes (ECC) to tol-
erate bit errors, we select more cells for hidden data than
the bits we wish to write.

We note that this technique spreads wear from extra
programming evenly across cells over time, as which
physical cell is programmed or not will vary over time,
as will the output of the PRNG. We further assume pub-
lic data is encrypted and bit values will be uniformly
distributed. In practice, one could adopt more general
wear-leveling techniques for hidden data if needed.

Storing Hidden Data. Figure 5 illustrates voltage-
level encoding for hidden data in VT-HI. It starts
by showing the voltage level distributions for a non-
programmed (“1”) cell: any voltage level less than about
127 is considered a public “1”. Anything higher is a “0”.
We hide data by selecting a cut-off for hidden values of
about 34, which is where most public voltages naturally
occur.

To program a hidden “0”, one must use a series of up
to m partial programming (PP) steps, until the voltage
is comfortably above the hidden data threshold. This
PP process programs hidden data cells in an intermedi-
ate voltage level by iteratively reading and minutely in-
crementing the voltage level until the target threshold is
reached. As with MLC or TLC flash, writes with this
iterative technique are slower, but more precise.

A hidden “1” is not programmed. In the small chance
that a cell should store a “1” but happens to be above the
threshold, we treat this as a bit error and rely on ECC to

174 16th USENIX Conference on File and Storage Technologies USENIX Association

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70

%
 o

f
ce

lls
 i
n
 b

lo
ck

Normalized voltage level

normal '1'

(((((((m

hidden '1' hidden '0'

Figure 5: VT-HI hides data in the voltage level distribu-
tion of non-programmed cells, which store a normal ’1’.

recover the data.
An important property of this design is that public

data can be read with no awareness of hidden data or
private key. This is because cells that store hidden data
stay within the expected voltage levels for the public bit.
To read hidden bits, the HU uses her key to calculate the
indices of cells holding hidden bits, and reads them us-
ing the reference threshold voltage, which is placed in
the middle of the two voltage intervals of the hidden bit
states.

6 Implementation
In this section we describe the implementation of VT-HI
on real hardware. We describe the hardware platform
used in our experiments, and determine the configura-
tion parameters for our hiding technique. Finally, we ex-
plain how the capacity of VT-HI can be extended through
vendor support.

6.1 Experimental Hardware
Any implementation of our technique involves chip-
specific configurations. To test them we used the same
1x-nm planar MLC flash used in Section §4. Each flash
package has 8GB total storage capacity and contains
2048 blocks. A block consists of 128 lower pages and
128 upper pages with page size of 18048 bytes. The
samples have a specified lifetime of 3000 PEC. Read,
write (program), and erase latencies are 90 us, 1200 us,
and 5 ms, respectively; the energy required for each op-
eration is 50 uJ, 68 uJ, and 190 uJ, respectively.

The flash packages were operated using a commer-
cial NAND flash tester [73]. Voltage level characteri-
zation of cells as well as the hiding algorithm were im-
plemented as host software on a PC, which communi-
cates with the tester via a USB interface. Throughout
this section our calculations do not take into account data
transfer and hardware overheads, which would be con-
siderably lower on a production deployment. The spe-
cific voltage threshold (level 34) used for implement-
ing our technique was determined empirically to toler-
ate the overshooting/underprogramming errors caused

by the imprecise PP operation. We also verified that the
total number of cells in the range is larger than the total
number of hidden bits.

6.2 Vendor Support
Flash vendors are notoriously secretive about the inter-
nals of their devices. In order to collect the data pre-
sented in this paper, some co-authors of this paper signed
a non-disclosure agreement (NDA) with a flash vendor.
The NDA prohibits disclosing which vendor or the spe-
cific chips. In exchange we were given enough informa-
tion to use a non-public command on the chip to measure
voltage levels of cells, as well as issue partial program-
ming (PP) commands to specific cells. To the best of
our knowledge, the operations we use are generally im-
plemented on any flash device, but the particular com-
mand encoding details vary from chip to chip, and are
not made public. The NDA does not prohibit release of
this data.

In principle, our prototype represents the most that a
user could accomplish via reverse engineering a flash de-
vice, or using a flash device that openly published all
available commands. Our results indicate the feasibility
of the idea, with no changes to the flash controller. In
the rest of this subsection, we explain how a few simple
changes to a flash controller or the FTL firmware would
improve the results we report.

First and foremost, PP is less precise than a program
command issued by the controller. This is also the rea-
son we select only non-programmed cells to store hid-
den data; PP is too coarse to reliably make fine-grained
changes to programmed cells. We believe that an in-
controller implementation of voltage hiding could likely
program hidden data in fewer programming steps, sav-
ing energy and wear on the device, and opening up data
hiding in both programmed and non-programmed cells.

Another feature not available to us was the abil-
ity to dynamically adjust voltage thresholds and tar-
gets [21–26]. The ability to control voltage targets
and the width of voltage intervals might improve our
hiding technique since narrower voltage intervals have
been shown to easily fit into wider programming inter-
vals [74] (e.g., TLC in MLC). This feature is generally
available to the controller internally.

A limitation resulting from the lack of a more precise
programming mechanism and the inability to adjust tar-
get voltage levels is that we found it difficult to reliably
hide data in MLC or TLC modes using partial program-
ming. We expect that a flash controller can extend our
ideas to MLC or TLC, but the PP command on our test
device was too coarse for this experiment to correctly
store hidden data, and tended to disrupt public bits. Re-
call that a goal of our design is that one can read public
data without any awareness of private, hidden data. Our

USENIX Association 16th USENIX Conference on File and Storage Technologies 175

measurements indicate that, with more precise program-
ming steps and/or the ability to adjust voltage thresholds
slightly, our approach should extend to MLC or TLC.
We note that existing flash page architectures regularly
use a second fine-grained programming pass that does
not significantly add interference to flash cells, and is
this less detrimental to the bit rate as PP steps [32, 69]

6.3 Determining Capacity
In this subsection, we explore the potential capacity of
our suggested hiding scheme, i.e., how many hidden bits
we can store using VT-HI. This is a function of sev-
eral concerns: over-provisioning bits to correct for errors
(i.e., ECC), ensuring that the overall distribution of volt-
age values is not significantly perturbed (ensuring hid-
den data remains hidden), and minimizing the risk of
inducing errors on neighboring cells or pages.

In order to keep the space overhead for ECC low,
when determining configuration parameters for VT-HI
we attempt to minimize the standard metric of bit-error
rate (BER). We measure BER by encoding a hidden
message in multiple blocks, physically located in differ-
ent areas of the same chip. The message contains ran-
dom content, both to emulate an encrypted hidden mes-
sage, and to ensure that the charge levels in cells storing
hidden bits have no anomalous effect on the overall dis-
tribution. After decoding, the message is compared with
the original to determine the resulting error rate.

To find the optimal method and parameter values that
minimize the hidden data BER (i.e., improve the effec-
tive data capacity) without compromising security, we
systematically investigated each possible combination of
three key parameters: number of partial programming
steps, number of hidden bits per page, and page inter-
val. The number of steps can be taken as a rough upper
bound on write performance—fewer steps means faster
hidden data writes, but more steps may be required to
ensure a target voltage is reached. In setting hidden bits
per page, intuitively, adding more hidden bits will push
the overall distribution of voltage levels higher. Page
interval is the physical distance between two cells stor-
ing hidden data; when a cell in one page is partially
programmed, it may cause interference on neighboring
pages. Intuitively, partially programming too many ad-
jacent cells can cause bit flips on nearby public cells;
thus, we measure this risk as a function of average phys-
ical distance of hidden bits. Our experiments were per-
formed on a fresh chip, to avoid any interference that
might stem from previous write patterns and wear. For
each combination of parameters we encoded hidden data
in five different blocks, and measured the average hidden
data BER after each PP step.

Figure 6 shows that after roughly ten PP steps the
BER converges to less than 1%. This trend holds regard-

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BE
R

PP steps

4+128 4+32 4+512 0+128 0+32 0+512
1+128 1+32 1+512 2+128 2+32 2+512

Figure 6: Hidden BER rates for VT-HI for the first fif-
teen steps in multiple combinations of page intervals and
number of hidden bits.

0.004
0.005
0.006
0.007
0.008
0.009
0.01

0 1 2 4

BE
R

Page interval

32 hidden cells 128 hidden cells 512 hidden cells

Figure 7: Hidden BER rates for VT-HI with ten PP steps.
The illustrated irregularity demonstrates the effects of
BER variance and program interference.

less of the number of hidden bits or the page interval.
Figure 7 shows the sensitivity of BER for hidden data

as a function of the number of hidden cells, using 10
PP steps to program the hidden data. Overall, the vari-
ation in bit error rate is small and generally insensitive
to the number of hidden cells. There is some irregular-
ity that is within the bounds of naturally occurring vari-
ance [32, 65, 66]. We do notice a small trend toward
lower bit rates; because we only select unprogrammed
cells for hiding data, any interference can flip cells that
are slightly under-programmed (just short of the target
threshold) to being just above the target threshold.

In this experiment, we selected 512 as an upper bound
for the number of hidden bits. We measured a range of
voltages for chips programmed with random data, and
found that one could reliably get a minimum of 700 cells
in the non-programmed state that are normally charged
above our data hiding threshold. In other words, hid-
ing more bits per page than 512 will likely leave telltale
changes to the distribution of voltages.

Figure 7 indicates that, for any number of hidden bits
in a page that satisfy our other constraints, the BER is
small. The implication is that a small number of error-
correcting hidden bits (e.g., 5%) will suffice.

176 16th USENIX Conference on File and Storage Technologies USENIX Association

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

10 20 30 40 50 60 70

% o
f ce

lls i
n b

lock

Normalized voltage level

normal 32 bits 64 bits 128 bits 256 bits

Figure 8: Average voltage level distributions for blocks
after applying VT-HI. Hiding more bits creates a more
noticeable shift to the right for non-programmed cells.

Figure 8 shows that hiding data using VT-HI creates
only a tiny shift to the right for non-programmed cells.
which can be attributed to normal voltage level distribu-
tion variability and errors, as well as small read disturbs
and retention effects [32, 75]. Although we might be
able to store 512 bits per page, we conservatively chose
to hide 256 bits per page. In Section 7 we further explore
the security of VT-HI using this configuration.

Finally, we measured the impact of page intervals on
the BER for public data. Using no physical space be-
tween pages storing hidden data increased the public
BER by 20%. At one physical page interval, the interfer-
ence is reduced to a more acceptable 10% [64–66, 76].
Thus, subsequent experiments use a page interval of one.

7 Detectability
The primary criterion for evaluating VT-HI’s success is
whether an attacker with a full and detailed voltage-level
analysis of the entire chip can infer whether some pages
store hidden data from changes in voltage level distribu-
tions. In this section, we show that flash pages in VT-HI,
with and without hidden data, cannot be distinguished.

Figure 9 illustrates the difficulty of detecting the exis-
tence of data hidden in VT-HI. The figure shows volt-
age level distributions from three blocks from differ-
ent chips, first when they are normally programmed and
then after applying VT-HI to hide data. The human eye
has difficulty distinguishing which distributions come
from blocks with hidden data.

SVM Analysis. Rather than rely on the human eye, we
follow prior work [38] and instead use supervised ma-
chine learning to determine whether there are any de-
tectable anomalies in the data. We use a support-vector
machine (SVM) to predict whether pages and blocks
contain hidden data. If VT-HI left aberrations in voltage
levels that correlate with the presence of hidden data, an
SVM would be able to identify these pages with better

than 50% accuracy (i.e., better than flipping a coin). Our
hypothesis is that the changes induced by data hiding are
within normal noise.

To demonstrate this, we obtained data from three dif-
ferent hardware units of varying ages. We first measured
the voltage level distributions and BER of three flash
chips. For normal data characteristics of flash blocks and
pages, we used normal programming for program/erase
counts (PEC) ranging from 0 to 3000. We then hid
data using VT-HI with the configuration parameters de-
termined is §6 (threshold level 34, one page interval, 256
bits per page, ten PP steps) on all chips for blocks that
were cycled to 0, 1000, and 2000 PEC.

We created a training set for the SVM using datasets
from two chips, and then we attempt to classify data
from a third chip. For the training, we collected the volt-
age levels for all cells in the block with both normal and
hidden data. We found that the flash chip data repre-
sentativeness converged after analyzing 31 blocks. The
classifier used optimal parameters obtained using grid
search, and performed three-fold cross-validation for all
three chips. As Wang et al. note [38], this is an unre-
alistically generous setup for the attacker. In reality, the
attacker has to obtain knowledge of all possible PEC lev-
els of the chip for both normal and hidden cases, and
for multiple sample chips of the same vendor and model
which would probably reduce the prediction accuracy.

In analyzing the voltage data we collected, the wear or
number of program/erase cycles (PEC) had a first-order
effect on the voltage levels.

This sensitivity to PEC is illustrated in Figure 10,
which presents SVM accuracy for samples at PEC of
0, 1000, and 2000. The x-axis is the PEC of normal
data. For each line, there is a range of a few hundred
P/E cycles where the accuracy of the SVM is at 50% (or
random). For example, consider the PEC 2000 line. At
x-axis of PEC 2000 (comparing to the same wear with-
out hidden data), the SVM does not do better than ran-
dom (50%); for a few hundred cycles on either side of
this point, the accuracy is still effectively 50%. At ex-
tremely about 1000 PEC, and as PEC increases the clas-
sifier’s accuracy increases. Thus, we expect that, as long
as the wear on the device is uniform within several hun-
dred PEC, an SVM would not be able to reliably classify
which blocks have hidden data and which do not. A sim-
ilar experiment at the page-level shows similar results

We also note that this experiment deliberately places
VT-HI at a disadvantage, by training the SVM on the ex-
act chip that was storing the hidden data. We repeated
our tests on a data set that includes all of the chips (from
the same vendor) and all PEC levels, and this decreased
the SVM accuracy to 50% in all cases.

Finally, one might be concerned that an attacker could
draw inferences from changes in characteristics of pub-

USENIX Association 16th USENIX Conference on File and Storage Technologies 177

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

10 20 30 40 50 60 70

% o
f ce

lls i
n b

lock

Normalized voltage level
(a)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

120 130 140 150 160 170 180 190 200 210

% o
f ce

lls i
n b

lock

Normalized voltage level
(b)

Figure 9: Voltage level distribution in blocks from different chips with normal distributions (light) and after applying
VT-HI (dark). Results show (a) non-programmed and (b) programmed cells.

40
50
60
70
80
90

100

0 1000 2000 3000

Cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

Normal PEC

PEC 0 PEC 1000 PEC 2000

Figure 10: SVM prediction accuracy for block-level
voltage distribution data for hidden blocks in three dif-
ferent PEC levels. Normal PEC (X axis) represents pub-
lic data blocks in different PEC levels. 50% accuracy
(dotted line) is equivalent to a random guess.

lic data, such as BER, mean voltage, and its standard de-
viation. Therefore, we performed another SVM analysis
to classify blocks with and without hidden data accord-
ing to these characteristics. Our results indicate that
these analyses are also unsuccessful in classifying hid-
den data.

8 Performance and Applicability
In this section we evaluate and analyze the performance
of VT-HI in terms of reliability, throughput, capacity, and
energy. For each of these factors, we compare the perfor-
mance of VT-HI to the most similar prior research paper,
PT-HI, as summarized in Table 1. We also demonstrate
that with proper configuration and vendor support we
can increase the hidden data storage capacity of VT-HI
by an order of magnitude. Finally, we verify the appli-
cability of VT-HI on a chip from a second major vendor.

Reliability. As flash devices move toward smaller fea-
ture sizes, data errors will increase [77], increasing the
importance of error-correcting codes and other counter-
measures. Charges stored in flash memory cells gradu-
ally leak away over time, causing cell voltage to shift to-

0
1
2
3
4
5
6
7

VT-HI normal VT-HI normal VT-HI normal
1 day 1 month 4 month

Nor
ma

lize
d B

ER

PEC 0 PEC 1000 PEC 2000

Figure 11: Normalized retention rate (versus “zero” time
since programming) for data stored using VT-HI and nor-
mal data.

wards lower values. Bit errors accumulate in data as cell
voltages shift across the predetermined reference thresh-
old voltage. Here we characterize the reliability of bits
hidden with VT-HI.

First, we measured the error rate for VT-HI in blocks
with varying PEC levels, and find that BER is low and
not affected by wear. We cycled blocks in three different
chips to four distinct PEC levels. Next, we hid data using
VT-HI, and measured the hidden data BER. Our results
show that the BER is not affected by the age of the cells
storing hidden data. For example, for PEC 0 the BER
was 0.013. For other PEC the BER was roughly 0.011.

We also emulated data retention over longer periods
by baking the flash chips in an oven, which accelerates
the rate of charge leakage from the floating gates. Three
data retention periods were used in our evaluation: 1 day,
1 month, and 4 months. The latter two periods were em-
ulated by baking the flash [78]. Before retention, pseu-
dorandom normal data and hidden data were first input

178 16th USENIX Conference on File and Storage Technologies USENIX Association

and stored in flash. BERs and voltage distributions were
then measured after retention using the previously saved
input data. We normalized the BER after the relevant
retention period to the BER measured immediately after
the data was stored (“zero” time). We compared the rate
of changes in the BER to the equivalent rate for public
data on our test chip.

The results shown in Figure 11 indicate that retention
time has no significant effect on the BER of hidden data
for fresh cells (PEC 0). However, the hidden data error
rate does increase on older cells, at a higher rate than for
public data

For example, for 2000 PEC, the BER after zero time
is 0.0099, and rises to 0.063 (6.3x) after four months,
while for normal data the BER rises from 0.00003 to
0.000075 (2.3x). The reason for this reduced retention
is that cells with higher PEC accumulate trapped charge
and become more sensitive to leakage [77]. Moreover,
hidden data BER degrades faster than public data BER.
The reason is that the programming technique available
to VT-HI (PP steps) is not accurate enough to ensure
a large buffer zone around the threshold voltage level.
Such zones are typically employed to minimize BER in
degraded cells in existing flash package programming
schemes (see X axis in Figures 2a and 2b), which are
also used for storing public data in VT-HI.

These results indicate that additional redundancy
would be prudent when hiding data in older cells. Re-
writing (refreshing) hidden data every several months,
even only after the device reaches 1K PEC, can also
significantly improve retention [79]. Finally, to provide
additional protection against data loss (e.g., due to bad
blocks) data can be further encoded using RAID-like
schemes, similarly to normal data [80].

Throughput. Here, we calculate the expected read and
write throughput from VT-HI and our closest competitor,
PT-HI, using reasonable parameters from current flash
chips. We find that VT-HI can deliver an order of mag-
nitude better throughput for hidden data than the best
possible configuration for PT-HI.

Under VT-HI’s optimal configuration (256 hidden bits
per page and 4 logical page intervals), we can estimate
the time it would take to encode hidden data in a block:
(600+ 90) · 10 · 64/1,000,000 = 0.44s with a PP time
of 600 us and read time of 90 us for 10 PP and read
steps, and 64 pages per block. Assuming 15,593 hid-
den data bits per block, this translates to a throughput
of 35Kb/s. This figure takes into account a 0.5% hidden
BER, which, after applying standard ECC codes, trans-
lates to 243.6 bits of data per page (i.e.,≈13 parity bits).

We repeated this calculation for PT-HI, assuming its
optimal setup with a negligible hidden data error rate.
We use the optimal configuration in [38] of 625 per-page
PP steps and a 4-page interval for hiding data, which

Method
Relia
bility

Perf. Power
Public data
integrity

Repeated
Reads

Capacity

PT-HI [38] ± - - + - ±
VT-HI + ± ± - + ±
Table 1: Our contribution compared to Wang et al. [38].
translates to 72Kb of hidden bits per block. The page
program latency used is 1.2 ms and block erase latency
is 5 ms. In this setup, the time it would take to write hid-
den data is (1.2 ·64+5) ·625/1,000 = 51.1s per block.
Therefore, even for this ideal setup, the optimal through-
put for PT-HI is only 1.4Kb/s. We note that PT-HI’s per-
formance dramatically deteriorates in setups where the
device has undergone even a few hundred PEC due to its
increasing BER. We also note that PT-HI wears out the
device much faster than VT-HI since it requires 60x more
programming steps in order to encode data.

Decoding hidden data that was encoded using VT-HI
in a page requires only a single read operation (follow-
ing a voltage reference shift command). This translates
to 90 · 64 · 1/1,000,000 = 0.006s for decoding the data
hidden in a block, and a throughput of 2.7 Mb/s. For
PT-HI, 30 PP and read operations are required to de-
code data from a page. This translates to (600+ 90) ·
64 ·30/1000000 = 1.32s for decoding the hidden data in
a block, and a throughput of 54 kb/s.

Improved Capacity. As we explain in §6.2, our proto-
type can only reliably encode data in non-programmed
cells, which we found to keep us to under 700 bits per
page to avoid telltale disruptions in the distribution of
voltages. We conjecture that, with controller-internal
programming tools, we could apply the same basic idea
to a larger number of cells, which should potentially in-
crease hidden data capacity.

In this section, we evaluate the impact on the risk of
detection when more non-programmed cells are used.
We repeat the SVM analysis in §7. We emulate finer-
grained programming by using a single PP step (m = 1)
instead of ten, and increase the hidden bits per page by
a factor of ten. We then adjust the hidden data voltage
threshold to level 15 to keep the voltage levels of cells
with hidden data within the expected distribution. We
kept the page interval the same (1 physical page).

Figure 12 shows the SVM accuracy results for our
simulated higher-capacity configuration, on block-level
data. Similarly to the results for hiding 256 bits, the re-
sults are highly sensitive to PEC. If we only consider
ranges where the hidden and non-hidden blocks have
PEC within a few hundred cycles of each other, the accu-
racy is generally low (50–60%), but slightly higher than
the other experiment. Some of the increased accuracy
is attributable to the lack of precision in PP, especially
when only a single step is used.

Hidden data BER for data in the enhanced VT-HI con-
figuration was only 2%. After applying standard ECC

USENIX Association 16th USENIX Conference on File and Storage Technologies 179

40
50
60
70
80
90

100
C

la
ss

if
ic

a
ti

o
n

a
cc

u
ra

cy
 (

%
)

Normal PEC

PEC 0 PEC 1000 PEC 2000

0 1000 2000 3000

Figure 12: SVM prediction accuracy for an enhanced
VT-HI configuration that hides 9x more data. Normal
PEC (X axis) represents public data blocks in different
PEC levels. 50% accuracy (dotted line) is equivalent to
a random guess.

codes this translates to 2197 of data bits per page (14%
are used for ECC). After accounting for ECC to mask
the increased BER, this represents a 9x increase in us-
able hidden data capacity (and twice as much as PT-HI).

Energy. For our chip, we estimated the energy required
for various data encoding operations using VT-HI and
PT-HI (again, in an ideal setup). These include read, pro-
gram and erase operations, as well as partial program-
ming. We then used these estimated values to calculate
the amount of energy required for writing a bit of hid-
den data. The results show that for VT-HI the energy
required for hiding data is 1.1 mJ per page, as opposed
to 43 mJ for PT-HI. This data indicates that, if an ad-
versary read two snapshots of the device energy usage
statistics, effectively there would not be a telltale differ-
ence for VT-HI and a system without hidden data. For
instance, the energy overhead of our PP-based is less
impactful than, say, extra reads from the device. With
an in-controller VT-HI implementation we expect energy
overheads could be reduced further.

Applicability. Finally, to verify that our method also
applies to other flash chip models, we tested it on a 1x-
nm 16GB MLC chip model from a different major ven-
dor (also under a similar NDA). The flash package con-
tains 2096 blocks, with page size of 18256 bytes. We
tested our method on a fresh chip (PEC 0) and hid a
256 bit payload in relevant pages (taking into account
architecture-specific page intervals). The resulting BER
was 1%, similar to the one in the first model.

9 Discussion
This section discusses various applications for which
VT-HI could be a useful building block.

9.1 Authentication and Provenance
One property of our approach is that erasing a block of
public data on the flash device (thereby de-charging the
cells) also erases any hidden payload in the cells. This
property does not imply that a user cannot modify nor-
mal data; such modifications simply require the user to

repeat the hiding process with the same hidden data on
newly written normal data.

Many applications require some form of proof to the
trustworthiness and provenance of their data. A number
of systems find ways to embed a signature or metadata
in the data file itself. VT-HI could be incorporated into
these systems to embed metadata in the physical pages
storing this data; only a trusted application can rewrite
a file and embed hidden metadata in the device. For ex-
ample, flash chip steganography enables counterfeit de-
tection by watermarking original parts [38]. Archival
storage systems authenticate the identity of data ob-
jects [81]. Embedded watermarks in storage media iden-
tify ownership of digital objects to prevent copyright in-
fringements [11]. Secure file systems persist the keys
required for accessing data to their storage media [59].

9.2 Steganography
VT-HI can also be used as a building block for imple-
menting a steganographic system [51, 57–60]. Imple-
menting a complete steganographic system is beyond the
scope of this paper, but, in the interest of brevity, we dis-
cuss the main challenges of such a solution.

Basic Design. A VT-HI-capable system would include
a publicly visible, encrypted volume, within which a
user can store a hidden, encrypted data volume. To ac-
cess the hidden volume, a user would input the secret
key at mount time. Data can then be read and written
from this volume using standard block-level operations.

The security of the hidden volume stems from the se-
curity of VT-HI. An attacker that inspects the device
once, including all low-level characteristics, will not be
able to differentiate flash pages that contain hidden data
from those that do not, without the secret key.

Hiding VT-HI. The presence of a VT-HI-capable SSD
may still raise the suspicion of an adversary that data is
hidden. This problem is common to many existing sys-
tems [60], and can be mitigated in several ways. First,
we can further assume that firmware update capability
is available to the user via secure channels, so the VT-HI
capability can be loaded whenever the user accesses hid-
den data and then immediately removed. Alternatively,
the VT-HI capability can be included by default as an
extension of open-source SSD firmware [82], allowing
users to configure the firmware at will to operate with
and without hiding capabilities.

Metadata Persistence and Security. VT-HI relies on
configuration metadata, such as m, Vth, and the number
of bits per page, which must be persisted and recovered
on bootstrap. Because the metadata is small, the meta-
data could be included in the hidden key. Alternatively,
the metadata can be encrypted and stored persistently in

180 16th USENIX Conference on File and Storage Technologies USENIX Association

predetermined locations on flash, or, similarly to the hid-
ing firmware itself, saved and reloaded from an external
source. From a security standpoint, the metadata config-
uration values for a specific chip model may be known
to a diligent adversary. However, even with full knowl-
edge of the configuration metadata, without the secret
key the adversary is still unaware of the location of cells
containing hidden bits and cannot recover them.

Other metadata persistence issues, such as recovering
the hidden volume LBA for every set of pages, may re-
quire sacrificing some hidden capacity or more sophisti-
cated mapping data structures and algorithms, which we
leave as future work.

Multiple-Snapshot Adversary. A stricter threat
model involves an adversary capable of comparing
multiple snapshots of the device taken over time. In this
case, storing hidden data while leaving the public data
unchanged leaves telltale signs of voltage manipulations
that prevent users from plausibly denying the existence
of hidden data. To mitigate, the hiding firmware can
piggyback either public data writes (similar to [58]).
Alternatively, the hiding firmware can utilize wear-
leveling and other SSD-internal activities [61, 79], to
create the requisite cover traffic. A trade-off here is that
firmware-internal bookkeeping which operates without
the private key for too long will eventually damage
hidden data by causing internal data movements that
copy data without also copying the hidden payload.
We note however that hidden data overwrites when
operating the system without the hidden key is an
inherent limitation of almost all existing steganographic
systems [60].

Capacity. The current implementation of VT-HI can
only hide a few hundred bits per flash page. We believe
that many privacy-concerned users will find the strong
deniability offered by VT-HI as a reasonable tradeoff for
reduced capacity. Also, in §6.2 we explain how vendor
support may significantly alleviate this limitation (e.g.,
hide data as TLC in MLC cells).

10 Conclusions
In this work we present a new method for hiding data in
flash using the inherent variability in voltage level distri-
butions of flash cells. This variation occurs naturally on
flash chips, even from the same vendor and model. We
manipulate the voltage levels in cells to hide data within
normal voltage intervals. Our manipulations hide an ad-
ditional hidden bit in cells that already store a public bit
by mimicking common methods to increase flash densi-
ties. Without the hiding key, an attacker cannot detect
cells with hidden data even using favorable supervised
learning. In comparison with the state of the art, our
method achieves respectively 24x and 50x improvement

for encoding and decoding throughput of hidden data,
and is 37x more power efficient. Our technique is appli-
cable to multiple chip models, allows users to store data
even on flash cells that endured significant wear, and im-
poses significantly less wear while doubling total hidden
capacity compared with prior work.

Acknowledgments
We thank our shepherd and the anonymous reviewers for
their insightful comments on earlier drafts of the work.
This research was supported by Grant 2014621 from
the United States-Israel Binational Science Foundation
(BSF), by Grant CNS-1526707 from the United States
National Science Foundation (NSF), and VMware. This
work was done in part while Porter was at Stony Brook
University.

References
[1] Kingston. Nearly half of organizations have

lost sensitive or confidential information
on USB drives in just the past two years.
http://www.kingston.com/en/company/
press/article/2661, 2011.

[2] Independent. BBC’s panorama team loses confi-
dential information relating to a secret british army
unit. http://www.independent.co.uk/news/
uk/home-news/exclusive-bbcs-panorama-
team-loses-confidential-information-
relating-to-a-secret-british-army-
unit-9580340.html, 2014.

[3] WCSH6. USB drive containing personal
information of 950 jetport workers, miss-
ing. http://www.wcsh6.com/news/local/
portland/usb-drive-containing-personal-
information-of-950-jetport-workers-
missing/251514955, 2016.

[4] Computer World. NASA breach update:
Stolen laptop had data on 10,000 users.
http://www.computerworld.com/article/
2493084/security0/nasa-breach-update--
stolen-laptop-had-data-on-10-000-
users.html, 2012.

[5] BBC News. Blackmail fear over lost raf data.
http://news.bbc.co.uk/2/hi/uk/8066586.
stm, 2009.

[6] The Register. Youth jailed for not handing over en-
cryption password. http://www.theregister.
co.uk/2010/10/06/jail_password_ripa/,
2010.

[7] Wikipedia. Key disclosure law. http://en.
wikipedia.org/wiki/Key_disclosure_law.

[8] Denver Post. Password case reframes fifth amend-
ment rights in context of digital world. http:

USENIX Association 16th USENIX Conference on File and Storage Technologies 181

//www.denverpost.com/news/ci_19669803,
2012.

[9] PCWorld. Prepare to take your laptop to another
country. http://www.pcworld.com/article/
2886367/prepare-to-take-your-laptop-to-
another-country.html, 2015.

[10] FBI. Economic espionage. https:
//www.fbi.gov/about-us/investigate/
counterintelligence/economic-espionage.

[11] Ingemar J Cox, Matthew L Miller, Jeffrey Adam
Bloom, and Chris Honsinger. Digital watermark-
ing, volume 1558607145. Springer, 2002.

[12] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,
and B. Sunar. Trojan detection using IC finger-
printing. In IEEE Symposium on Security and Pri-
vacy, 2007.

[13] Malek Ben Salem. Security challenges and re-
quirements for industrial control systems in the
semiconductor manufacturing sector. NIST Work-
shop on Cyber-Security for Cyber-physical De-
vices, 2012.

[14] Microsoft Corporation. Windows BitLocker
drive encryption frequently asked auestions.
http://technet.microsoft.com/en-
us/library/cc766200%28WS.10%29.aspx,
2009.

[15] OS X mavericks: Encrypt the information on your
disk with filevault. http://support.apple.
com/kb/PH13729.

[16] Yinglei Wang, Wing kei Yu, Shuo Wu, G. Malysa,
G.E. Suh, and E.C. Kan. Flash memory for ubiq-
uitous hardware security functions: True random
number generation and device fingerprints. In
IEEE Symposium on Security and Privacy (SP),
2012.

[17] Laura M. Grupp, John D. Davis, and Steven Swan-
son. The bleak future of nand flash memory. In
Proceedings of the 10th USENIX Conference on
File and Storage Technologies, FAST, pages 2–2.
USENIX Association, 2012.

[18] Laura M. Grupp, John D. Davis, and Steven Swan-
son. The harey tortoise: Managing heterogeneous
write performance in SSDs. In Proceedings of the
USENIX Conference on Annual Technical Confer-
ence, USENIX ATC, 2013.

[19] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho
Lim, Jin-Ki Kim, Young-Joon Choi, Yong-Nam
Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-
Soon Choi, Jin-Sun Yum, Jung-Hyuk Choi, Jang-
Rae Kim, and Hyung-Kyu Lim. A 3.3 v 32 Mb
NAND flash memory with incremental step pulse

programming scheme. IEEE Journal of Solid-State
Circuits, 30(11):1149–1156, Nov 1995.

[20] The Register. Good gravy, Toshiba QLC
flash chips are getting closer. http://www.
theregister.co.uk/2016/07/18/tosh_qlc\
_flash_chips_getting_closer, 2016.

[21] Taeho Kgil, D. Roberts, and T. Mudge. Improv-
ing NAND flash based disk caches. In 35th In-
ternational Symposium on Computer Architecture
(ISCA, 2008.

[22] H. Nagashima, T. Tanaka, K. Kawai, and
K. Quader. Nonvolatile semiconductor memory
device which uses some memory blocks in multi-
level memory as binary memory blocks, August 3
2006. US Patent App. 11/391,299.

[23] F. Yu, A.C. Ma, S. Chen, and Y.T. Chang. En-
durance and retention flash controller with pro-
grammable binary-levels-per-cell bits identifying
pages or blocks as having triple, multi, or single-
level flash-memory cells, January 2 2014. US
Patent App. 13/788,989.

[24] S.C. Wong and K. Johnsen. Data coding for multi-
bit-per-cell memories having variable numbers of
bits per memory cell, October 15 2002. US Patent
6,466,476.

[25] N.J. Wakrat and T.M. Toelkes. Dynamically allo-
cating number of bits per cell for memory loca-
tions of a non-volatile memory, March 19 2013.
US Patent 8,402,243.

[26] Seungjae Lee, Young-Taek Lee, Wook-Kee Han,
Dong-Hwan Kim, Moo-Sung Kim, Seung-Hyun
Moon, Hyun Chul Cho, Jung-Woo Lee, Dae-Seok
Byeon, Young-Ho Lim, Hyung-Suk Kim, Sung-
Hoi Hur, and Kang-Deog Suh. A 3.3 v 4 Gb
four-level NAND flash memory with 90 nm CMOS
technology. In IEEE International Solid-State Cir-
cuits Conference, ISSCC, 2004.

[27] Micron eMMC Linux enablement - SLC
mode. https://prod.micron.com/~/media/
documents/products/technical-note/emmc/
tn5205_emmc_linux_enablement.pdf, 2012.

[28] Anandtech. Transcend announces SuperMLC:
Pseudo-SLC SSDs for industrial market.
http://www.anandtech.com/show/9882/
transcend-announces-supermlc-pseudoslc-
ssds-for-industrial-market, 2015.

[29] Electronic Design. Pseudo-SLC flash provides
design flexibility. http://electronicdesign.
com/site-files/electronicdesign.com/
files/uploads/2013/09/FAQs-Toshiba-
September.pdf, 2013.

182 16th USENIX Conference on File and Storage Technologies USENIX Association

[30] Tom’s hardware. JMicron JMF670H SSD con-
troller preview. http://www.tomshardware.
com/reviews/jmicron-jmf670h-ssd-
controller,4161.html, 2015.

[31] Open NAND flash interface. http://www.onfi.
org. 2016.

[32] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin
Luo, and Onur Mutlu. Error characterization, mit-
igation, and recovery in flash memory based solid-
state drives. arXiv preprint arXiv:1706.08642,
2017.

[33] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and
O. Mutlu. Data retention in mlc nand flash mem-
ory: Characterization, optimization, and recovery.
In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture, HPCA,
2015.

[34] Lorenzo Zuolo, Cristian Zambelli, Rino
Micheloni, Marco Indaco, Stefano Di Carlo,
Paolo Prinetto, Davide Bertozzi, and Piero
Olivo. SSDexplorer: A virtual platform for
performance/reliability-oriented fine-grained de-
sign space exploration of solid state drives. IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 34(10):1627–1638,
2015.

[35] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken
Mai. Threshold voltage distribution in MLC
NAND flash memory: Characterization, analysis,
and modeling. In Proceedings of the Conference
on Design, Automation and Test in Europe, 2013.

[36] Toshiba’s 768gb 3D QLC NAND flash mem-
ory: Matching TLC at 1000 P/E cycles?
Anandtech, https://www.anandtech.com/
show/11590/toshiba-768-gb-3d-qlc-nand-
flash-memory-1000-p-e-cycles.

[37] Western digital unveils 96-layer nand, 4-
bit qlc breakthrough. Extremetech, https:
//www.extremetech.com/extreme/251774-
western-digital-announces-new-96-layer-
nand-4-bit-qlc-breakthrough.

[38] Yinglei Wang, Wing kei Yu, S.Q. Xu, E. Kan, and
G.E. Suh. Hiding information in flash memory.
In IEEE Symposium on Security and Privacy (SP),
pages 271–285, 2013.

[39] Pravin Prabhu, Ameen Akel, Laura M. Grupp,
Wing-Kei S. Yu, G. Edward Suh, Edwin Kan, and
Steven Swanson. Extracting device fingerprints
from flash memory by exploiting physical vari-
ations. In Proceedings of the 4th International
Conference on Trust and Trustworthy Computing,
pages 188–201, 2011.

[40] Amir Rahmati, Matthew Hicks, and Atul Prakash.
Approximate flash storage: A feasibility study.
Presented at the Workshop on Approximate Com-
puting Across the Stack, 2016.

[41] Abbas Cheddad, Joan Condell, Kevin Curran, and
Paul Mc Kevitt. Digital image steganography: Sur-
vey and analysis of current methods. Signal Pro-
cessing, 90(3):727 – 752, 2010.

[42] Fabien A.P. Petitcolas, R.J. Anderson, and M.G.
Kuhn. Information hiding-a survey. Proceedings
of the IEEE, 87(7):1062–1078, Jul 1999.

[43] A. Swaminathan, Min Wu, and K.J.R. Liu. Digi-
tal image forensics via intrinsic fingerprints. IEEE
Transactions on Information Forensics and Secu-
rity, 3(1):101–117, March 2008.

[44] Wojciech Mazurczyk. VoIP steganography and
its detection - a survey. ACM Computing Surveys
(CSUR), 46(2):20, 2013.

[45] Wojciech Fraczek, Wojciech Mazurczyk, and
Krzysztof Szczypiorski. Hiding information in a
stream control transmission protocol. Computer
Communications, 35(2):159 – 169, 2012.

[46] Bernard B. Wu and Evgenii E. Narimanov. Anal-
ysis of stealth communications over a public fiber-
optical network. Opt. Express, 15(2):289–301, Jan
2007.

[47] P.R. Prucnal, M.P. Fok, K. Kravtsov, and Zhenxing
Wang. Optical steganography for data hiding in
optical networks. In 16th International Conference
on Digital Signal Processing, ICDSP, 2009.

[48] M.P. Fok, Zhexing Wang, Yanhua Deng, and P.R.
Prucnal. Optical layer security in fiber-optic net-
works. IEEE Transactions on Information Foren-
sics and Security, 6(3):725–736, Sept 2011.

[49] Qian Wang, Kui Ren, Guancheng Li, Chenbo Xia,
Xiaobing Chen, Zhibo Wang, and Qin Zou. Walls
have ears! opportunistically communicating secret
messages over the wiretap channel: From theory to
practice. In Proceedings of the 22Nd Conference
on Computer and Communications Security, CCS,
2015.

[50] X. Zhou, HweeHwa Pang, and K.-L. Tan. Hid-
ing data accesses in steganographic file system. In
Proceedings of the 20th International Conference
on Data Engineering, 2004.

[51] Ross Anderson, Roger Needham, and Adi Shamir.
The steganographic file system. In Information
Hiding, volume 1525 of Lecture Notes in Com-
puter Science, pages 73–82. Springer Berlin Hei-
delberg, 1998.

USENIX Association 16th USENIX Conference on File and Storage Technologies 183

[52] Jin Han, Meng Pan, Debin Gao, and HweeHwa
Pang. A multi-user steganographic file system on
untrusted shared storage. In Proceedings of the
26th Annual Computer Security Applications Con-
ference, ACSAC, 2010.

[53] Kefa Rabah. Steganography-the art of hiding data.
Information Technology Journal, 3:245–269, 2004.

[54] Andrew D. McDonald and Markus G. Kuhn.
StegFS: A steganographic file system for linux. In
Information Hiding, volume 1768 of Lecture Notes
in Computer Science, pages 463–477. Springer
Berlin Heidelberg, 2000.

[55] HweeHwa Pang, K.-L. Tan, and X. Zhou. Stegfs:
a steganographic file system. In Proceedings of the
19th International Conference on Data Engineer-
ing, ICDE, 2003.

[56] Open Crypto audit project. http:
//opencryptoaudit.org/.

[57] Adam Skillen and Mohammad Mannan. On im-
plementing deniable storage encryption for mobile
devices. In Network & Distributed System Security
Symposium, NDSS, 2013.

[58] Erik-Oliver Blass, Travis Mayberry, Guevara
Noubir, and Kaan Onarlioglu. Toward robust hid-
den volumes using write-only oblivious ram. In
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’14, pages 203–214, New York, NY, USA, 2014.
ACM.

[59] Timothy M Peters, Mark A Gondree, and
Zachary NJ Peterson. Defy: A deniable, encrypted
file system for log-structured storage. In The Net-
work and Distributed System Security Symposium,
NDSS, 2015.

[60] Aviad Zuck, Udi Shriki, Donald E. Porter, and Dan
Tsafrir. Preserving Hidden Data with an Ever-
Changing Disk. In ACM Workshop on Hot Topics
in Operating Systems, HotOS, 2017.

[61] Eran Gal and Sivan Toledo. Algorithms and data
structures for flash memories. ACM Comput. Surv.,
37(2):138–163, June 2005.

[62] Anxiao Jiang, V. Bohossian, and J. Bruck. Rewrit-
ing codes for joint information storage in flash
memories. IEEE Transactions on Information The-
ory, 56(10):5300–5313, Oct 2010.

[63] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P.H. Siegel, and J.K. Wolf. Char-
acterizing flash memory: Anomalies, observations,
and applications. In 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MI-
CRO, 2009.

[64] Y. Di, L. Shi, K. Wu, and C. J. Xue. Exploiting
process variation for retention induced refresh min-
imization on flash memory. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE),
2016.

[65] Y. Pan, G. Dong, and T. Zhang. Error rate-
based wear-leveling for NAND flash memory at
highly scaled technology nodes. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Sys-
tems, 21(7):1350–1354, 2013.

[66] Yeong-Jae Woo and Jin-Soo Kim. Diversifying
wear index for MLC NAND flash memory to ex-
tend the lifetime of SSDs. In Proceedings of the
Eleventh ACM International Conference on Em-
bedded Software, EMSOFT, 2013.

[67] Nikolaos Papandreou, Thomas Parnell, Haralam-
pos Pozidis, Thomas Mittelholzer, Evangelos
Eleftheriou, Charles Camp, Thomas Griffin, Gary
Tressler, and Andrew Walls. Using adaptive read
voltage thresholds to enhance the reliability of
MLC NAND flash memory systems. In Proceed-
ings of the 24th Edition of the Great Lakes Sympo-
sium on VLSI, GLSVLSI, 2014.

[68] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai.
Program interference in MLC NAND flash mem-
ory: Characterization, modeling, and mitigation. In
2013 IEEE 31st International Conference on Com-
puter Design, ICCD, 2013.

[69] Ki-Tae Park, Myounggon Kang, Doogon Kim,
Soon-Wook Hwang, Byung Yong Choi, Yeong-
Taek Lee, Changhyun Kim, and Kinam Kim. A
zeroing cell-to-cell interference page architecture
with temporary LSB storing and parallel msb pro-
gram scheme for MLC NAND flash memories.
IEEE Journal of Solid-State Circuits, 43(4):919–
928, April 2008.

[70] N. Agrawal, V. Prabhakaran, T. Wobber, J.D.
Davis, M. Manasse, and R. Panigrahy. Design
tradeoffs for SSD performance. In USENIX 2008
Annual Technical Conference on Annual Technical
Conference, USENIX ATC, 2008.

[71] M. Murugan and D.H.C. Du. Rejuvenator: A static
wear leveling algorithm for NAND flash memory
with minimized overhead. In IEEE 27th Sympo-
sium on Mass Storage Systems and Technologies,
MSST, 2011.

[72] Y. J. Woo and J. S. Kim. Diversifying wear in-
dex for MLC NAND flash memory to extend the
lifetime of SSDs. In Proceedings of the Inter-
national Conference on Embedded Software, EM-
SOFT, 2013.

184 16th USENIX Conference on File and Storage Technologies USENIX Association

[73] NAND flash memory tester (SigNASII).
http://www.siglead.com/eng/innovation\
_signas2.html. 2016.

[74] Jong-Ho Park, Sung-Hoi Hur, Joon-Hee Leex, Jin-
Taek Park, Jong-Sun Sel, Jong-Won Kim, Sang-
Bin Song, Jung-Young Lee, Ji-Hwon Lee, Suk-
Joon Son, Yong-Seok Kim, Min-Cheol Park, Soo-
Jin Chai, Jung-Dal Choi, U-In Chung, Joo-Tae
Moon, Kyeong-Tae Kim, Kinam Kim, and Byung-
Il Ryu. 8 gb MLC (multi-level cell) NAND flash
memory using 63 nm process technology. In Tech-
nical Digest of IEEE International Electron De-
vices Meeting, IEDM, pages 873–876, 2004.

[75] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu. Read dis-
turb errors in mlc nand flash memory: Character-
ization, mitigation, and recovery. In 45th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN, 2015.

[76] Wei Wang, Tao Xie, and Deng Zhou. Understand-
ing the impact of threshold voltage on mlc flash
memory performance and reliability. In Proceed-
ings of the 28th ACM International Conference on
Supercomputing, ICS, 2014.

[77] Yue Li, Eyal En Gad, Anxiao Jiang, and Jehoshua
Bruck. Data archiving in 1x-nm NAND flash mem-
ories: Enabling long-term storage using rank mod-
ulation and scrubbing. In 2016 IEEE 54th Interna-
tional Reliability Physics Symposium, 2016.

[78] Mingzhen Xu, Changhua Tan, and MingFu Li.
Extended Arrhenius law of time-to-breakdown of
ultrathin gate oxides. Applied Physics Letters,
82(15):2482–2484, Apr 2003.

[79] Yu Cai, G. Yalcin, O. Mutlu, E.F. Haratsch,
A. Cristal, O.S. Unsal, and Ken Mai. Flash correct-
and-refresh: Retention-aware error management
for increased flash memory lifetime. In IEEE
30th International Conference on Computer De-
sign, ICCD, 2012.

[80] Shiqin Yan, Huaicheng Li, Mingzhe Hao,
Michael Hao Tong, Swaminathan Sundararaman,
Andrew A. Chien, and Haryadi S. Gunawi. Tiny-
tail flash: Near-perfect elimination of garbage
collection tail latencies in NAND SSDs. In
15th USENIX Conference on File and Storage
Technologies, FAST, 2017.

[81] Michael Factor, Ealan Henis, Dalit Naor, Simona
Rabinovici-Cohen, Petra Reshef, Shahar Ronen,
Giovanni Michetti, and Maria Guercio. Authen-
ticity and provenance in long term digital preser-
vation: Modeling and implementation in preserva-
tion aware storage. In First Workshop on Theory
and Practice of Provenance, TAPP, 2009.

[82] Matias Bjørling, Javier Gonzalez, and Philippe
Bonnet. Lightnvm: The linux open-channel SSD
subsystem. In 15th USENIX Conference on File
and Storage Technologies, FAST, 2017.

USENIX Association 16th USENIX Conference on File and Storage Technologies 185

