
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

RFLUSH: Rethink the Flush
Jeseong Yeon and Minseong Jeong, Chungbuk National University; Sungjin Lee, DGIST;

Eunji Lee, Chungbuk National University, University of Wisconsin—Madison

https://www.usenix.org/conference/fast18/presentation/yeon

RFLUSH: Rethink the Flush

Jeseong Yeon∗, Minseong Jeong∗, Sungjin Lee†, Eunji Lee∗‡

∗Chungbuk National University, †DGIST, ‡University of Wisconsin–Madison

{jsyeon, msjeong}@oslab.cbnu.ac.kr, sungjin.lee@dgist.ac.kr, eunji@cbnu.ac.kr

Abstract

A FLUSH command has been used for decades to enforce

persistence and ordering of updates in a storage device.

The command forces all the data in the volatile buffer of

the storage device to non-volatile media to achieve per-

sistency. This lump-sum approach to flushing has two

performance consequences. First, it slows down non-

volatile materialization of the writes that actually need

to be made durable. Second, it deprives the writes that

do not need to be made durable of an opportunity for ab-

sorbing future writes and coalescing.

We attempt to characterize the problems of this se-

mantic gap of flushing in storage devices and propose

RFLUSH that allows a fine-grained control over non-

volatile materialization. The RFLUSH command delivers

a range of logical block addresses (LBAs) that need to be

flushed and thus enables the storage device to force only

a subset of data in its buffer.

We implemented this fine-grained flush command in a

storage device using an open-source flash development

platform and modified the F2FS file system to make use

of the command in processing fsync requests as a case

study. Performance evaluation using the prototype shows

that the inclusion of RFLUSH improves the throughput by

up to 6.5x; reduces the write traffic by up to 43%; and

eliminates the long tail in the response time.

1 Introduction

Historically, storage devices have made use of a volatile

buffer for various purposes. For hard disk drives

(HDDs), the volatile buffer has been used for absorb-

ing writes and minimizing seeks, while solid state drives

(SSDs) have used the buffer for improving their random

write performance and masking the limited endurance of

the underlying non-volatile media [6, 13, 15, 19, 38, 39,

44].

The adoption of a volatile buffer, however, can bring

with it data loss and improper ordering of updates in a

power outage. The FLUSH command has been introduced

to resolve this issue; forcing all the pending writes to

non-volatile media, ensuring persistence and proper seri-

alization of updates.

Unfortunately, this lump-sum approach to enforcing

persistency has undesired performance consequences [6,

13, 38, 39, 44]. To faithfully implement the flush seman-

tics, the storage device must empty all the dirty pages in

its volatile buffer, whereas a flush request is commonly

issued with less stringent requirements. As an example,

consider a concurrent execution of two applications: an

on-line banking application that requires to persist each

transaction immediately, and a big-data analytics appli-

cation that writes a large amount of intermediate results,

which is a common scenario in modern complicated and

multi-tenant storage platforms. In this scenario, a flush

request for a committed transaction by the banking ap-

plication will end up with forcing a large amount of dirty

data (most of it from the analytics application, and thus

irrelevant) in the storage device, which slows down what

is actually needed (forcing the dirty data from the bank-

ing application).

This paper attempts to cure the performance problem

of the conventional flush mechanism outlined above by

refactoring the storage device interface. The refactoring

is to include a command called RFLUSH (Range Flush)

which allows a fine-grained control over non-volatile ma-

terialization of dirty data in the buffer. The RFLUSH com-

mand transfers a range of logical block addresses (LBAs)

that specifies data to be persisted with it, helping the stor-

age device to optimize its non-volatile materialization.

This command not only speeds up the non-volatile mate-

rialization of the target LBAs but also enhances buffering

and coalescing of other dirty data in the buffer.

Our work is in line with a collection of recent stud-

ies. In the past, computer systems have been built upon a

standard block device interface consisting of a small set

of commands over its logical address space: read, write,

and flush. This abstract view of a storage device allows

a host system to readily access non-volatile media in an

efficient manner. However, as emerging storage media

such as flash memory and other non-volatile memories

(NVMs) are more commonly used, the possibility of ex-

tending the conventional block device interface to lever-

age the full potential of the new storage media is being

actively explored [1, 4, 7, 9, 23, 24, 27, 31, 32, 36, 46].

A TRIM command has been proposed to prevent use-

less data from being copied around and lowering the

endurance of flash memory [36]. As another example,

recent storage device interfaces support atomic writes,

which can be efficiently supported in flash-based storage

USENIX Association 16th USENIX Conference on File and Storage Technologies 201

devices [7, 31]. Also, storage interface extensions such

as those for delegating block allocation [1, 9, 27, 32, 46],

multi-streamed SSDs [18, 29], host manageable storage

devices [4, 23], and user programmable SSDs [35] have

been studied to provide an extended functionality and/or

achieve better performance in high-end storage systems.

The benefits of RFLUSH seem straightforward, but re-

alizing it efficiently in a storage device and augmenting

file systems and/or database systems to make an effective

use of it are not without challenges. We implemented

RFLUSH in a storage device using an open-source flash

development platform [23] and modified a file system

(F2FS) [22] to make use of the extended interface1. The

modified F2FS uses the RFLUSH command in the han-

dling of fsync (and its variants). In this way, user ap-

plications do not need to be modified since the interface

(i.e., fsync) and its semantics are faithfully preserved.

The rest of this paper is organized as follows. We

give our motivation for RFLUSH and briefly review the

related technology trends (§2). We then present the

RFLUSH command and describe its prototype implemen-

tation (§3). We present results from performance evalua-

tion using the prototype (§4), and finally conclude (§5).

2 Motivation and Related Work

Flush Optimization using Non-volatile Memory:

Many prior works have pointed out that the in-storage

buffer flush is a critical contributor to performance vari-

ation and unexpected slowdown in storage devices [15,

19]. One approach to lessening the detrimental perfor-

mance effects of flush is to use super capacitors for pro-

viding enough energy to force all the dirty data in the

volatile buffer at the time of a power outage. SSD man-

ufacturers incorporate super capacitors in their high-end

SSD devices to make them tolerant on power outages,

offering high performance and reliability at the same

time [21]. As a similar approach, Xiangfeng presents

a modern SSD architecture that uses non-volatile mem-

ory for a write buffer while maintaining a read cache as

volatile [44]. However, both approaches intrinsically in-

crease the manufacturing cost, resulting in lower compet-

itiveness of the intended products. The two approaches

are, however, complementary to RFLUSH in the sense that

they allow the RFLUSH command to return immediately

while giving priority for replacement to those dirty data

that were the target of the command to make room in the

buffer for future writes.

Flush Optimization in a Host: The problem of flush-

ing mechanism also exists in a page cache between a

host and a device, because the page cache adopts a flush-

ing mechanism to ensure persistence and ordering of up-

1https://github.com/jsyeon92/RFLUSH

dates in its volatile buffer. As opposed to a storage intre-

face, POSIX file system interfaces provide fine-grained

control over the flushing mechanism through fsync and

fdatasync system calls, in addition to sync. However,

the flushing activity is still costly in a larger size page

cache, and thus there have been numerous studies to mit-

igate this problem. Likewise as on the storage side, spe-

cialized hardware such as battery-backed main memory

has been considered to avoid flushing cost [5, 43]. As

a software-based approach, Nightingale et al. present an

externally synchronized file system called xsyncfs [30],

which allows an application to avoid blocking during the

long-latency synchronization. The xsyncfs allows a re-

questing application to immediately return from the syn-

chronization request, but makes the updates visible when

they become consistently durable, leading to improve-

ment in responsiveness. Chidambaram et al. present a

new crash-consistency protocol that decouples ordering

and durability, thereby providing data consistency with

high performance [6]. Instead of forcing a low-level disk

promptly to flush its buffer, they allow a storage device to

optimize a flushing mechanism within a time limit, while

still satisfying the ordering constraints. While such opti-

mization obtained through a trade-off between durability

and performance is worthwhile to consider in storage in-

terface extension, this paper, as an initial and fundamen-

tal approach, focuses on storage interfaces for enhancing

performance without any compromising of durability.

SSD Trends: The demand to improve the flush inter-

face is particularly high at this moment because the cost

of a flush is amplified when it is combined with next-

generation SSD technologies. As host interfaces such as

the NVMe [10, 16] become fast, the performance bot-

tleneck is being shifted from the host interface to the

flash device. The flash memory latencies for reading,

programming, and erasing are also steadily increasing al-

though device density is improving. Therefore, the latest

SSDs attempt to use an increasingly larger buffer (e.g.,

512 MB to 2 GB) to compensate for flash memory’s low

performance and endurance [25, 33, 34, 37]. With this

trend, it is obvious that cache flushing results in more

serious performance degradations in the presence of a

larger buffer.

Besides, there are SSDs that exploit a portion of the

host memory as a dedicated in-storage buffer, which may

seriously suffer from cache flushing. Such SSDs help to

improve the performance while cutting off the cost by

not using DRAM in the storage device [8, 33], but a tan-

dem with a classical flush interface might incur GBs of

data being flushed from the host to the storage device on

a regular basis. Considering the high cost of data transfer

between the host and the device, the existing flush mech-

anism would degrade the storage performance severely.

202 16th USENIX Conference on File and Storage Technologies USENIX Association

Also, the page size of flash memory is getting bigger,

which will affect the overall performance as an eager

flushing forfeits the possibility of consolidation and re-

alignment of pending writes, yielding a large number of

underutilized pages [20].

High Demand on Isolation The need for improving

the flush interface is also evident with respect to per-

formance isolation. With the latest innovations of data

centers, computation is rapidly being moved from stand-

alone desktops to cloud systems. With this trend, perfor-

mance isolation and accurate accounting across applica-

tions are more important than ever. Techniques for iso-

lating storage performance on the host side have been

researched extensively. IceFS isolates related data with

a container-based grouping and eliminates shared physi-

cal resources or access dependencies among containers

in a file system [13]. Differentiated Storage Services

(DSS) [26] and IOFlow [41] propose to tag data across

layers to determine which process issues a request at any

given layer. Yang et al. present a split-level I/O schedul-

ing framework that provides a set of hooks for acquir-

ing knowledge needed for accurate accounting and fair

scheduling [45].

However, not much research has been performed on

the storage side to prevent interference among applica-

tions. Prior works on in-storage buffers mostly focus on

the replacement policy [15, 19], and there is not much

previous research on curing the inefficiency of the flush

mechanism despite its huge impact on the performance

and endurance of the storage device. We believe our

analysis and proposal in this paper are highly timely and

contribute to driving the storage interface to be in har-

mony with fast-advancing storage technologies.

3 Range Flush

The concept of RFLUSH is simple but there are many de-

sign issues to be addressed since it involves from the ap-

plication down to the storage device. In §3.1, we discuss

places where RFLUSH can be useful. Then, in §3.2, we

explain how to identify data related to RFLUSH. Data as-

sociated with RFLUSH is not limited to user data but in-

cludes metadata. In §3.3, we discuss how to handle meta-

data for RFLUSH. We describe how to integrate RFLUSH

into storage protocols in §3.4.

3.1 Where to Use RFLUSH

Since RFLUSH is more general than its counterpart FLUSH

and allows finer-grained control over what to flush, there

can be many use cases where it can be effective. In this

paper, we focus on its use for optimizing the fsync and

fdatasync system calls. (Hereafter we use fsync to

denote both fsync and fdatasync.)

There are some obvious benefits in implementing

fsync using RFLUSH. First, no application modifications

are needed since the fsync semantics can be faithfully

preserved. Second, information about the user data and

metadata that are affected by the fsync is readily avail-

able. Third, there can be noticeable performance gains

from isolating regions to flush by fsync.

Although we leave for future research the use of

RFLUSH by the file system itself other than in the process-

ing of the fsync, we can easily identify other potential

use cases for RFLUSH. For example, many file systems

use journaling for recovery purposes and they typically

use write-ahead logging (WAL) [28] that requires log-

ging be performed before the logged updates are written

to their home locations. The RFLUSH command can be

used to give priority to the non-volatile materialization

of data in the log. The same write-ahead logging is used

by almost all the database systems today and they can be

equally benefited by the use of RFLUSH.

3.2 How to Identify the Associated Data

The next challenge in using RFLUSH lies in how to iden-

tify the associated data for a given fsync request. The

file system needs to identify the set of pages that are as-

sociated with a file and thus has to be forced to persist.

Among such pages, some are in the page cache in a dirty

state. The file system can flush such pages to the storage

device followed by an RFLUSH command targeting them.

A problematic case is when some of the pages that need

to be forced to persist have already been sent to storage,

meaning that they can be either in a clean state or evicted

from a page cache. Unfortunately, it is overly intricate to

keep track of such data blocks, but if they are missing,

the semantics of the fsync system call can be violated.

We address this challenge by specifying whole data

blocks of a file. This approximation is made efficient

by fundamental file-system design principles; most file

systems allocate data blocks for a file as consecutively

as possible so as to benefit from spatial locality [14].

This idea has been adopted to reduce the seek time for

HDDs, but it holds true for SSDs as well since a high

degree of spatial locality means better performance for

SSDs because it allows for more efficient address trans-

lation and interleaving over multiple channels/chips in

the SSD. With this policy, the data blocks of a file are

likely to be encoded by only a few extents, which means

only a small number of RFLUSH commands are needed.

However, this might not always be the case because

there could be more fragmentations over time, in par-

ticular for larger files. To address this, our final design

choice is to transfer the inode number of the target file,

instead of a set of LBAs. This approach can faithfully

preserve the fsync semantics, without excessive over-

USENIX Association 16th USENIX Conference on File and Storage Technologies 203

head needed to specify the range of data blocks to persist

with RFLUSH. The implementation details of the inode-

based RFLUSH protocol will be described in Section 3.4.

3.3 How to Handle Metadata

One thing that must not be overlooked is to flush file sys-

tem metadata that has a dependency on the target file of

the fsync; otherwise, there is a danger of data corrup-

tion or loss on a system crash. We explain using the

F2FS file system as an example. The on-disk layout of

F2FS has two areas; metadata area and main area. The

metadata area keeps information for file system mainte-

nance such as block allocation bitmaps and orphan inode

lists [22]. In contrast, the main area is used to store nor-

mal data blocks and file metadata including inode and in-

direct blocks. Upon a write request, a set of blocks needs

to be updated in an atomic manner to provide crash con-

sistency [3]. Specifically, since F2FS is a log-structured

file system, it allocates and updates a new data block out-

of-place, requiring the updating of related metadata (i.e.,

inode) and indirect blocks to properly point to the new

block. In turn, the block allocation bitmap and several

tables that maintain information for space management

should also be updated. This behavior leads to many

small random writes to blocks containing the file sys-

tem metadata; encoding of those writes as a set of ranges

would be complicated. To get away with this complica-

tion, we decide to encode a full range of the metadata

area, which is a superset of metadata to be updated, and

send it along with the RFLUSH command.

This approximation seems to have a problem when

fsync requests from multiple files are interfered with

each other because their metadata shares a single LBA.

Consider a case in which there are two different files

A and B, whose inode structures are located in a single

block. When the fsync requests occur for the files con-

currently, forcing the entire metadata area by one fsync

request might corrupt data integrity, violating ordering

constraints between data and metadata of another file

(e.g., file B’s metadata is persisted before file B’s data

block).

However, this is not the case because current file sys-

tems are carefully designed so as not to let this happen.

For example, F2FS logs individual inode structure on

an update, instead of an entire block, thereby prevent-

ing undesired interference that can be caused by inter-

leaved fsyncs. Ext4 resolves this issue by forcing all

dependant data prior to persisting the modified metadata

block. Thus, in the above example, both data A and B are

flushed to non-volatile storage before the metadata block

when an fsync request occurs either for file A or B.

3.4 How to Integrate into a Storage Proto-

col

To make use of the RFLUSH primitive, the host inter-

face should be extended. While this extension is dif-

ficult to be incorporated into mature storage interfaces

such as SATA [12] or SAS [17], it is a viable option for

emerging storage interfaces like NVMe [10, 16] to add

proprietary extensions. Another possibility for incorpo-

rating extensions into the standard storage API is to use

the open-channel SSD architecture [4, 23]. In this archi-

tecture, the host system implements many of the func-

tionalities needed to manage flash memory (e.g., garbage

collection). Also, by utilizing veiled information behind

the storage device interface, this architecture enables the

management of flash memory to meet the demands of the

host system. We use the latter approach since the host-

manageable architecture allows easy integration of the

extensions for RFLUSH.

Our prototyping system implements the inode-based

RFLUSH protocol through storage interface extension

and F2FS file system modification. We add the range

flush protocol to BlueDBM, which is an open-channel

flash development platform from MIT [23], facilitating

the construction of a host-manageable storage device.

Specifically, we extend the host storage interface to sup-

port the RFLUSH primitive in which the inode number is

encoded. Then, we augment the in-storage buffer handler

in the FTL to locate the associated data blocks and flush

them selectively upon an RFLUSH request. The buffer

handler maintains the pending updates in a hash table

using an inode number as a key. Note that this mech-

anism requires a write command that also includes an

inode number such that the device controller determines

which file the data block belongs to. However, the open-

channel SSD half of which the FTL runs on the host side

can easily determine this by referencing the kernel data

structure with the transferred write request, which is used

in our implementation.

On the host side, F2FS, the modified file system, com-

municates with BlueDBM through a block device inter-

face and makes use of the RFLUSH primitive in imple-

menting the fsync system call. When an fsync request

arrives from the application, F2FS writes all dirty pages

of the requested file and the associated metadata from

a page cache to a storage device. Then, F2FS issues a

pair of RFLUSH commands that include the inode num-

bers associated with the target file and the metadata area.

The RFLUSH command is forwarded to the storage device

controller through the underlying block I/O layer and de-

vice driver where a host side component of BlueDBM

runs. BlueDBM completes the RFLUSH request by forc-

ing writes associated with the given inode number.

204 16th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: RFLUSH protocol implementation.

Configuration Settings

Page / Block size 4KB / 64 Pages

Read / Write Latency 100us / 1300us

Block Erase Latency 1.5ms

Data Transfer Latency 100us (for 4KB)

Overprovisioning Ratio 3%

SSD capacity 37 GB

In-storage Buffer 256 MB / 1 GB

Table 1: SSD platform setup.

4 Performance Evaluation

We evaluate the proposed RFLUSH using a prototype im-

plementation. The next section explains our evaluation

methodology. In §4.2, we report results on the effective-

ness of RFLUSH from experiments using both micro- and

macro-benchmarks.

4.1 Methodology

We modified both the file system (F2FS) [22] and

the storage device (BlueDBM) [23] to implement the

RFLUSH protocol in Linux 4.7.2. Figure 1 shows

the architecture of our experimental platform. When

the user issues an fsync request through the system

call interface, the sync handler module inside the

file system generates RFLUSH commands to BlueDBM.

The range flush handler module within the FTL of

BlueDBM handles the request by forcing the associated

data from its volatile buffer to the non-volatile media.

Our experiments were performed on Intel Core i7 run-

ning at 3.3GHz with 64GB of DDR4 memory. The

detailed configurations of BlueDBM are given in Ta-

ble 1. To understand the performance consequence of the

RFLUSH primitive, we first evaluate the prototype using a

micro-benchmark based on FIO [11], which generates a

synthetic workload that models a best-case scenario for

RFLUSH. Then, we use a set of macro-benchmarks to ex-

amine the effectiveness of RFLUSH in a real environment.

In our experiments, the storage device is accessed in a

4 20 40 80 200 400
0

20

40

syncing

Fsync Period(KB)

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

4 20 40 80 200 400
0

20

40

60

80
non-syncing

Fsync Period(KB)

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

1 5
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

9
5

9
9

9
9
.5

9
9
.9

9
9
.9

5
9
9
.9

9

0

20

40

60

80

100
syncing

Percentile(th)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
) FLUSH

RFLUSH

NOFLUSH

1 5
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

9
5

9
9

9
9
.5

9
9
.9

9
9
.9

5
9
9
.9

9

0

20

40

60

80

100

120
non-syncing

Percentile(th)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
) FLUSH

RFLUSH

NOFLUSH

Figure 2: IOPS and response time distributions of the

micro-benchmark. Figures in the top row show IOPS

for syncing and non-syncing threads with a 1GB storage

buffer. The X-axis is the amount of data written between

the invocations of fsync. The use of RFLUSH improves

IOPS by up to 1.74x and 1.36x for the syncing and non-

syncing threads, respectively, compared to using FLUSH.

The two graphs in the bottom row give a percentile re-

sponse time for both the syncing and non-syncing threads

when fsync period is 400KB. The 99.99th percentile re-

sponse time is reduced from 79.36us to 19.38us when

RFLUSH is used instead of FLUSH in a syncting thread.

Benchmark Write # Avg. Size fsync Interval / #

Fileserver 1536K 1MB None

TPC-C 2.2K 16KB 21373us / 13448

Linkbench 101K 16KB 10016us / 14097

Table 2: Macro-benchmark characteristics.

direct mode (unless otherwise specified) to observe the

behavior of RFLUSH more clearly in a controlled environ-

ment. The performance is measured five times for each

scenario and their median is reported.

4.2 Experimental Results

Micro-Benchmark: To assess the potential perfor-

mance gain made possible by RFLUSH, we used a micro-

benchmark based on FIO [11] that approximates a typ-

ical scenario where there is a mixture of asynchronous

and synchronous writes. The micro-benchmark consists

of both syncing and non-syncing threads. Both types of

thread perform the same task except for their syncing be-

havior. Both write 2GB data randomly to a file with a

4KB granularity in a direct mode. The difference is a

syncing thread issues an fsync request after writing a

USENIX Association 16th USENIX Conference on File and Storage Technologies 205

4 20 40 80 200 400
0

20

40

Fsync Period (KB)

W
ri
te

 T
ra

ff
ic

 (
G

B
)

FLUSH

RFLUSH

NOFLUSH

Figure 3: Write traffic from the micro-benchmark.

The write traffic is measured at the interface between the

in-storage buffer and the flash memory when the buffer

size is 1GB. RFLUSH reduces write traffic by 24% to 43%

for the fsync periods we considered.

given amount of data.

In the experiment, there were one syncing thread

and 12 non-syncing threads, and we measured their

performances for three possible configurations: FLUSH,

RFLUSH, and NOFLUSH. The FLUSH configuration forces

to flash memory all data in the volatile buffer of the stor-

age device, while the RFLUSH configuration forces only

the data in a given LBA range. In the NOFLUSH config-

uration, the storage device ignores all the sync requests.

In all configurations, if the number of dirty pages in the

buffer is above a threshold (90% here), a certain number

of pages are written-back to flash memory by a back-

ground activity in the storage device. Figure 2 shows

the performance of both the syncing and non-syncing

threads in terms of IOPS and response time. In the fig-

ures of the top row, the X-axis is the amount of data writ-

ten before the syncing thread issues an fsync request.

The results show that there is a large performance

improvement for the syncing thread when RFLUSH is

used instead of FLUSH. This performance improvement

is mainly due to the fact that the flushing activities of the

syncing thread are not interfered by the flushing of non-

urgent writes from non-syncing threads when RFLUSH is

used. For the same reason, RFLUSH also eliminates a

long tail in the response time distribution for the syncing

thread, which is critical to providing a consistent perfor-

mance from a storage device.

The results also show that even the performance of

non-syncing threads is improved. When RFLUSH is

used, a prioritized flushing of data written by the sync-

ing thread gives more time for the dirty data from non-

syncing threads to reside in the buffer. The increased

time in the buffer allows them to absorb more writes to

the same LBA and also to be coalesced more with other

writes, resulting in a better performance. As a result,

RFLUSH reduces the write traffic significantly compared

to FLUSH as Figure 3 illustrates. Its result even comes

close to that of NOFLUSH. In this scenario, each three of

the 12 non-syncing threads access the same file, while a

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-256MB

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-1024MB

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-256MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-1024MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

tpcc-256MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

tpcc-1024MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

Figure 4: Performance of mixed real workloads in a

direct mode. These figures show IOPS for each pair of

benchmarks when a storage buffer size is 256MB and

1024MB. TPC-C and Linkbench achieves 5.3x to 6.5x

and 4.1x to 4.5x higher IOPS with RFLUSH when running

together with Fileserver. Fileserver also delivers 20%

higher IOPS with RFLUSH when executing with TPC-C

and Linkbench. When TPC-C and Linkbench are mixed,

their performances are improved by 1.4x to 1.6x and

1.17x to 1.3x, respectively.

syncing thread accesses its own file. Thus, the writes of

the non-syncing thread have a locality. F2FS basically

updates the data in an out-of-place manner, but it allows

overwrite once the data is copied for updates after the

last checkpoint, unless the explicit fsync request occurs.

Therefore, F2FS benefits from the enhanced buffering ef-

fect of the RFLUSH primitive in the writes of non-syncing

threads.

A somewhat non-intuitive result is that when the

fsync requests are issued too frequently, in some ex-

treme cases RFLUSH even performs worse than FLUSH

even though the former results in much less write traf-

fic to the storage device. Careful analysis over the results

reveals that if fsyncs are too frequent, the performance

is dominated by fsyncs rather than the actual write traf-

fic associated with them.

206 16th USENIX Conference on File and Storage Technologies USENIX Association

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-256MB

IO
P

S
(K

)
FLUSH

RFLUSH

NOFLUSH

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-1024MB

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-256MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-1024MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

8

tpcc-256MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

8

tpcc-1024MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

Figure 5: Performance of mixed real workloads in a

buffered mode. These figures report the performance

with the page cache turned on. Although the absolute

values are different, the results show the same general

trends as in a direct mode (cf. Figure 4).

Macro-Benchmarks: To assess the performance im-

pact of RFLUSH in the real world, we selected three

macro-benchmarks (Fileserver, Linkbench, and TPC-C)

and measured their performances when a pair of them

run concurrently. Fileserver generates a large number

of asynchronous writes acting like a multi-streaming

server [40]. Linkbench is a graph processing applica-

tion based on the Facebook Social Graph, containing a

few kilobytes of writes with frequent sync requests [2].

TPC-C is an on-line transaction processing benchmark

which issues small-sized random writes with frequent

synchronization [42]. Table 2 summarizes various statis-

tics about the three macro-benchmarks.

Figure 4 shows the results in terms of IOPS for each

pair of the three macro-benchmarks. The results show

that the performance improvement by RFLUSH is most

noticeable when asynchronous and synchronous work-

loads are mixed, as in the micro-benchmark we con-

sidered in the previous section. For example, TPC-C

and Linkbench show 4.5x and 6.5x higher IOPS with

RFLUSH, when they run together with Fileserver, which is

consistent with the micro-benchmark results in the pre-

vious section.

The results also show that there are performance im-

provements even in the case where both benchmarks

contain synchronous workloads. For example, when

TPC-C and Linkbench are running together, RFLUSH im-

proves performance by up to 1.4x and 1.29x in TPC-C

and Linkbench, respectively. This result is due to time-

multiplexed non-volatile materializations for fsyncs

from the two benchmarks. One counter-intuitive ob-

servation is that an RFLUSH outperforms a NOFLUSH in

a mixture of Fileserver and TPC-C/Linkbench with a

1024MB buffer. This improvement comes from that an

RFLUSH replenishes free space more quickly by proac-

tively writing back the buffered data on a synchroniza-

tion request, which helps the efficent handling of the

bulky writes generated from Fileserver.

We also performed the same experiments in a buffered

mode (i.e., with the page cache turned on). Figure 5 re-

ports the performance in the same format as in Figure 4.

Although the absolute values are different, the results

show the same general trends as in a direct mode shown

in Figure 4. The performance gap between RFLUSH and

FLUSH is reduced because of periodic flushing from the

page cache but the difference is only marginal.

5 Conclusion

In this paper, we raised an issue about the negative per-

formance impact of a lump-sum approach to persist-

ing buffered data within a storage device and presented

RFLUSH that allows a fine-grained persistence control.

We implemented an RFLUSH prototype by modifying a

file system (F2FS) in Linux 4.7.2 as well as a storage de-

vice based upon an open-source flash development plat-

form. Performance evaluation using the prototype shows

that RFLUSH increases overall I/O performance by up to

6.5x, and eliminates a long tail latency of synchronous

writes.

6 Acknowledgments

We thank Ming Zhao (our shepherd) and the anony-

mous reviewers for their insightful comments. This

work was supported by Basic Science Research Pro-

gram through the National Research Foundation of Ko-

rea (NRF) funded by the Ministry of Education (No.

2017R1D1A1B03031494) and by the Ministry of Sci-

ence, ICT & Future Planning (No. 2014R1A1A3053505

and No. NRF-2017R1E1A1A01077410).

USENIX Association 16th USENIX Conference on File and Storage Technologies 207

References

[1] ANAND, A., SEN, S., KRIOUKOV, A., POPOVICI, F., AKELLA,
A., ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R., AND

BANERJEE, S. Avoiding file system micromanagement with
range writes. In Proceedings of the 8th USENIX conference

on Operating systems design and implementation (2008), OSDI,
USENIX Association, pp. 161–176.

[2] ARMSTRONG, T. G., PONNEKANTI, V., BORTHAKUR, D., AND

CALLAGHAN, M. Linkbench: a database benchmark based on
the facebook social graph. In Proceedings of the 2013 ACM SIG-

MOD International Conference on Management of Data (2013),
ICMD, ACM, pp. 1185–1196.

[3] ARPACI-DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C.
Three Easy Pieces. Arpaci-Dusseau Books, 2015.

[4] BJØRLING, M., GONZÁLEZ, J., AND BONNET, P. Light-
nvm: The linux open-channel ssd subsystem. In Proceedings of

the 15th USENIX Conference on File and Storage Technologies

(2017), FAST, pp. 359–374.

[5] CHEN, P. M., NG, W. T., CHANDRA, S., AYCOCK, C., RA-
JAMANI, G., AND LOWELL, D. The rio file cache: Surviving
operating system crashes. Acm Sigplan Notices 31, 9 (1996), 74–
83.

[6] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In
Proceedings of the 24th ACM Symposium on Operating Systems

Principles (2013), SOSP, ACM, pp. 228–243.

[7] COBURN, J., BUNKER, T., SCHWARZ, M., GUPTA, R., AND

SWANSON, S. From aries to mars: Transaction support for next-
generation, solid-state drives. In Proceedings of the 24th ACM

symposium on operating systems principles (2013), SOSP, ACM,
pp. 197–212.

[8] DORGELO. Host memory buffer based ssd systems. Flash Mem-
ory Summi, 2015.

[9] DUBITZKY, Z., GOLD, I., HENIS, E., SATRAN, J., AND SHEIN-
WALD, D. Dsf: Data sharing facility. Technical report (2002).

[10] ESHGHI, K., AND MICHELONI, R. Ssd architecture and pci ex-
press interface. In Inside Solid State Drives (SSDs). Springer,
2013, pp. 19–45.

[11] FIO. Fio benchmark. https://github.com/axboe/fio.git, 2017.

[12] GRIMSRUD, K., AND SMITH, H. Serial ATA Storage Archi-

tecture and Applications: Designing High-Performance, Cost-

Effective I/O Solutions. Intel press, 2003.

[13] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The harey
tortoise: Managing heterogeneous write performance in ssds. In
USENIX Annual Technical Conference (2013), ATC, pp. 79–90.

[14] HE, J., NGUYEN, D., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Reducing File System Tail Latencies with
Chopper. In Proceedings of the 13th USENIX Conference on

File and Storage Technologies (Santa Clara, CA, February 2015),
FAST.

[15] HUANG, S.-M., AND CHANG, L.-P. Exploiting page corre-
lations for write buffering in page-mapping multichannel ssds.
ACM Transactions on Embedded Computing Systems 15, 1
(2016), 12.

[16] HUFFMAN, A. Nvm express: Going mainstream and whats
next. Intel Developers Forum, 2014.

[17] JACKSON, M. SAS Storage Architecture. MindShare Press, 2005.

[18] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The multi-
streamed solid-state drive. In Proceedings of the 6th USENIX

Workshop on Hot Topics in Storage and File Systems (Philadel-
phia, PA, 2014), HotStorage.

[19] KIM, H., AND AHN, S. Bplru: A buffer management scheme
for improving random writes in flash storage. In Proceedings of

the 6th USENIX Conference on File and Storage Technologies

(2008), FAST, pp. 1–14.

[20] KIM, M., LEE, J., LEE, S., PARK, J., AND KIM, J. Improving
performance and lifetime of large-page nand storages using erase-
free subpage programming. In Proceedings of the 54th Annual

Design Automation Conference 2017 (2017), DAC, ACM, p. 24.

[21] LAPEDUS, M. Sorting out next-gen memory.
http://semiengineering.com/sorting-out-next-gen-memory/,
2016.

[22] LEE, C., SIM, D., HWANG, J. Y., AND CHO, S. F2fs: A new file
system for flash storage. In Proceedings of the 13th USENIX Con-

ference on File and Storage Technologies (2015), FAST, pp. 273–
286.

[23] LEE, S., LIU, M., JUN, S. W., XU, S., KIM, J., AND ARVIND,
A. Application-managed flash. In Proceedings of the 14th

USENIX Conference on File and Storage Technologies (2017),
FAST, pp. 339–353.

[24] MARKS, K. An nvm express tutorial. Flash Memory Summit,
2013.

[25] MARVELL. Conservative use of dram.
http://www.anandtech.com/show/9942/marvell-implements-
host-memory-buffer-for-dramless-88nv1140-ssd-controller,
2016.

[26] MESNIER, M., CHEN, F., LUO, T., AND AKERS, J. B. Differ-
entiated storage services. In Proceedings of the 23rd ACM Sym-

posium on Operating Systems Principles (2011), SOSP, ACM,
pp. 57–70.

[27] MIN, C., KANG, W.-H., KIM, T., LEE, S.-W., AND EOM, Y. I.
Lightweight application-level crash consistency on transactional
flash storage. In USENIX Annual Technical Conference (2015),
ATC, pp. 221–234.

[28] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H.,
AND SCHWARZ, P. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using write-
ahead logging. ACM Transactions on Database Systems 17, 1
(Mar. 1992), 94–162.

[29] NAM, E. H., KIM, B. S. J., EOM, H., AND MIN, S. L. Ozone
(o3): An out-of-order flash memory controller architecture. IEEE

Transactions on Computers 60, 5 (2011), 653–666.

[30] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,
AND FLINN, J. Rethink the sync. ACM Transactions on Com-

puter Systems (TOCS) 26, 3 (2008), 6.

[31] OUYANG, X., NELLANS, D., WIPFEL, R., FLYNN, D., AND

PANDA, D. K. Beyond block i/o: Rethinking traditional stor-
age primitives. In The 17th IEEE International Symposium on

High Performance Computer Architecture (2011), HPCA, IEEE,
pp. 301–311.

[32] PRABHAKARAN, V., RODEHEFFER, T. L., AND ZHOU, L.
Transactional flash. In Proceedings of the 8th USENIX confer-

ence on Operating systems design and implementation (2008),
OSDI, pp. 147–160.

[33] SAMSUNG. Samsung ssd 850 pro. http://www.samsung.com,
2016.

[34] SANDISK. Sandisk extreme pro ssd.
http://www.anandtech.com/show/8170/sandisk-extreme-pro-
240gb-480gb-960gb-review, 2016.

[35] SESHADRI, S., GAHAGAN, M., BHASKARAN, M. S.,
BUNKER, T., DE, A., JIN, Y., LIU, Y., AND SWANSON, S.
Willow: A user-programmable ssd. In Proceedings of the 11th

USENIX conference on Operating systems design and implemen-

tation (2014), OSDI, pp. 67–80.

208 16th USENIX Conference on File and Storage Technologies USENIX Association

[36] SHU, F., AND OBR, N. Data set management commands pro-
posal for ata8-acs2, revision 1 ed. Microsoft Corporation, One

Microsoft Way, Redmond, WA (2012), 98052–6399.

[37] SKHYNIX. Sk hynix se3010 enterprise ssd review.
http://www.tomsitpro.com/articles/sk-hynix-se3010-enterprise-
ssd-review,2-977-2.html, 2016.

[38] SOLWORTH, J. A., AND ORJI, C. U. Write-only disk caches.
ACM SIGMOD Record 19, 2 (1990), 123–132.

[39] STEIGERWALD, M. Imposing order. Linux Magazine, May

(2007).

[40] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A
flexible framework for file system benchmarking. USENIX; login

41 (2016).

[41] THERESKA, E., BALLANI, H., O’SHEA, G., KARAGIANNIS,
T., ROWSTRON, A., TALPEY, T., BLACK, R., AND ZHU, T.
Ioflow: a software-defined storage architecture. In Proceedings

of the 24th ACM Symposium on Operating Systems Principles

(2013), SOSP, ACM, pp. 182–196.

[42] TPCC. Tpcc-mysql benchmark. https://github.com/Percona-
Lab/tpcc-mysql, 2017.

[43] WANG, A.-I., REIHER, P. L., POPEK, G. J., AND KUENNING,
G. H. Conquest: Better performance through a disk/persistent-
ram hybrid file system. In USENIX Annual Technical Conference

(2002), ATC, pp. 15–28.

[44] XIANGFENG, L. IO Pattern based Optimization in SSD. Flash
Memory Summit, 2016.

[45] YANG, S., HARTER, T., AGRAWAL, N., KOWSALYA, S. S.,
KRISHNAMURTHY, A., AL-KISWANY, S., KAUSHIK, R. T.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Split-level i/o scheduling. In Proceedings of the 25th ACM Sym-

posium on Operating Systems Principles (2015), SOSP, ACM,
pp. 474–489.

[46] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. De-indirection for flash-based ssds
with nameless writes. In Proceedings of the 10th USENIX Con-

ference on File and Storage Technologies (2012), FAST, pp. 1–
16.

USENIX Association 16th USENIX Conference on File and Storage Technologies 209

