
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

UKSM: Swift Memory Deduplication
via Hierarchical and Adaptive Memory

Region Distilling
Nai Xia and Chen Tian, State Key Laboratory for Novel Software Technology, Nanjing

University, China; Yan Luo and Hang Liu, Department of Electrical and Computer
Engineering, University of Massachusetts Lowell, USA; Xiaoliang Wang, State Key Laboratory

for Novel Software Technology, Nanjing University, China;

https://www.usenix.org/conference/fast18/presentation/xia

https://www.usenix.org/conference/fast18/presentation/xia

UKSM: Swift Memory Deduplication via Hierarchical and Adaptive
Memory Region Distilling

Nai Xia† Chen Tian† Yan Luo‡ Hang Liu‡ Xiaoliang Wang†

†State Key Laboratory for Novel Software Technology, Nanjing University, China
‡Department of Electrical and Computer Engineering, University of Massachusetts Lowell, USA

{xianai, tianchen, waxili}@nju.edu.cn, {Yan Luo, Hang Liu}@uml.edu

Abstract
In cloud computing, deduplication can reduce memory

footprint by eliminating redundant pages. The respon-

siveness of a deduplication process to newly generated

memory pages is critical. State-of-the-art Content Based

Page Sharing (CBPS) approaches lack responsiveness as

they equally scan every page while finding redundancies.

We propose a new deduplication system UKSM, which

prioritizes different memory regions to accelerate the

deduplication process and minimize application penalty.

With UKSM, memory regions are organized as a distill-

ing hierarchy, where a region in a higher level receives

more CPU cycles. UKSM adaptively promotes/demotes

a region among levels according to the region’s estimated

deduplication benefit and penalty. UKSM further in-

troduces an adaptive partial-page hashing scheme which

adjusts a global page hashing strength parameter accord-

ing to the global degree of page similarity. Experiments

demonstrate that, with the same amount of CPU cycles in

the same time envelop, UKSM can achieve up to 12.6×
and 5× more memory saving than CBPS approaches on

static and dynamic workloads, respectively.

1 Introduction
In cloud computing, multiple virtual machines (VMs)/

containers (e.g., dockers)/ processes are consolidated to

share a physical sever. For a public cloud, the more

VMs that can be packed into one host, the more VMs

can be sold to tenants. For a private cluster, the more

processes that can be packed into one host, the fewer the

number of hosts needs to be purchased and maintained.

In this context, available memory space can be a major

bottleneck which limits the number of VMs/container-

s/processes that can be consolidated [1].

Memory deduplication can reduce memory footprint

by eliminating redundant pages. This is particularly

true when similar OSes/applications/data are used across

different VMs. For instance, Chang et al. [2] observed

as much as 86% redundant pages in real-world ap-

plications. Essentially, memory deduplication detects

those redundant pages, and merges them by enabling

transparent page sharing. It is important to mention

that deduplication has penalty besides benefit. These

shared pages are managed in a copy-on-write (COW)

fashion, that is, when a write request happens to one

of the transparently shared pages, this specific page can

not be shared any more. A new copy of this page will

be generated in the memory so that the write request is

applied there, which is called page COW-broken.

The responsiveness of the deduplication process to

newly generated pages is critical. For a production

system, the memory is always dynamic, where pages

come and go. As demonstrated by our typical cloud com-

puting workload experiment (Section 8), if an approach

cannot catch up with the generation speed of memory

redundancy, memory pages would be swapped out to the

disk, and the whole system is slowed down.

State-of-the-art Content Based Page Sharing (CBPS)

approaches lack responsiveness as they equally scan

every page to find redundancies. CBPS is a major

deduplication method in Linux, Xen and VMware [3, 4,

5]. It is capable of full memory scan and it is easy to

be integrated into main stream systems. For example,

Linux’s Kernel Same-page Merging (KSM) is a kernel

feature that deduplicates pages for both virtualized and

non-virtualized environments. In short, CBPS uses a

scanner to calculate the hash value for every candidate

page. If two pages share the same hash value, a byte-by-

byte memory comparison is performed. If duplication

confirmed, one page is merged to the other. It should

be noted that: NOT all pages are created equal. Due to

their applications’ nature, some pages have little chance

of being identical to others. These so called sparse pages

should be tested in the last place. Some pages, although

identical to others at the very beginning, can quickly

become either COW-broken or freed. We refer to them

as COW-broken pages and short-lived pages respectively.

An ideal candidate page for deduplication should remain

USENIX Association 16th USENIX Conference on File and Storage Technologies 325

static (i.e., not COW-broken or freed) for a reason-

able period of time. A deduplication approach should

prioritize these statically-duplicated pages. Further,

deduplication operations performed on different pages

may have different degrees of performance impacts on

applications. We should also minimize deduplication’s

penalty on running applications due to operations such

as page table locks and recovery of COW-broken pages.

Our observation is that pages within the same memory
region present similar duplication patterns (Section 3).

Here a memory region refers to a continuous virtual

memory region allocated by an application (i.e., allo-

cated by malloc, brk, mmap etc). In some regions,

most pages are statically-duplicated. In other regions,

most identical pages may quickly become COW-broken

or freed. According to the dominant page pattern, we

can label a region as one of the four types of sparse,

COW-broken, short-lived and statically-duplicated (i.e.,
with a high duplication ratio, long-lived and seldom-

changed). Intuitively, if we can prioritize pages in

statically-duplicated regions for testing redundancy, the

deduplication speed could be significantly accelerated.

However, the challenge is how to distill these regions

without testing every page at the first place?

Our key insight is that for each memory region, we can

estimate its duplication ratio by sampling only a portion

of all pages, at the same time monitor its degree of

dynamics and lifetime. We can then distinguish sparse,

short-lived and frequently COW-broken regions from

statically-duplicated regions. To this end, we propose

a new deduplication system Ultra KSM (UKSM). Build

on top of KSM, UKSM improves traditional CBPS

designs by prioritizing statically-duplicated regions over

other regions to accelerate the deduplication process and

minimize application penalty (Section 4).

UKSM introduces a hierarchy of sampling levels, each

of which maintains a linked-list of memory regions.

Each time an application mmap-s a new memory region,

this region is immediately inserted into the list of the

bottom level, which has the lowest scanning speed hence

the lowest sampling density. A single thread iterates

over levels to sample and deduplicate pages in each

level. After each round of sampling, the duplication

ratio and COW ratio of each region are compared with

a set of threshold values. Once a memory region is

identified as a potential statically-duplicated region, it

is promoted from the current level to the next higher

level which has a higher scanning speed hence a higher

sampling density. This hierarchical architecture ensures

system responsiveness by investing more CPU resources

in regions in higher levels (Section 5).

To minimize the computational cost, we further devel-

op a new partial-page hashing scheme called Adaptive

Partial Hashing (APH). Let page hash strength denotes

the number of bytes hashed in each sampling page.

We define profit as the time saved compared to the

strongest page hash strength and penalty as the wasted

time of futile memory comparison due to hash collision.

APH adaptively selects a global page hash strength to

maximize the overall benefit which is profit subtracting

penalty. Our novel progressive hash algorithm can sup-

port hash strength adaptation with incremental cost. Note

that APH can improve other deduplication approaches as

well since they are mostly hash-based (Section 6).

UKSM is implemented in both Linux kernel and

Xen. The approach can detect and merge duplicated

memory pages in real-time without intruding other parts

of a system (e.g., I/O, file system, etc). Experiments

demonstrate that, with the same amount of CPU cycles

in the same time envelop, UKSM can achieve up to

12.6×/5× more memory saving than CBPS approaches

(e.g., KSM) on static/dynamic workloads, respectively.

UKSM also significantly outperforms XLH (i.e., 50%

more memory saving with the same amount of CPU

consumption), a state-of-the-art I/O hint based approach.

UKSM introduces negligible CPU consumption (around

0.2% of one core) when the host has no more page to be

deduplicated, at the same time can respond to emerging

duplicated pages rapidly (Sections 7 and 8).

UKSM is an open source project and benefits a

wide range of applications [6]. Its patches for Linux

kernel were first released in 2012 and have been kept

synchronized with upstream kernel releases ever since.

UKSM has been downloaded for over 30,000 times (at

our site [6] alone, not including those re-distributed by

other developers) at the time of the paper’s publication.

Besides the default versions, UKSM was also ported to

kernels for desktop/server Linux systems [7, 8, 9, 10, 11]

and Android systems [12, 13, 14, 15, 16] by third-party

developers.

2 Related Work
Content-based Page Sharing (CBPS) VMWare ESX

server [5] is the pioneer of content based page sharing ap-

proaches, where memory pages are scanned one-by-one.

To control realtime CPU overhead, pages are randomly

selected at a fixed scanning speed. A hash function is

applied to each page for checking the similarity among

pages. Pages that hash to the same value are byte-by-byte

fully compared before they can be shared through copy-

on-write. IBM Active Memory Deduplication [17] uses

a similar approach for hypervisors in Power systems.

CBPS for Xen was proposed by Kloster et al. [4] and lat-

er extended by XDE [18]. They detect page similarity by

SuperFastHashing 64-byte blocks at two fixed locations

in each page [19].

Linux Kernel Same-page Merging (KSM) [20] allows

applications (including KVM [21]) to share identical

326 16th USENIX Conference on File and Storage Technologies USENIX Association

memory pages via full page comparison. KSM works

well for deduplicating fairly static pages. Singleton [22]

extends KSM to consider host disk cache in a VM envi-

ronment and improves the scanner from full-page com-

parison to SuperFastHash-based hash comparison. Red

Hat Enterprise Linux uses a dedicated user space daemon

named ksmtuned [23] to adjust KSM scanning speed

under certain circumstances. For example, it increases

the scanning speed when memory usage exceeds some

threshold and the system is starting virtual machines. It

is a very limited approach that simply adjusts scanning

speed according to coarse grained system information

which may not always imply page duplication. KSM

would waste CPU resources if this kind of implication

fails. It is hard for ksmtuned to achieve maximum saving

across different workload patterns [3], although it does

improve performance if optimized case by case.

Instead of treating every page equally, UKSM pri-
oritizes different memory regions to accelerate the
deduplication process. APH shares partial page hashing
ideas [18] but can adapt the global page hash strength
according to page similarity in the whole system.

Catalyst [24] offloads page hashing computation to

GPU to improve deduplication performance. The need of

special hardware support increases deployment complex-

ity. SmartMD [25] uses page access information moni-

tored by lightweight schemes to improve the efficiency of

large page (e.g. 2M-pages) deduplication. This work is

orthogonal to UKSM since we address the more general

problem of page deduplication.

I/O hint based page sharing KSM++ [26] proposed

a deduplication scanner based on I/O hints. XLH [27]

utilizes cross layer I/O hints in the host’s virtual file

system to find sharing opportunities earlier without rais-

ing the deduplication overhead. A generalized memory

deduplication was proposed in [28] that leverages the

free memory pool information in guest VMs. It treats

free memory pages as duplicates of an all-zero page

to improve the efficiency of deduplication. I/O-hinted

approaches cannot detect dynamically created duplicated

pages (e.g., anonymous pages created by applications in

Docker containers).

CMD [29] is a classification-based deduplication ap-

proach. Pages are classified according to their access

characteristics. Comparison trees introduced in KSM

are subsequently divided into multiple trees dedicated to

each class. Thus, page comparisons are performed only

in the same class which reduces futile comparison among

different classes. However, the above strategies require

dedicated hardware monitors to capture system I/O or

page access characteristics, which incurs significant de-

ployment complexity.

In this paper, we focus on improving CBPS because of
its capability of full memory scan and easy integration to

all existing systems, neither of which is the case for I/O
hint based page sharing option.
Storage deduplication is different Deduplication

projects in disk storage systems [30, 31, 32, 33, 34]

are important related works. However, there exist two

significant differences.

First, UKSM faces the challenge of responsiveness

which is not the case for disk storage deduplication

projects. For instance, when a large volume of dupli-

cated pages are generated, memory deduplication system

needs to quickly identify and remove these duplicates

before they exhaust available physical memory and cause

memory swap out.

Second, since memory is dynamically updated while

disk storage is relatively static, memory deduplication

pays attention to more characteristics than just a dupli-

cation ratio that is the centerpiece for disk deduplication

As reflected in this work, UKSM also considers COW

ratio and lifetime characteristics of memory regions.

3 Observations
This section discusses two key observations that motivate

the design of UKSM.

Observation # 1: Most pages within the same
region present similar duplication patterns.
All heap memory allocation operations end up relying

on mmap to claim memory spaces. For each call, mmap

allocates a memory region that encompasses one or

multiple virtual pages with continuous virtual addresses.

Our intuition is that pages in the same memory region

might exhibit same characteristics for deduplication. For

instance, KVM exploits mmap to allocate memory space

for each guest VM’s OS. If two memory regions from

different VMs store the same disk content for a long

term, pages in them are friendly to deduplication. As

a comparison, if a region of a network program serves as

its busy network socket buffer, pages in it may not worth

to be deduplicated even if many of them are identical. It

will lead to frequent COW-broken operations.

Settings We use KVM and Docker as workloads

for analysis of duplicated, COW-broken and short-lived

pages. For the container workload, we make a Docker

image from a Ubuntu based system with Apache web

server and MySQL database serving a WordPress web-

site. We then start three Docker containers from this

image. For the KVM workload, we start three KVM

virtual machines all installed with Ubuntu 16.04.

Results Page duplications demonstrate strong locality

with respect to application memory regions. For both

KVM and Docker, we evenly divide their virtual memory

spaces (each contains many small memory regions) to

1,000 buckets. The number of duplicated pages in each

bucket is presented in Figure 1(a). It is clear that most

duplicated pages concentrate on a portion of memory

USENIX Association 16th USENIX Conference on File and Storage Technologies 327

0 200 400 600 800 1000
0

2

4

6

8
x 104

KVM Memory Space

D
up

lic
at

ed
 P

ag
es

0 200 400 600 800 1000
0

2000

4000

6000

8000

Docker Memory Space

D
up

lic
at

ed
 P

ag
es

(a) Number of duplicated pages

0 2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Memory Region Index

N
um

be
r o

f P
ag

es

sparse
COW−Broken
statically−duplicate

(b) A snapshot of Docker memory fragment

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

102

104

106

108

N
um

be
r o

f R
eg

io
ns

Region Lifetime (seconds)

(c) Distribution of short-lived regions

Figure 1: Memory regions in VM and container environments.

regions. We randomly demonstrate a bucket, which

contains 18 memory regions from different processes, of

one Docker’s memory space. Note that some regions

are so small in size (e.g., regions 3, 6, 8) that they

are almost invisible in the bar illustration. As shown

in Figure 1(b), most pages in the same region share

similarity in redundancy. Some regions are sparse and

contain little duplications (e.g., regions 1 and 2). Some

are highly statically-duplicated (e.g., region 12). Regions

5 and 16 are more complicated, where different kinds of

pages coexist in the same region. Figure 1(c) presents the

region distribution, whose lifetime is less than 5 seconds,

of the Docker workload. We can see that a huge number

of regions are short-lived.

Observation # 2: Partial page hashing need
to be adaptive
XDE [18] has demonstrated that partial page hashing

can improve scan performance. We further observe

that hashing a fixed number of bytes for each page,

albeit partially, can limit the benefits of partial page

hashing because different scenarios may have drastically

different workloads.

For example, image display application renders a

dotted image with the same color background. In this

case, we need to hash more bytes in order to differentiate

highly similar (but not identical) pages to avoid time-

consuming byte-by-byte page comparison. While for

other workloads, pages may be quite different to each

other. An crypto application tends to hold memory

regions with encrypted data as content. Hashing one

or two bytes is already enough to identify the difference

between pages.

Real world systems may be filled with all kinds of

workloads. The workload might even evolve with time.

For example, a container may hold a remote desktop,

the user may close a paint application and open a https

browser.

4 Overview
UKSM consists of two unique components, that is,

memory region hierarchical distilling (in Section 5) and

adaptive partial page hashing (in Section 6). Figure 2

demonstrates how these two components identify dupli-

cated pages with minimal scanning overhead through

a simple example. There are nine memory regions

(R0 - R8). Figure 2(a) and 2(b) demonstrate two whole

memory sampling rounds (i.e., round 1 and 10).

Memory region hierarchical distilling manages mem-

ory regions by levels. There are N levels as shown in

Figure 2, and every region falls into one of the N levels.

Level N is the highest level and level 1 is the lowest

level. A higher level has a higher scanning speed hence

a higher sampling density. Let each gray bar represents a

sampled page. Demonstrated in the figures, the sampling

interval decreases as the level increases. Each newly

allocated memory region is first inserted into level 1 of

the hierarchy. Newly added pages may not be statically-

deduplicated. Computing power should not be invested

on these regions before they are proved worthwhile. That

is why we put them into the lowest level of the hierarchy.

During each sampling round, every memory region is

sampled and filtered with a group of distilling parameters

to decide whether it should be “promoted” to the next

higher level or “demoted” to the next lower level . If

all duplicated pages in a region are merged at some scan

level, it goes back to level 1. If a region is unmapped it

will be tagged and removed from the linked level later

by the scanner. For example, in round 1 of Figure 2(a),

regions R3 and R8 reside in level 2 and N respectively.

When the scan thread proceeds to round 10, regions R3

has been promoted to level N while R8 has been demoted

to level 2. Further elaboration of this technique are

discussed in Section 5.

To further minimize the computational overhead,

UKSM introduces the Adaptive Partial page Hashing

(APH) approach. The key idea is that we will adjust

a global hash strength after each global page sampling

round in order to achieve a more cost-effective scanning.

For example, in Figure 2, each star represents a hashing

byte in each page. In round 1 of Figure 2(a), the hash

strength is one byte per page. Based on the feedback

from preceding sampling rounds, in round 10 of Fig-

ure 2(b), we increase the hash strength to two bytes per

328 16th USENIX Conference on File and Storage Technologies USENIX Association

Level 2

R4

Sampled page

R6R2

Level N

Level 1

Memory region

(a) round 1 with a smaller hash strength

Level 2

R4

R0

R1

R6R5

Level N

Level 1

R7

R3

R8

Sampling interval

R1 R8

R3R0

R5 R2*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

* * * ** ** ** ** *

*R7

* Hashing bytes

(b) round 10 with a larger hash strength
Figure 2: Memory region hierarchical distilling in two sampling rounds with different hash strength.

0 10 20 30 40 50 60 70 80 90 100
Normalized elapsed time (%)

100

102

M
em

or
y

Sa
vi

ng
 (M

B)

statically-duplicated
COW-broken
short-lived

(a) Memory saving

0 10 20 30 40 50 60 70 80 90 100
Normalized elapsed time (%)

10-5

100

M
em

or
y

Sa
vi

ng
 (M

B) statically-duplicated
COW-broken
short-lived

(b) Mix with sparse background

Figure 3: Results with different workloads (Y-axis in

each figure is exponential).

page. This design significantly improves per-page scan

speed so that the overall system can respond to emerging

duplicated pages rapidly and at the same time remains

very low CPU consumption when no good candidates

for deduplication exist. Details about hashing strength

and feedback controls are discussed in Section 6.

5 Hierarchical Region Distilling
This section introduces design details of memory region

hierarchical distilling. By analyzing the deduplication

gain and lose of each kind of memory regions, we

discuss distilling and scan principals (Section 5.1). Then

whether a memory region is “promoted” or “demoted”

is dominated by a set of threshold values (Section 5.2).

At last, we present the hierarchical sampling procedure

(Section 5.3).

5.1 Memory region characterization
Intuitively, a memory region should contain many

statically-duplicated pages in order to be deduplication-

friendly. In contrast, the unfriendly one could be

frequently COW-broken, short-lived, or contain little

identical content.

We uses three metrics to study the deduplication ef-

fects over a specific kind of regions. The first two metrics

measure the gain and lose associated with deduplication,

which are memory saving and CPU consumption, respec-

tively. The third metric is performance impact, which re-

flects the slowdown ratio a deduplication method brought

to a running application. Note this parameter is more

comprehensive than the CPU consumption metric be-

cause a slowdown can result from cache/memory con-

tention even if the deduplication worker (e.g., ksmd – the

kernel thread worker of KSM) executes on a dedicated

CPU core. Ideally, we would like to maximize the first

metric and minimize the other two.

This section utilizes four application configurations to

emulate different workloads. Particularly, we use a mem-

ory footprint of about 2 GB for each of the statically-
duplicated, COW-broken and sparse workloads. The

compiling of the Linux kernel serves as an benchmark

for short-lived workload which consumes about 30 MB

memory space (only the anonymous pages, not including

the file cache). We take KSM as the representative of ex-

isting CBPS approaches to demonstrate the complexity

of balancing among three metrics. We record the max-

imum time needed for deduplicating all eligible pages

of the statically-duplicated workload when using 100%

capacity of a single CPU core. Then we normalize the

time in x-axes of Figure 3, to demonstrate the progress

of deduplicating each workload.

Memory saving vs. CPU consumption. Figure 3(a)

shows how average memory saving progresses with time

for statically-duplicated, COW-broken and short-lived
workloads. Firstly, more CPU consumption does bring

more memory saving, until the last duplicated page is

merged. The deduplication speed, which is the slope of

each line, drops rapidly as time goes on for statically-
duplicated workload. Secondly, the memory saving of

statically-duplicated workload is two orders of magni-

tude higher than that of COW-broken and short-lived

USENIX Association 16th USENIX Conference on File and Storage Technologies 329

Table 1: Distilling and sampling parameters

Vcow Only regions whose COW-broken ratios are lower

than this threshold can be promoted.

Vdup Only regions whose duplication ratios are larger

than this threshold can be promoted.

Vli f e Only regions lived longer than this threshold can be

effectively scanned.

Ts The sleep time in each sleep-scan cycle of the scan

thread.

tl The expected time of sampling round for level l (in

seconds).

t The expected time of a global sampling round (in

seconds).

p The invested CPU percentage).

s The estimated CPU cost of sampling one page.

workloads, which is consistent with our expectation. So

we conclude that, for statically-duplicated workloads,

invested computation is effective at the beginning. After

all candidate pages are merged, further scan needs to be

slowed down. For dynamic workloads (COW-broken and

short-lived), higher CPU consumption is required to save

the same amount of memory. Users may need to decide

if the trade-off is worthwhile.

In Figure 3(b), we let each workload mixed with

a sparse workload. The amount of memory saving

decreases significantly. It is clear that scan of sparse
regions in a system should be delayed, if not totally

avoided, as much as possible.

Performance impact. We further study the performance

impact to CPU intensive workloads brought by this hash-

based KSM. One workload is a full SPEC-CPU2006

benchmark, and the other is the COW-broken Linux

compiling workload mentioned above. If the scanning

thread works at full speed with enough CPU resources

(i.e., scanning thread and workload threads each has its

dedicated CPU core), the performance impact to COW-
broken workload is 29.7%, and the impacts to other

workloads range from 1.5% to 22.9%.

In-depth profiling shows that: 1) even with abundant

CPU cores to separate workloads and the scanner, in-

tensive scanning of CPU bound workloads makes the

scanning thread contending more for memory manage-

ment locking (i.e., VMA locks, page table locks, etc),

which introduces higher overhead for these workloads;

2) deduplication on frequently COW-broken pages may

not bring much memory saving, but will bring many

COW-broken page faults on merged pages, thus deteri-

orate performance.

5.2 Candidate region identification
The key characteristics (i.e., COW ratio, duplication
ratio, and average page lifetime) that indicate the du-

plication qualities of each memory region should be

obtained first. This section introduces corresponding

quantitative threshold values that can decide whether we

“promote” or “demote” a memory region. Table 1 details

these three thresholds, i.e., Vdup, Vcow and Vli f e. In partic-

ular, a regions with duplication ratio above Vdup, COW-

broken ratio below Vcow and life longer than Vli f e can be

identified as a good candidate for statically-duplicated.

To control CPU overhead, we make the scanner work

in a sleep-scan cyclic pattern with sleep time Ts. This

parameter is related to the life time threshold.

For a memory region, the first parameter duplication

ratio is estimated by dividing the duplicated page counter

by the number of the pages sampled in this round. To

compute its COW ratio, we need to obtain the number of

COW-broken page faults on merged pages during each

sampling round. This information can be easily obtained

by hooking the page fault handler function. The last

parameter lifetime is decided by the sleep time Ts and

the sampling round time t (sum of tl for each level in

Table 1). Only those regions which live across this sleep-

scan cycle time may get sampled.

How to choose threshold values? Threshold values

of duplication ratio, COW-broken threshold, lifetime are

critical parameters for UKSM. We design UKSM as a

general system and it targets a wide range of scenarios.

The default settings of 10%, 50%, 100ms are obtained

empirically and are shown to work well for a wide range

of systems. The global sampling round time can be

configured in the range of 2 - 20s with further details

explained in Section 7. However, we also leave these

parameters configurable for expert users who can tune

UKSM to meet their application-specific needs. As far

as we know, many follow-up production systems extend

various configurations of UKSM to meet their particular

needs [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The auto-tuning

of these parameters could be a future work.

Why use the same set of threshold values across all
levels? The higher the level is, the higher the page

scanning frequency is. There is a larger chance of false
positive in a lower level, where a low duplication ratio

region may accidently get promoted. Hence, even with

the same set of threshold values at all levels, we can

successfully demote false positive regions and promote

real positive regions. Further, UKSM performs merge

together with the scanning. Every time a new duplicated

page is found, besides being counted in the duplication

ratio calculation, the page is merged directly. Statisti-

cally, even with the same threshold, regions in a higher

level should have a larger duplication ratio than those in

a lower level.

330 16th USENIX Conference on File and Storage Technologies USENIX Association

For (; ;) {
A g l o b a l s a m p l i n g round {

S l e e p Ts ;

promote / demote r e g i o n s ;

For (l = 1 , l<= N, l ++) {
s can l e v e l l w i th bu dg e t t i me tl ;

}
}

}
Figure 4: Workflow of UKSM hierarchical sampling.

5.3 Hierarchical sampling procedure
Now that UKSM has the information of the key features

of each memory region and the promotion criteria, this

section discusses our hierarchical sampling approach

which manages memory regions by levels and each

region only belongs to one level. For instance, Figure

2(a) and 2(b) manage 9 regions by N levels. Figure 4

shows the workflow.

Scan a level When sample a specific level, all memory

regions are grouped to be one flat linear space. The

memory scanner starts at page offset of zero in this linear

space and picks sample points by the length of interval.
Note that a higher level possesses a smaller interval. If a

sample point falls in a region, one page will be selected

from this region. Particularly, we introduce a region

specific offset permutation scheme to avoid sampling the

same page repeatedly. For instance, although R2 from

level 1 is sampled in both rounds of Figure 2(a) and

Figure 2(b), different pages are picked.

Once the page is selected, our scanner will get the

page’s hash value according to current hash strength (i.e.,
bytes hashed in each page), and looks it up in two red-

black trees trying to find a collision. One of the red-

black trees (Trs) tracks the “merged” pages whereas the

other one (Trus) records the “unmerged” ones. If the

sampled page has an identical page in Trs, we increase

the region’s counter by one. If the sampled page is

found to be identical to one of the pages in Trus, we

move the page to Trs and increase the counters of both

regions. Eventually, we update the page table and release

redundant pages accordingly. UKSM keeps “merged”

and “unmerged” page hashes in separate trees because

merged pages should be managed in a read-only tree.

Write to any node in this tree causes a COW operation.

This scan continues until the sample point reaches the

boundary of the linear space. We call it a sampling round

in this level. The scanner then proceeds to the next level.

A global sampling round A global round is finished

after the level N sampling. then the scanner restarts from

level 1. After each global round, the scanner estimates

each region’s duplication and COW-broken ratios. It is

easy to see that with sufficient lifetime, every page of a

memory region will be scanned. If a region is unmapped
before every page is scanned, it will be removed from

that level.

Sampling time control For each level, we can easily

get the number of pages in one level as Ll . With invested

CPU computation p and the estimated time of sampling

one page s, we get the average page processing speed

as p/s. Assuming the expected sampling round time

for this level is tl , the number of sample points in one

round is n = t · p/s. The sampling interval in each level

is determined by Ll/n = Ll · s/(tl · p). The sleep time

is Ts, so the active time of each sleep-active cycle is

Ts · p/(1− p). Then we can get the number of pages to

scan during each active cycle as Ts · p/(s · (1− p)).
In summary, users can configure two parameters

which are p and t, as the invested CPU computation time

and global sampling round time, respectively. According

to our empirical study, p and t can be configured in the

ranges of 0.2% - 95% and 2 - 20s, respectively.

6 Adaptive Partial Hashing
We propose a new page hashing function to reduce per-

page scan and deduplication cost. The key idea is to

partially hash a page. if the hash value is already

sufficient to distinguish different pages, we do not need

to hash a full page. Generally, the new hash function

should have the following features:

• The hash strength (i.e. bytes hashed in a page)

should be adjustable. If the memory pages are

“quite different”, a weaker strength is used. Oth-

erwise, a stronger strength is applied.

• With the strongest strength, the hashing function

should have a comparable speed and collision rate

to SuperFastHash for arbitrary workloads.

• With weak strength values, the hash function should

be significantly faster than SuperFastHash.

• The hash function should be bidirectional progres-

sive with cost proportional to the delta of strength,

hence the page hash values with an updated strength

can be incrementally computed from previous val-

ues.

6.1 Hash strength adaptation
A weak hash strength may increase the possibility of

false positive, which can result in additional overhead

on memcmp. For each sampling round, we quantify the

profit for using some hash strength by the time saved

compared to that of using the strongest strength. We

quantify its penalty by the additional time of memcmp
due to collision. The calculation for both profit and

penalty is instrumented in the scan functions. The aim

of hash strength adaptation is to maximize the overall

benefit of profit-penalty. In what follows, we explain

how our adaptive algorithm finds the optimal strength for

the hash function.

When the system starts up, the hash strength is ini-

tialized with half of the strongest strength. After the

USENIX Association 16th USENIX Conference on File and Storage Technologies 331

d e f i n e STREN FULL (4 0 9 6 / s i z e o f (u32))

u32 s h i f t r , s h i f t l ;

u32 r a n d o m o f f s e t s [STREN FULL] ;

u32 random sample hash (u32 h a s h i n i t ,

void ∗ p age add r , u32 s t r e n g t h) {
u32 hash = h a s h i n i t ;

u32 i , pos , l oo p = s t r e n g t h ;

u32 ∗key = (u32 ∗) p a g e a d d r ;

i f (s t r e n g t h > STREN FULL)

loop = STREN FULL ;

f o r (i = 0 ; i < l oop ; i ++) {
pos = r a n d o m o f f s e t s [i] ;

hash += key [pos] ;

hash += (hash << s h i f t l) ;

hash ˆ= (hash >> s h i f t r) ;

}
re turn hash ;

}
Figure 5: Progressive hash procedure.

first sampling round, the system enters a “probing” state

trying to search for a strength that leads to a better overall

benefit and finally stays in a dynamically “stable” state.

The searching in the probing state simulates the TCP

slow start process. The system firstly decreases the hash

strength by a size variable named delta (initialized with

1) and checks if this change results in larger benefit. If it

does, the system goes on trying until the benefit begins

to decrease. During this process, delta will be doubled

each time till the max value 32. Then the system records

the maximum benefit point achieved and reset delta to 1.

Similarly, the system will search in the other direction

when increasing the hash strength. Once the system

reaches an optimal point, it enters a stable state.

The state changes from stable to probing is triggered

by one of the following conditions: 1) The benefit of the

last sampling round deviates more than 50% from the

benefit value when the system enters a stable state; 2)

There is no memcmp caused by hash collision in the last

two sampling rounds; 3) Every 1000 sampling rounds

have been passed.

6.2 Progressive hash algorithm
We decide to use random sampling to fulfill the feature

of dynamically adjustable strength. A universal random

permutation of all the 32-bit-aligned offsets in a page is

computed when the deduplication system is initialized.

This is important because randomization is necessary

in cases where some pages have specific patterns (e.g.,
leading zeros). When a page is hashed with strength I,
only the first I 32-bit data units are read and calculated

from the page with the corresponding offsets in the

permutation. In order to limit the execution time for the

strongest strength, we derive the hash algorithm based

on Jenkins’s “one-at-a-time hash” [35] which is also the

ancestor of SuperFastHash. The algorithm framework is

shown in Figure 5. In the code, random offsets is the

Key bitsHash Bits

Bias value100

0

-100

(a) SuperFastHash avalanche

Key bitsHash bits

Bias value100

0

-100

(b) Random sample hash avalanche

Figure 6: The avalanche effects over a 4KB page.

buffer holding the random permutation of offsets; shiftl
and shiftr are the two values we need to parameterize to

further satisfy other features required for collision rate

and incremental/decremental calculation; STREN FULL
is the strength for hashing a full 4 KB page content.

Achieve low collision To ensure a low collision rate,

we study the avalanche effect [36, 37, 38] of the hash

function in our algorithm when hashing a full page with

different shiftl and shiftr values. Avalanche is a desirable

property of hash algorithms to achieve low collision

rate wherein if the input is changed slightly the output

can change significantly in pseudo-random manner. We

evaluate the avalanche effect with an initially zeroed two

dimensional matrix which we call avalanche bias matrix.

Given a randomly generated key of page size, we flip

the i-th bit. If this operation leads to the flipping of

the j-th bit of the hash value, we increase point (i, j)
in bias matrix by one, and if the j-th bit of hash value

is not affected, we decrease bias matrix(i, j) by one.

This process is repeated for multiple times, then we

calculate the average value of bias matrix(i, j) for all

i ∈ [0,32767], j ∈ [0,31]. Ideally, one bit changes in

the key will affect the output of hash value with 50%

probability. Therefore, the corresponding bias matrix
entry should approximate 0 on average.

Figure 6(a) is the 3D visualization for such an

avalanche bias matrix of SuperFastHash. We can see

that most of the points are closed to the bias value = 0

332 16th USENIX Conference on File and Storage Technologies USENIX Association

u32 r e v e r s e a d d e q s h i f t l (u32 n) {
u32 r e t = n , t u r n = 1 ;

n <<= s h i f t l ;

whi le (n != 0) {
i f (t u r n)

r e t −= n ;

e l s e
r e t += n ;

t u r n = ! t u r n ;

n <<= s h i f t l ;

}
re turn r e t ;

}

u32 r e v e r s e x o r e q s h i f t r (u32 n) {
u32 r e t = n ;

n >>= s h i f t r ;

whi le (n != 0) {
r e t ˆ= n ;

n >>= s h i f t r ;

}
re turn r e t ;

}
Figure 7: Reverse functions for progressive hash.

plane except for the last several key bytes. We therefore

evaluate the avalanche effect of the hash algorithm by

the number of the “bad points” whose deviation from the

bias value = 0 plane exceeds a threshold (for our case,

we take 50). We conduct an exhaustive search of all

possible (shiftl, shiftr) value pairs and generate a priority

list of them (omitted due to space limitation). The

avalanche behavior of our hash algorithm with maximum

strength is illustrated in Figure 6(b). It is better than that

of SuperFastHash as illustrated.

Achieve progressive hashing Assume the recorded

hash value of a page is achieved at strength S1 but the

current strength is S2, the updated hash value can be

achieved with additional computation using the recorded

result for S1. If S2 > S1, this can be done by filling the

hash init parameter (in Figure 5) with the hash value at

strength S1. If S2 < S1, the hash calculation must be

reversed. The “+=” operation can be reversed with “-

=”. The “+=” and “ˆ=” operations combined with “<<”

and “>>” can be reversed by the code in Figure 7.

Small values of shiftl and shiftr will increase the cost

of reverse operations. We choose the pair of (19, 16)

from the priority list for (shiftl, shiftr) which brings

very good avalanche effect and at the same time makes

the cost of the reverse operation comparable to that of

progressive hash operation. We compare the speed of

random sample hash with maximum strength and Su-

perFastHash and find that our algorithm is only about 2%

slower than SuperFastHash. The final avalanche effect

result of our hash algorithm with maximum strength is

slightly better (fewer “bad points” as we state above)

than that of SuperFastHash.

Why use a global hash strength design instead per-
region or per-app hash strength? Here hash strength

denotes how many 32-bit words are hashed to generate

a fixed length hash value. If we use different numbers

of 32-bit words for two different pages, these two pages

cannot be compared directly. That is why we use a global

hash strength, so that every pair of pages can compare

their hash values directly.

Why develop APH based on SuperFastHash? There

are some newly developed fast hash algorithms, such as

Spooky [39], xxHash [40], and Murmur [41], which are

much faster than SuperFastHash. Whether an algorithm

can derive an adaptive version depends on its design

details. Using one of those hashes in our adaptive hash

framework could be an interesting future work.

7 Implementation and Configuration

UKSM is implemented in both Linux kernel and Xen,

each with more than 6,000 lines of C code. In Linux,

UKSM hooks the Linux kernel memory management

subsystem for monitoring the creation and termination

of application memory regions. The kernel page fault

routine is also hooked to log COW-broken events in each

region. UKSM scanner is created as a kernel thread

uksmd. In Xen, UKSM scanner is implemented as a

softirq service routine of the Xen hypervisor. The Xen

memory management subsystem is also hooked in the

same way as in Linux kernel.

To facilitate drop-in utilization of UKSM, we borrow

the idea of “CPU governors” with which the Linux

kernel simplifies the configuration for Intel CPU fre-

quency [42]. We define several default parameter sets

named as “governors” to represent “how aggressive” the

scanner should be. These “governors” are Full, Medium,

Low, and Quiet. With the Full governor, it can use up

to 95% CPU and finishes one global sampling round in

2 seconds. From Full to Low, each governor doubles

the global sampling round time and reduces the top CPU

usage by half. The Quiet governor is designed to be

used in battery powered systems where workloads are

static most of the time (e.g., Android). It has a top CPU

consumption of 1% and a global sampling round time

up to 20 seconds. We use the workload of booting 25
VMs in Section 8 to depict the performance metrics of

UKSM under different governors. The results are shown

in Figure 8(a) (plotting only Full and Quiet for clarity)

and Figure 8(b). We can see that with the Low governor,

UKSM can already catch up with the booting process

(about 260 seconds). The main difference is how fast

a governor can catch up. We also observe that the CPU

cycles consumed by the governors are proportional to the

number of pages they deduplicate. It is consistent with

our design purpose. Since the Full governor is more

responsive, we choose Full as the default governor and

use it for all later evaluations unless specified otherwise.

USENIX Association 16th USENIX Conference on File and Storage Technologies 333

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Seconds

C
PU

 U
til

iz
at

io
n

(%
)

Full
Quiet

(a) CPU consumption for governors

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

Seconds

M
em

or
y

Sa
vi

ng
 (M

B)

Full
Medium
Low
Quiet

(b) Memory saving for governors

KVM Docker
0

500

1000

1500

2000

2500

To
ta

l C
PU

 T
im

e
U

se
d

(S
ec

on
ds

)

2
3
4
5

(c) Performance with different level numbers

Figure 8: Performance metrics under different configurations

For the scan levels, the bottom level serves as a

baseline sampling with CPU consumption as low as pos-

sible. We believe 0.2% should be acceptable for general

systems. The CPU consumption of the top level is given

by the “governor”. The CPU consumption for each

intermediate level is halved. The sampling round time

for each level is evenly derived from global sampling

round time. The number of scan levels determines how

smooth the promoting process could be: more levels

will make a memory region more carefully sampled

before it is intensively scanned. On the other hand,

less levels will make the system response more quickly

to emerging duplication but may suffer false positives

caused by sampling singularity (i.e., a region is falsely

identified as “good” after one scanning round). We

tested the configuration from 2 levels to 5 levels with

real world benchmarks used in Section 8. As shown in

Figure 8(c), for larger regions of the KVM workload,

sampling singularities are less likely to happen. So 3-

level-sampling is the best choice. For smaller regions

of the docker workload, 5 level is the best choice. We

choose 4 levels as UKSM default.

Till the time of this paper being written, the feedbacks

from different sources have demonstrated that while

the system design stems from a server environment, its

design and parameters are shown to work in a wide

range of environments such as a mobile system (e.g.
Android). Only very few people adjusted the individual

parameters according to their specific requirement. We

leave comprehensive parameters tuning under different

types of workload as our future work.

8 Evaluation
We evaluate our UKSM implementation in comparison

with the Linux kernel KSM. The operating system for

our benchmarks is CentOS 7 with vanilla Linux kernel

4.4. The hardware setting is Intel(R) Core(TM) i7 CPU

920 with four 2.67GHz cores and with 12 GB RAM. The

benchmarks include emulated workloads and real-world

workloads. For fair comparison, the native Linux KSM

scanner is upgraded to use SuperFastHash, which has a

better performance. Our evaluation centers around five

key questions:

How efficient is UKSM on different workloads? Us-

ing emulated workloads each focusing on a single type,

we show that UKSM can be up to 12.6× more efficient

than KSM on densely/sparsely 1:1 mixed workloads and

can be up to 5× more efficient than KSM on frequently

COW-broken workloads (Section 8.1).

How flexible is UKSM with customization? On

the same set of workloads, we show that UKSM can

filter different types of memory regions with different

thresholds. With UKSM, users can customize their

trade-offs, while previous approaches like KSM cannot

(Sections 8.1.2 and 8.1.3).

What is the performance v.s. overhead tradeoff of
UKSM on production workloads? By experiments

on KVM VMs and Docker containers, we show that

UKSM significantly outperforms ksmtuned-enhanced

KSM in VM benchmarks. It can deduplicate the typical

setup of Docker containers (which cannot be handled by

KSM) with negligible CPU consumption (less than 1%

of one core). The results also prove that our approach

outperforms XLH even without I/O hints. The experi-

ments on desktop servers with mixed workloads shows

that UKSM can deduplicate newly generated pages in

seconds (Section 8.2).

How does Adaptive Partial Hashing perform com-
pared to non-adaptive algorithms? We analyze the

effectiveness of APH on densely and sparsely duplicated

pages. We find that APH alone can make the scanning

speed of UKSM up to 7× that of KSM on typical cloud

workloads (Section 8.3).

How large is the application penalty of UKSM? For

native environments, UKSM’s penalty is less than 3%.

For virtualized environments, UKSM’s penalty is less

than 1.8% (Section 8.4).

8.1 Deduplication efficiency analysis
8.1.1 Statically mixed workload
We first evaluate the deduplication efficiency of

UKSM and KSM on a static workload. This workload

is composed of two programs. Each program creates 4

GB memory. One fills memory with identical page data.

The other program fills memory with random data. After

they complete filling pages, we start the UKSM/KSM

334 16th USENIX Conference on File and Storage Technologies USENIX Association

0 100 200 300 400 500 600
Seconds

4000

5000

6000

7000

8000

9000

10000

11000
M

em
or

y
U

til
iz

at
io

n
(M

B)
UKSM
KSM 100 Pages
KSM 1000 Pages
KSM 2000 Pages

(a) Deduplication speed and memory saving

0 100 200 300 400 500 600
Seconds

0

10

20

30

40

50

60

70

80

90

100

C
PU

 (%
 o

ne
 c

or
e)

UKSM
KSM 100 Pages
KSM 1000 Pages
KSM 2000 Pages

(b) CPU consumption

0 50 100 150 200 250 300
Seconds

0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y

U
til

iz
at

io
n

(M
B)

KSM 2%
KSM 10%
KSM 20%
UKSM 2%
UKSM 10%
UKSM 20%

(c) Memory Utilization for COW-broken

Figure 9: Benchmark performance comparison.

daemon. Since the default scanning speed (100 pages

each cycle) of KSM is very low, we also obtain the results

of KSM when scanning 1000 and 2000 pages each cycle.

As illustrated in Figure 9(a), it takes only 5 seconds

for UKSM to merge all duplicated pages. While the

deduplication time for KSM at 100, 1000, 2000 pages

are 611, 95, 61 seconds respectively.

We then analyze the CPU usage of UKSM and KSM

in the above benchmark. As shown in Figure 9(b), the

CPU consumption pattern of UKSM is composed of

very thin spikes and with average CPU of less than 1%.

UKSM only reaches its peak CPU consumption (around

95%) at the 5th second. KSM constantly demonstrates

very high CPU consumption especially at high scanning

speed. This phenomenon reflects the fact that UKSM re-

acts rapidly to emerging duplicated pages and has a very

low background CPU usage (recall that the pre-defined

value for sampling level 1 is 0.2%) when all duplicated

pages are already merged.

We then calculate the deduplication efficiency as

memory saving over deduplication CPU consumption,

where deduplication CPU consumption is the sum of

CPU consumption ratios of each second before al-

l pages are deduplicated. From calculation, we find

that UKSM is 8.3×, 12.6×, 11.5× more efficient than

that of KSM at scan speed of 100, 1000, 2000 pages

respectively.

8.1.2 COW-broken workload
We then demonstrate how UKSM improves over KSM

on frequently COW-broken workloads. We emulate this

case with a program that maps 2GB of memory and

repeatedly memset one full page (with the same content)

every 10 ms from the start to the end of the region.

With the default setting of UKSM (COW-broken ratio

threshold of 50%), it totally avoids intensively scanning

this workload. However, UKSM can be configured

to scan this workload if we disable the COW-broken

filtering (note that KSM cannot be customized to avoid

scanning this workload).

We make both KSM and UKSM consume about the

same CPU power (2%, 10% and 20% of one core) and

then compare the memory saving of them as shown in

Figure 9(c). We can see that KSM saves only about 1/3

to 1/5 of the memory that could be saved by UKSM.

Furthermore, the performance of UKSM is quite stable,

in contrast, the memory saving of KSM suffers from

large variations.

8.1.3 Short-lived workload
We emulate this case by a program that infinitely repeats

a cycle of “mmap a region of 500MB pages of the same

content, sleep for time of T , then unmap this region and

sleep for another T ”. We observe that even with very

aggressive settings of KSM (sleep time sets to 20ms,

pages to scan sets to 2000, consuming about 50% CPU),

it cannot merge a single page if T is less than 2 seconds.

Although it totally filters out this case with its default

settings, it is possible to make UKSM sensitive to short-

lived pages. After we assign its sleep time to 20ms, its

max CPU consumption to 50% and its sampling round

time of each level to be 50ms, 20ms, 10ms, and 5ms,

respectively, UKSM can merge almost all the pages even

if T is less than 200ms.

8.2 Real world benchmarks
8.2.1 KVM virtual machines
Booting 25 VMs with abundant memory We uss

the same benchmark used in XLH [27], As XLH is

not an open-source implementation, we use an almost

identical hardware/software platform settings. Thus we

can compare our results with theirs. We booted 25

VMs (installed with Ubuntu server 16.04) each with a

single VCPU and 512MB of memory in parallel, with

starting time of 10 seconds apart. KSM is configured

with the settings as that in XLH. UKSM uses the default

settings. After about 260 seconds, all VMs are fully

booted. Up to this point, UKSM has merged 5.3GB of

memory, about 3× of what KSM has merged (Figure

10(a)). We need a warming up time to build rb-tree,

offset and figure out duplications. That explains why in

around 100 sec we have a jump. KSM and UKSM use

about the same amount of CPU resources during this

process. [27] reported that XLH can achieve only 2×
the memory saving compared to KSM with same CPU

resources. This implies that UKSM outperforms XLH

significantly.

USENIX Association 16th USENIX Conference on File and Storage Technologies 335

0 50 100 150 200 250
Seconds

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
M

em
or

y
Sa

vi
ng

 (M
B)

UKSM
KSM

(a) 25 VMs Memory Saving

0 100 200 300 400 500 600
Seconds

0

10

20

30

40

50

60

70

80

90

100

C
PU

 (%
 o

ne
 c

or
e)

KSM
UKSM

(b) 40 VMs CPU

0 50 100 150 200 250 300 350 400 450 500 550
Seconds

0

2000

4000

6000

8000

10000

12000

M
em

or
y

U
til

iz
at

io
n

(M
B)

KSM
KSM Swap
UKSM

(c) 40 VMs Memory Utilization

Figure 10: Real workload performance comparison.

0 50 100 150 200 250 300
Seconds

200

250

300

350

400

450

500

550

600

An
on

ym
ou

s
M

em
or

y
(M

B)

UKSM Enabled
UKSM Disabled

(a) Deduplication for Docker containers.

bw
av

es

ga
mes

s
milc

ze
us

mp

gro
mac

s

ac
tus

ADM

les
lie

3d
na

md
de

alI
I

so
ple

x

po
vra

y

ca
lcu

lix

em
sF

DTD
ton

to lbm wrf

sp
hin

x3
0

500

1000

1500

2000

Ti
m

es
 (s

ec
on

ds
)

Orig
UKSM

(b) CPU2006 fp, 1 CPU core

bw
av

es

ga
mes

s
milc

ze
us

mp

gro
mac

s

les
lie

3d
na

md
de

alI
I

so
ple

x

ca
lcu

lix

msF
DTD

ton
to lbm wrf

sp
hin

x3
0

500

1000

1500

2000

2500

Ti
m

es
 (s

ec
on

ds
)

Orig
UKSM

(c) CPU2006 fp benchmarks in KVM

Figure 11: (a) Deduplication for Docker containers; (b), (c) Performance impact of UKSM.

Booting 40 VMs with memory overcommit We boot

40 VMs (with a single VCPU and 1GB of memory) in

parallel, with starting time of 10 seconds apart. We

record the total boot time, memory and swap usage

until the system stabilized. In this benchmark, we

compare UKSM (with default settings) with KSM set-

tings adjusted by ksmtuned. As mentioned in related

work, ksmtuned can dynamically increase and decrease

the KSM scanning speed according to memory usage.

Figure 10(b) illustrates the CPU utilization of UKSM and

KSM during the deduplication process; from calculation,

the aggregated CPU utilization of UKSM is about half of

KSM. Figure 10(c) shows that, with KSM and ksmtuned,

the system triggers about 1.3GB of swap and this slows

down the boot process of the VMs significantly (from

about 420 seconds to 550 seconds). UKSM uses only

half of physical memory and requires no swap usage

when the system stabilizes. The peak memory usage

with UKSM is only 32% of that with KSM. With KSM,

the last VM booted still waits for a long time before

it can be logged in after ksmtuned shuts down KSM at

480 seconds. Moreover, when the swapping storm is

triggered, the system suffers bad responsiveness, which

would be a devastating user experience.

8.2.2 Docker containers
We start 3 Docker containers each running a WordPress

website in LAMP environment (i.e., Linux, MySQL,

Apache and PHP). Each website contains a page with

the same set of images and texts. Then we uses Firefox to

emulate normal user connections by making it refreshing

Table 2: UKSM introduced space saving and time con-

sumption for mixed workload.
Application Okular PDF Firefox FlashPlayer GIMP

Space saving (MB) 415 27 63 39

Time (s) 2 5 4 1

each website’s page every second. Figure 11(a) shows

the amount of the anonymously mapped memory in this

process when UKSM is enabled or disabled. We find that

the average memory used with UKSM enabled is only

61% of that when it is disabled. The CPU consumption

during this process of uksmd is mostly less than 1% (one

core) with few spikes to around 3%. At the time of this

paper is written, no other open source implementation

to our knowledge can deduplicate memory of containers,

hence we do not compare with others in this benchmark.

It’s worthy to note that Docker containers try hard

to share the underlying files with aufs [43]. There

may not be that much duplication in file cached pages.

UKSM only handles anonymous pages for containers by

now. File cache deduplication is left as our future work.

8.2.3 Mixed workload on desktop server
In this Ubuntu desktop server, we run four applications,

i.e., Okular PDF reader, Firefox browser, FlashPlayer,

and GIMP painter, simultaneously. The default memory

is around 1,248 MB. We then perform operations with

each software separately. At the same, we record the

time and deduplication gain of UKSM, by monitoring

the htop tool. With UKSM, it takes only 2/5/4/1

seconds to deduplicate 415/27/63/39 MB memory for

336 16th USENIX Conference on File and Storage Technologies USENIX Association

Okular/Firefox/FlashPlayer/GIMP in this mixed wowrk-

load environment. Consistent with our design principal,

UKSM works well in real world systems.

8.3 Analysis of Adaptive Partial Hashing
In the first two experiments, we use two extreme sce-

narios, one system contains no duplication, and one full

of duplicated pages. Thus, UKSM hierarchical region

distilling has no effect at all, since all regions are at either

the highest level, or the lowest level. In this case, the only

difference between UKSM and KSM is that UKSM turns

on APH.

8.3.1 Effectiveness of Adaptive Partial Hashing
Scanning speed in regions with low redundancy We

first demonstrate how fast the optimized system can scan

regions with low page redundancy. One extreme case is

when the system is full of “quite different” pages, that

is, no two pages have the identical 32-bit words at the

same offset. That makes the hash strength drop to 1, or

in other words, the hashing cost is about 1/1000 of the

SuperFastHash hashing. The maximum scanning speed

of UKSM in this case is about 5.9× higher than that of

the hash-based KSM or 7.4× higher than the original

KSM. On the other hand, if the pages are quite similar

but not equal, the strength of hash function may rise to

1,024 words. In this worst case, the maximum scanning

speed is about the same as the hash-based KSM, which

is expected by the fact that the hash algorithm with the

strongest strength is comparable to SuperFastHash.

Deduplication speed on highly redundant regions We

then measure the maximum speed for merging identical

pages when hash strength is 1. It’s approximately 2.5×
higher than that of the hash-based KSM or 7× higher

than that of the original KSM. When increasing the

strength of hash function to the maximum value, the

merge speed becomes comparable to hash-based KSM

or about 3× that of the original KSM.

8.3.2 Strength of hash function
The actual scan/deduplication speed on real workloads

depends on the memory content pattern and our system

adapts its page hash strength accordingly. A comprehen-

sive testing on a variety of workloads has shown that

the hash strength is usually within 100 words (recall

that the highest value is 1,024). The scan speed of

UKSM at this hash strength is about 6 to 7× higher

than that of the original KSM or 2 to 5× higher than

that of the hash-based KSM. We expect even smaller

strength values in scientific computing or data processing

environments. For example, the hash strength for all

12 SPEC-CPU2006 benchmarks ranges from 2 to 17,

with the average of 7.5. These results validate the

effectiveness of our hashing design.

8.4 Performance Impact
We evaluate the runtime overhead of UKSM using CPU

intensive workloads of Standard Performance Evaluation

Corporation (SPEC) CPU2006 benchmarks with uksmd
under the Full governor. The experiments are firstly run

on the host and then inside KVM virtual machines.

CPU2006 on host We evaluate UKSM in two scenarios,

where 1) UKSM and CPU2006 are running within one

CPU core; 2) The system has enough CPU resources so

that UKSM will not compete with CPU2006. The result

of CPU2006 float point benchmarks in the first scenario

is shown in Figure 11(b). We can see that the average

overhead is less than 3.0%. The average overhead in

the second scenario is about 1.5%. We observe similar

results with CPU2006 integer benchmarks (2.7%). We

do not show the other figures due to space limitation.

CPU2006 in KVM The benchmarks run inside 2 VMs.

Two CPU cores are enabled on the host for VMs. Each

VM is assigned with 1 VCPU. As illustrated in Figure

11(c), the average overhead for CPU2006 float point is

1.8% (0.9% on CPU2006 integer group).

It is worth noting that these results are the worst case

upper bound under the Full governor. We achieved

almost the same memory saving for these benchmarks

under the Low governor with negligible overhead.

9 Conclusion
We design a novel memory deduplication system called

UKSM that (1) samples the whole memory with an en-

hanced hashing scheme to estimate the duplication ratio

and dynamics of each memory region; and (2) performs

different scanning policies for different regions to max-

imize computation efficiency and minimize application

penalty. Experiments on both emulated workloads and

real-world benchmarks show substantial improvements

compared to standard Linux KSM and I/O hints based

approach XLH.

Acknowledgment
The authors would like to thank our shepherd Prof.

Hong Jiang and anonymous reviewers for their valu-

able comments. This work was supported in part by

the National Science and Technology Major Project of

China under Grant Number 2017ZX03001013-003, the

Fundamental Research Funds for the Central Universi-

ties under Grant Number 0202-14380037, the National

Natural Science Foundation of China under Grant Num-

bers 61772265, 61370028, 61602194, and 61321491,

the National Science Foundation under Grant Number-

s 1547428 and 1738965, the Collaborative Innovation

Center of Novel Software Technology and Industrializa-

tion, and the Jiangsu Innovation and Entrepreneurship

(Shuangchuang) Program.

USENIX Association 16th USENIX Conference on File and Storage Technologies 337

References

[1] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-

Lee Tan, and Meihui Zhang. In-memory big data

management and processing: A survey. IEEE
Transactions on Knowledge and Data Engineering,

27(7):1920–1948, 2015.

[2] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu.

An empirical study on memory sharing of virtual

machines for server consolidation. In IEEE In-
ternational Symposium on Parallel and Distributed
Processing with Applications (ISPA), pages 244–

249, 2011.

[3] Shashank Rachamalla, Debahuti Mishra, and Parag

Kulkarni. Share-o-meter: An empirical analysis of

ksm based memory sharing in virtualized systems.

In IEEE International Conference on High Perfor-
mance Computing (HiPC), 2013.

[4] Jacob Faber Kloster, Jesper Kristensen, and Arne

Mejlholm. Determining the use of interdomain

shareable pages using kernel introspection. De-
partment of Computer Science, Aalborg University,

2007.

[5] Carl A Waldspurger. Memory resource manage-

ment in vmware esx server. ACM SIGOPS Operat-
ing Systems Review, 36(SI):181–194, 2002.

[6] Uksm official site. http://
kerneldedup.org/en/projects/uksm/.

[7] Xanmod kernel 4.4.0 for ubuntu linux. https://
ubuntuforums.org/showthread.php?t=
2307617.

[8] Openmandriva lx 2014.2 kernel. https://
wiki.openmandriva.org/en/2014.2/New.

[9] Achlinux port of linux-pf-lts 3.14.72-1.

https://aur.archlinux.org/packages/
linux-pf-lts/.

[10] Opensuse linux port of kernel-postfactum.

https://software.opensuse.org/
package/kernel-postfactum.

[11] Calculate linux 14.16. http://
distrowatch.com/?newsid=08899.

[12] Shinto kernel secondreality v40a05. https:
//www.precog.me/2015/02/27/release-
shinto-kernel-secondreality-
v40a05/3/.

[13] Xda-developers, charm-kiss kernel 20140107.

http://forum.xda-developers.com/
showthread.php?t=2487113.

[14] Xda-developers, wonderchild kernel.

http://forum.xda-developers.com/
showthread.php?t=2565299.

[15] Xda-developers, decimalman’s kernel playground.

http://forum.xda-developers.com/
showthread.php?t=2226889.

[16] Xda-developers, renderbroken’s custom kernel.

http://forum.xda-developers.com/
showthread.php?t=2724016.

[17] Rodrigo Ceron, Rafael Folco, Breno Leitao, and

Humberto Tsubamoto. Power systems memory

deduplication. IBM Redbooks, 2012.

[18] Diwaker Gupta, Sangmin Lee, Michael Vrable,

Stefan Savage, Alex C Snoeren, George Varghese,

Geoffrey M Voelker, and Amin Vahdat. Differ-

ence engine: Harnessing memory redundancy in

virtual machines. Communications of the ACM,

53(10):85–93, 2010.

[19] Paul Hsieh. The superfasthash function.

http://www.azillionmonkeys.com/
qed/hash.html.

[20] Andrea Arcangeli, Izik Eidus, and Chris Wright.

Increasing memory density by using ksm. In Linux
symposium, pages 19–28, 2009.

[21] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,

and Anthony Liguori. kvm: the linux virtual

machine monitor. In Linux symposium, volume 1,

pages 225–230, 2007.

[22] Prateek Sharma and Purushottam Kulkarni. Single-

ton: system-wide page deduplication in virtual en-

vironments. In the 21st international symposium on
High-Performance Parallel and Distributed Com-
puting, pages 15–26. ACM, 2012.

[23] Red hat enterprise linux virtualization

administration guidechapter ksm. https://
access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/6/html/
Virtualization Administration Guide/
chap-KSM.html.

[24] Anshuj Garg, Debadatta Mishra, and Purushottam

Kulkarni. Catalyst: Gpu-assisted rapid memory

deduplication in virtualization environments. In the
13th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, pages

44–59. ACM, 2017.

338 16th USENIX Conference on File and Storage Technologies USENIX Association

[25] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang,

and John CS Lui. Smartmd: A high performance

deduplication engine with mixed pages. In USENIX
Annual Technical Conference (ATC), pages 733–

744, 2017.

[26] Konrad Miller, Fabian Franz, Thorsten Groeninger,

Marc Rittinghaus, Marius Hillenbrand, and Frank

Bellosa. Ksm++: Using i/o-based hints to make

memory-deduplication scanners more efficient. In

ASPLOS Workshop on Runtime Environments, Sys-
tems, Layering and Virtualized Environments (RE-
SoLVE), 2012.

[27] Konrad Miller, Fabian Franz, Marc Rittinghaus,

Marius Hillenbrand, and Frank Bellosa. Xlh: More

effective memory deduplication scanners through

cross-layer hints. In USENIX Annual Technical
Conference (ATC), pages 279–290, 2013.

[28] Jui-Hao Chiang, Han-Lin Li, and Tzi-cker Chiue-

h. Introspection-based memory de-duplication and

migration. In ACM SIGPLAN Notices, volume 48,

pages 51–62, 2013.

[29] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu

Chen, Haiyang Pan, and Yungang Bao. Cmd:

classification-based memory deduplication through

page access characteristics. In ACM SIGPLAN
Notices, volume 49, pages 65–76, 2014.

[30] Yinjin Fu, Hong Jiang, Nong Xiao, Lei Tian, and

Fang Liu. Aa-dedupe: An application-aware source

deduplication approach for cloud backup services

in the personal computing environment. In IEEE
International Conference on Cluster Computing
(CLUSTER), pages 112–120. IEEE, 2011.

[31] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl:

A content-aware flash translation layer enhancing

the lifespan of flash memory based solid state

drives. In USENIX File and Storage Technologies
(FAST), volume 11, pages 77–90, 2011.

[32] Deepavali Bhagwat, Kave Eshghi, Darrell DE

Long, and Mark Lillibridge. Extreme binning:

Scalable, parallel deduplication for chunk-based

file backup. In IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 1–

9. IEEE, 2009.

[33] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi

Ottean, Jin Li, and Sudipta Sengupta. Primary data

deduplication-large scale study and system design.

In USENIX Annual Technical Conference (ATC),
volume 2012, pages 285–296, 2012.

[34] Mark Lillibridge, Kave Eshghi, Deepavali Bhag-

wat, Vinay Deolalikar, Greg Trezis, and Peter

Camble. Sparse indexing: Large scale, inline

deduplication using sampling and locality. In

USENIX File and Storage Technologies (FAST),
volume 9, pages 111–123, 2009.

[35] Bob Jenkins. A hash function for hash table

lookup. http://www.burtleburtle.net/
bob/hash/doobs.html.

[36] Wikipedia - avalanche effect. https:
//en.wikipedia.org/wiki/
Avalanche effect.

[37] Horst Feistel. Cryptography and computer privacy.

Scientific american, 228:15–23, 1973.

[38] Edward Dawson, Helen Gustafson, and Anthony N

Pettitt. Strict key avalanche criterion. Australasian
Journal of Combinatorics, 6:147–153, 1992.

[39] B Jenkins. Spookyhash: a 128-bit non-

cryptographic hash (2010). http://burtleburtle.
net/bob/hash/spooky. html, 2014.

[40] Yann Collet. xxhash-extremeley fast hash algorith-

m, 2016.

[41] Austin Appleby. Murmurhash 2.0, 2008.

[42] Linux kernel intel p-state driver. https:
//www.kernel.org/doc/Documentation/
cpu-freq/intel-pstate.txt.

[43] aufs another unionfs. http://
aufs.sourceforge.net/aufs.html.

USENIX Association 16th USENIX Conference on File and Storage Technologies 339

